{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Exercice 3" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "tuple = (14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[0, 100, 0, 25]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl0HNWZ9p+rxZZk7V6EF8DGtmwwBpwQAnFCwAxZIGcIWSZsCSELOUkImZDJl4VkvnwZAjmZHObLMvkmZGVPJiFhgIADGDeYQDDGGGNblmy827Ikb1otWVK/3x+vbqq6utbu6q3q/Z2jI3Wpu1V9VfXUU899772KiCAIgiBEl7JC74AgCIKQW0ToBUEQIo4IvSAIQsQRoRcEQYg4IvSCIAgRR4ReEAQh4ngKvVLqZKXUaqVUm1Jqs1LqixPbv62U2q+U2jDxdVnud1cQBEEIivKqo1dKzQQwk4jWK6XqALwC4P0A/gnAABH9IPe7KQiCIGRKhdcTiKgTQOfEz/1KqTYAs3O9Y4IgCEI4eDr6lCcrNRfAcwDOBHALgI8D6AOwDsCXieiozWtuBHAjAFRVVb35lFNOyXafI0EymURZmXSRANIWZqQtDKQtDDo6Og4R0fRMX+9b6JVStQCeBfBdIvqjUqoFwCEABODfwPHOJ9zeY9GiRdTe3p7pvkaKRCKBiy66qNC7URRIWxhIWxhIWxgopV4honMzfb2vy6VSqhLAQwDuJ6I/AgARdRHROBElAfwcwHmZ7oQgCIKQO/xU3SgAvwTQRkR3mrbPND3tSgCbwt89QRAEIVs8O2MBLAfwUQCvK6U2TGz7BoCrlVLngKObXQA+k5M9FARBELLCT9XN8wCUza8eD393BEEQhLCRLm1BEISII0IvCIIQcUToBUEQIo4IvSAIQsQRoRcEQYg4IvSCIAgRR4ReEAQh4ojQC4Ig+KCzs9B7kDki9IIgCD5405uAffsKvReZIUIvCILgweAgcPAg0N9f6D3JDBF6QRAED3bv5u/Dw4Xdj0wRoRcEQfBg1y7+fvx4QXcjY0ToBUEQPBChFwRBiDgi9IIgCBFn926grEwyekEQhMiyaxcwb544ekEQhJLkgQeA8XH35+zaBSxeLEIvCIJQknzqU1wj78TQENDXB8ydK9GNIAhCyTE6yi792DHn5+zZA5xyClBTI45eEASh5Ojt5e9uQr9rF3DqqUB1tQi9IAhCyeFX6OfOBaqqROgFQRBKjiBCX10tGb0gCBFk1SpgbKzQe5E7ggq9OHpBECIFEfChDwFtbYXek9zhR+h37xahFwQhouzdywJYquLmhyCdsZLRC4JQUnziE1wb7sZrr/H3UhU3P/T2ApMmOQv98ePA0aPAzJmS0QuCUGL88Y/eqyVpoR8ayv3+FIreXq6R187eyp49wMkn8zw3Et0IglAyELGbd4srABb6srLSFTc/9PZyLOPUFjqfByS6EQShhBgcZLF3crGa114Dli4tXXHzQ1+fu9DrfB7IX3Rz/DjfcYWJCL0gxAydzbs5+sFBjnbOOSce0Y2b0GtHn6/o5tAh4Oabw31PEXpBiBl+hP7113m2xvr6aDt6r+imEEI/PMwxUZiI0AtCzNBC7xbdvPYacPbZPJFX1B29Fnqi9N+bhT5fGb0IvSAIWePH0WuhL+VKEz/09gIzZgDl5faf09wZm6+MfniY/1aYiNALgoX3vAfYtq3Qe5E7/Aj9xo2FdfQnTtg77EwZGbFfXKS3F2hoABob09tjZITz8pkz+bFEN4IQIV55BejqKvRe5I6+PqCy0jm6SSYNoS+Eoz9