diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..09f475c0b3a8552066d7784ce9e208dea763d371 100644 --- a/module3/exo3/exercice.ipynb +++ b/module3/exo3/exercice.ipynb @@ -1,5 +1,535 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sujet 2 : le pouvoir d'achat des ouvriers anglais du XVIe au XIXe siècle\n", + "\n", + "## Importation des données\n", + "\n", + "Les données utilisées dans le cadre de cette étude proviennent des travaux de [William Playfair](https://fr.wikipedia.org/wiki/William_Playfair). Plus précisément, elles sont tirées de son livre \"[A Letter on Our Agricultural Distresses, Their Causes and Remedies](https://books.google.fr/books/about/A_Letter_on_Our_Agricultural_Distresses.html?id=aQZGAQAAMAAJ)\" dans lequel peut être trouvé un de ses [graphes](https://fr.wikipedia.org/wiki/William_Playfair#/media/File:Chart_Showing_at_One_View_the_Price_of_the_Quarter_of_Wheat,_and_Wages_of_Labour_by_the_Week,_from_1565_to_1821.png) célèbres, présentant l'évolution du prix du blé et du salaire moyen entre 1565 et 1821.\n", + "\n", + "Par la [numérisation](https://vincentarelbundock.github.io/Rdatasets/doc/HistData/Wheat.html) de ce graphe, des valeurs ont pu être obtenues au sein d'un [fichier au format CSV](https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv). C'est à partir de ce fichier que l'ensemble des calculs présentés ici ont été réalisés." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dans un premier temps, on introduit l'ensemble des bibliothèques qui nous serviront pour le code lié aux calculs :" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Les données présentes dans le fichier au format CSV sont les suivantes :" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + " | Unnamed: 0 | \n", + "Year | \n", + "Wheat | \n", + "Wages | \n", + "
---|---|---|---|---|
0 | \n", + "1 | \n", + "1565 | \n", + "41.0 | \n", + "5.00 | \n", + "
1 | \n", + "2 | \n", + "1570 | \n", + "45.0 | \n", + "5.05 | \n", + "
2 | \n", + "3 | \n", + "1575 | \n", + "42.0 | \n", + "5.08 | \n", + "
3 | \n", + "4 | \n", + "1580 | \n", + "49.0 | \n", + "5.12 | \n", + "
4 | \n", + "5 | \n", + "1585 | \n", + "41.5 | \n", + "5.15 | \n", + "
5 | \n", + "6 | \n", + "1590 | \n", + "47.0 | \n", + "5.25 | \n", + "
6 | \n", + "7 | \n", + "1595 | \n", + "64.0 | \n", + "5.54 | \n", + "
7 | \n", + "8 | \n", + "1600 | \n", + "27.0 | \n", + "5.61 | \n", + "
8 | \n", + "9 | \n", + "1605 | \n", + "33.0 | \n", + "5.69 | \n", + "
9 | \n", + "10 | \n", + "1610 | \n", + "32.0 | \n", + "5.78 | \n", + "
10 | \n", + "11 | \n", + "1615 | \n", + "33.0 | \n", + "5.94 | \n", + "
11 | \n", + "12 | \n", + "1620 | \n", + "35.0 | \n", + "6.01 | \n", + "
12 | \n", + "13 | \n", + "1625 | \n", + "33.0 | \n", + "6.12 | \n", + "
13 | \n", + "14 | \n", + "1630 | \n", + "45.0 | \n", + "6.22 | \n", + "