yBFi0CFi/vjG09/z854EHH0zf3tvL/RCNjentsWcPMGcOu32AB1aNjXmvRpUtBRF6pdTJSqnVSqk2pdRmpdQXJ7Y3K6WeUkptm/jeFO6uCUL+GR5mFxflXLqvjwcBuXVANjQAzc35d/TJJHDddUBnJ3Do0OTQ3nfvXv4yMzbGF7HaWntHv3cvt5NGKRbgXMc3x48XxtGPAfgyEZ0O4HwAn1dKnQHgawBWEdFCAKsmHgtCSaNHi0Y5l+7rcy8p1Pk8kH9Hf/vtQH8/cMMNQH9/RWjv29PDX2b6+oC6Oh4U1tCQ3h4HDxqxjSYf7VEQR09EnUS0fuLnfgBtAGYDuALA3RNPuxvA+8PdNUHIP3ESeqfoxiz0+XT0Tz8N/PSnwO9+B0yfDgwMVIb23t3d/GVG5/OAvaOPktAHumQqpeYCWAbgJQAtRNQJ8MVAKTXD4TU3ArgRAKZPn45EIpHF7kaHgYEBaYsJ8tUWP/3pfFx33W7U1ztPsP7UUy0ATserr27FSSe5rBidI/LRFlu3tqKx8QS6u2cikXgx7ferVi3BihXdSCR60NHRhAMHTkYisTGn+3TihMJVV12Ab31rCzo6juHw4Tk4cqQ8lLYgArq7L0R7+7GUz7F9ey0qKhYjkViHoaFWrF07gJkzD/z992vXnoaGhlEkEntN7/VWJBIbcfLJuVP7116biaNH65BIdIT3pkTk6wtALYBXAHxg4vExy++Per1Ha2srCczq1asLvQtFQ77aYtYsonXr3J9zxx1EANFPfpKXXUojH21x9dVEd91FVF1t//t584i2buWf16whWr4857tEXV1E06YZj3/9a6JLL+0M5b2PHeP/6TnnpG5PJIje/nb++atfJbr99tTff/SjRHffnbrtzDOJXnstlN1y5Ic/JPrCF1K3AVhHPrXa7stX1Y1SqhLAQwDuJyI9C0OXUmrmxO9nAuh2er0gFAPHjnlP5LVvH1dXRDm66e0FTjoJGB3lMkYzfX0ccSxYwI/zldEfP55aO97UBAwMhJPR9/QAkyenZ/R+opuTTkrdVqrRjZ+qGwXglwDaiOhO068eAXD9xM/XA/ifcHdNEMJjdJSzZj9Cv2BBtIW+r48FrqEhPadvbwdaW42Swnxl9FZxa2oC+vvDyeh7eng6h56e1Np8EfpUlgP4KIAVSqkNE1+XAfgegEuVUtsAXDrxWBCKEj8rCQFcUrdwYfTLK3XtuLU9urtTOyAL6ejDqrrp7uYyycmTUxdb0Rc8wL/Q52MahFyUV3q2JBE9D0A5/PqScHdHEHKDPon9OPoVK6Lv6Ovr7R19dzdPCaAppKMPM7qZPp2/enoMcbc6enNbjI7ysTJ1aup75WMahOFh3tcwkZGxQizwI/QjI7xs3Ny58RB6J0dvFpmoOPoZM/jLXGLpFt309ADTphkRlibK0Y0glDx+opsDBzi2qK0tTHTzb/8GbN1aF9r7/exnwJNPpm7Tq0vV1dkP+7c6+upqbosw552xwypuNTVAMqlCcc9WR68xC711wFRnZ3psA+QnuhGhF4QM8ePo9+3juU0KMb8LEQ8W2rlzSmjv+cwzwEsvpW4bHmaXOnmy/WhQq9BXVPDzR0dD2y1brOKmFFBXN4ajR7N/756e4I7eLp8H8hfdyOyVgpABOm/1I/Q1NfkX+q1bWVzCyqUB52H/9fX8s1N0M8My9FG7+lxijW4AoLY2HKHXcZSdo3dqCzehF0cvlCybNqXXVEeJ3l7O3t0W2yiko1+9mr8PDoYn9N3d3kJvbQ/tfs3k48JnJ251daOeQt/RwXPjuKE/0/Tpzo6+qorvqrRbF6EXIsnVVwMvvFDovcgdx46x0Ls5ej1bYT4crJVnngGWLQvX0XsJvZ/oBsiPuNk5ej/Rzec+B9x7r/tztKOfMcM5o1cq1dU7CX2plleK0AsYH+eFNqJcO+61NihQOEefTAKJBHDlleEJ/fg4T7dsJ/ROuTSR0XFpJh8llnYu1k90s3kzsG6d8++JuB28OmMBf0Kfr4xehF4Ind27ubQwykJ/7Jh/oc93Rv/66zz3+5IlwOBgufcLfHD4MH8PEt309rKQTbZMA1+ouMLL0R85woL8yivOz+nr489TVeXeGQv4F/ogbfH448Cjj/p/PiBCL+SIrVv5e9SF/uSTgcFBXnDCDrOjz2dbPPMMD9JqbAzP0Xd3A/PmsZs1l0a6RTfWGnpNPhy9fXQz6nph3ryZ4y63u1HzZzI7+vFxPhbqTNWs5gtfWEL/6KPAn/7k//mACH3oHD+e+/rgUqC9nb9HWeh7e3kQTn196jB4zegoi+JJJ+U/usmV0J9yCrtZs2t3q7qxy+eBwjl6r+hmyxbgTW8CTj+d59C3w9y5rIWeiDtwp0xJHRDlN6MPEt3s3Bl8/WEprwyZD3wAePbZQu9F4WlvL0wHZC44csS+CuPYMT6R7UoKAR4gM2MG143nM7oZGwPWrAEuuogddlhVN35KCq1TIDgJfeEcvbvQb94MnHEGcO65zjm92dFPnsx/o7c3PbYBjDucgQF2/HU2Y9eCXvR27gS2b/f/fEAcfeh0dCCUOt1iZu1a78EuW7cCZ53Ft7Klzm23AT/5Sfp2L6Hfu5djG8DocMvH3d769RwpzZgRvqPXJYVmoS8lR+9H6JcscRd6a7moLrG0E3rdHl1d7OaVzQxfQdoimeT+r6NHvUtAzYjQh0gyySd3FFysGx//uHtnFcCOftmyaLTFgQPszq3oE9tJ6PftMxaCLisDKitzX10BGLENYDj6MC4wfoS+vp4FKJlMfY2VQjn62lr3Onq/Qm/ud9AllubqI40+NpxiGyBYeWVnJ7/nwoXAG2/4ew0g5ZWh0tnJTjfKk1cBHGW4nSy9vXyyR2VqXru1QZNJ/ox6Ii+7QVO6I1aTr/jmmWeAiy/mnysqgEmTkhgYyP59zYOEnIS+vJxzau027QZLAcXp6A8f5tfMns1iv3MnbNvNevHS7eHm6N2EPkh55c6d3CG+cKH/nD6Z5IGL1sqnbImt0O/ezd+jLPRELPRHjjg/Ry80UaiJvMKmq4u/zPT3s3CXl7s7erPQ50Pcxsd5kNo732lsq60d85xK2Q9+HD2Q2h6FdPRBhX7LFs7nleIVwZYuBTZsSH+e1dH7iW68hN7vcbFrFwv9ggX+c/qRERZ5u9goG0ToIyz0g4N81+Lm6NvbefWdfM07nmvsHH1vL5/EQDChz3V76Fkhm5qMbcUo9MU4MlZ3xGqc4htryaiObvIh9Jk4+lzk80CMhX7PHv4eZaHXTt5N6LduBRYtiobQj43xLb1V6HVHLOBf6PMR3diJ25QpY67z8fjFLPSHDhnbrUJvrrwpNkdfVTVuu64tYOTzmje/2V7o3Tpjze0AhJ/Ra6EP4uhzUVoJxFjod+8GZs2Kh9B7RTdREfpDh3iE6dGjqYOijh1znndcU4joxu6kLrSjtxswVShHr+efsTMqVqF3cvROnbFOjr63t7AZvTj6kNm9myOLOAh9XKIbvd5pc3Oqi/WKbsbGONfP91qpTlPzZiv0w8P83g0N/oV+bMx+6TygcI4e4FjLj9CfcQZX0ZkHw9nN3ZPPjH7nTp5Ib9Ys/nt+OtlF6EMmLkJfWeks9OPjfEu5cGE0hL6rC2hp4S9zh6xXdHPwIAvcpEnGtkLNwR5GdKPjCqXshd4scDq6OXyYRdW6dB5QuLsbwF7oDx3iTstZs4xtFRXA2WfzuASN3dw9blU3+m7v4MHUi74ZPTLWqwR2dJQr+045hct158