14 | \n", + "15 | \n", + "1635 | \n", + "33.0 | \n", + "6.30 | \n", + "
15 | \n", + "16 | \n", + "1640 | \n", + "39.0 | \n", + "6.37 | \n", + "
16 | \n", + "17 | \n", + "1645 | \n", + "53.0 | \n", + "6.45 | \n", + "
17 | \n", + "18 | \n", + "1650 | \n", + "42.0 | \n", + "6.50 | \n", + "
18 | \n", + "19 | \n", + "1655 | \n", + "40.5 | \n", + "6.60 | \n", + "
19 | \n", + "20 | \n", + "1660 | \n", + "46.5 | \n", + "6.75 | \n", + "
20 | \n", + "21 | \n", + "1665 | \n", + "32.0 | \n", + "6.80 | \n", + "
21 | \n", + "22 | \n", + "1670 | \n", + "37.0 | \n", + "6.90 | \n", + "
22 | \n", + "23 | \n", + "1675 | \n", + "43.0 | \n", + "7.00 | \n", + "
23 | \n", + "24 | \n", + "1680 | \n", + "35.0 | \n", + "7.30 | \n", + "
24 | \n", + "25 | \n", + "1685 | \n", + "27.0 | \n", + "7.60 | \n", + "
25 | \n", + "26 | \n", + "1690 | \n", + "40.0 | \n", + "8.00 | \n", + "
26 | \n", + "27 | \n", + "1695 | \n", + "50.0 | \n", + "8.50 | \n", + "
27 | \n", + "28 | \n", + "1700 | \n", + "30.0 | \n", + "9.00 | \n", + "
28 | \n", + "29 | \n", + "1705 | \n", + "32.0 | \n", + "10.00 | \n", + "
29 | \n", + "30 | \n", + "1710 | \n", + "44.0 | \n", + "11.00 | \n", + "
30 | \n", + "31 | \n", + "1715 | \n", + "33.0 | \n", + "11.75 | \n", + "
31 | \n", + "32 | \n", + "1720 | \n", + "29.0 | \n", + "12.50 | \n", + "
32 | \n", + "33 | \n", + "1725 | \n", + "39.0 | \n", + "13.00 | \n", + "
33 | \n", + "34 | \n", + "1730 | \n", + "26.0 | \n", + "13.30 | \n", + "
34 | \n", + "35 | \n", + "1735 | \n", + "32.0 | \n", + "13.60 | \n", + "
35 | \n", + "36 | \n", + "1740 | \n", + "27.0 | \n", + "14.00 | \n", + "
36 | \n", + "37 | \n", + "1745 | \n", + "27.5 | \n", + "14.50 | \n", + "
37 | \n", + "38 | \n", + "1750 | \n", + "31.0 | \n", + "15.00 | \n", + "
38 | \n", + "39 | \n", + "1755 | \n", + "35.5 | \n", + "15.70 | \n", + "
39 | \n", + "40 | \n", + "1760 | \n", + "31.0 | \n", + "16.50 | \n", + "
40 | \n", + "41 | \n", + "1765 | \n", + "43.0 | \n", + "17.60 | \n", + "
41 | \n", + "42 | \n", + "1770 | \n", + "47.0 | \n", + "18.50 | \n", + "
42 | \n", + "43 | \n", + "1775 | \n", + "44.0 | \n", + "19.50 | \n", + "
43 | \n", + "44 | \n", + "1780 | \n", + "46.0 | \n", + "21.00 | \n", + "
44 | \n", + "45 | \n", + "1785 | \n", + "42.0 | \n", + "23.00 | \n", + "
45 | \n", + "46 | \n", + "1790 | \n", + "47.5 | \n", + "25.50 | \n", + "
46 | \n", + "47 | \n", + "1795 | \n", + "76.0 | \n", + "27.50 | \n", + "
47 | \n", + "48 | \n", + "1800 | \n", + "79.0 | \n", + "28.50 | \n", + "
48 | \n", + "49 | \n", + "1805 | \n", + "81.0 | \n", + "29.50 | \n", + "
49 | \n", + "50 | \n", + "1810 | \n", + "99.0 | \n", + "30.00 | \n", + "
50 | \n", + "51 | \n", + "1815 | \n", + "78.0 | \n", + "NaN | \n", + "
51 | \n", + "52 | \n", + "1820 | \n", + "54.0 | \n", + "NaN | \n", + "
52 | \n", + "53 | \n", + "1821 | \n", + "54.0 | \n", + "NaN | \n", + "