/3F9/korQSiKjQ/+hH9rXUGiIW+tNPL31xc0Ovf+ok9Lt3syBMmZJfob/5ZuAHP+CTUtdwh0Ema4MCxvTEZvKV0dsN+8/W0ZuzdrPQj4xwe5uFT7eHUz4P5K+O3q+j37KF3by1MsUa39h9JrfopqaGBfrgQee2KCtjQzAy4v559u7lu4LKSn7sN6cXRx+A3/yGZwR04tgx/oeddFL0Hf38+c4Zve6IBfIn9ETAj3/Mt7XXXstCtGVLvfcLfdDVxSdoS0uq0Hs5+j172HmZKeXoxpy1T5nCbT44aIwlMAukzqXdhD5oWzzyCPDrXwfb5yDRjbXiRnPuucCLLxqP7aZcnjaNt5v7bTS6T6C+3r2O3U976NJKjd+cXoQ+AP397isJ7d7NJ3YhVhLKJ0eOsJNwcvS6IxZgQciH0I+MsCP6z/8E2tqAf/qn8BbE7u5mkZ8xwz26sR4bTkKfj1w6l9ENkBrfWPN5wIgrvIQ+SFusXMnT8wbB7qIHOAu9OZ/XXH45sGqV8Xy7zuXJk/lY3707XegBPj6c8nmNH93QHbEacfQ5oK/PW+hPPTUeQj9/vrvQL17MP+fL0Y+MpB7I06cD/f3hzu8SNLqxE/pClVeGHd0A7kKv28NpVCwQvC3a24MN+R8f585gcx+JJojQT50KvOc9wAMP8GOnzzR9OldZZSr0fkosrUIfxNFLeaVP+vvtp6LVxEno58zhk8iuJMwc3ei2yPVEXsPDqbfFzc1AX19lKO/tpzO2vp6rH8x9A3v3FlN0M561o3cb9m8n9H6imyAmYOtWFnq/x5J2sXajQYMIPQB84hPAL3/JP9tFN4DxObNx9F4lluLoc8zYGJ9AbifLnj3xEfqpU43acitmR19WxgKc64m8rI6+uTn3jt6cx5aV8XQPZiNQyIw+k87YtWvdiw2COHo/0U0QR9/fz8daWVlqiasbbuJmFfoDB/gi7VQVc8klXEH06qvOn0mLv7UtgHCjm7lzjcezZxtTILshQu8T3ZAS3bDQNzfbuyI9mdns2ca2QtRLh+3o7TpjzXX0QHp84xTdFGbGRnehHxnhdRTuuMP5OZlEN06DpYBg54meO2nBAv/xjVtcYT12164FzjvPeS6Y8nKesfVXv3J29NOnc05fYeMvGhv5+HEjk4y+rAw47TTvNpHySp/omfj8CH2+1wbNN2aht1be6LjCfMLkS+it0U0Yc7ATpTp6p+gGSBX6wUE2B1ZBCGoCnn8euP/+YPucSWfsPfdwm/33fzsviRhU6L2imyDHhe7gnz/fv9C7iZtV6F96CXjrW93f74YbgAcf5GPc7jPNmGEf2wDAV74CfOxj7u/vtcrU8eO8z+Y6f8BfTi+O3ida6L0yel11E4U6+vvu4y8rR47wiWIX3XR2pt/+5kPo7aKbMBx9fz/XLNfUGNGNzoitpXTmaRB0Db3VIQYV+pUrWVyCENTRj40B3/seL6xy8snA6tX2z8skutF3Q3YE6b/R/T5BhD5IdONH6OfOBc45hy++To7eSehbW7OPbrS+lFnU1U9OL0LvEy9Hr/P7QqwNmiteeIEPajPDwzz4Y8oU++jGbvRfTU3uV5myc/RhZPRmoaqpYdHv62Nxsg6OMTt6u9gGCG4CduzgFcuCYCf0kyYlQWTvGH/3O47aLrwQuPpq+wuLvrOxDvt3EvrJkznu2LfPWegrKli0vFYqA4x+n6CO3k90Mz7OA6LOO8/7PT/5Sf4e1NH7wUs3rLGNRhx9iPT1cWebk9DrJePKyvK7ZJyZ7m5geDi8pu/qAvbvT9129CiLqFL2Qt/Zme5cCuHom5pY6L3+Bz097h1ZuoZeo1398DD/r81/04/QB431duzgLz9iqLGLLJRKX8sV4A7I228Hbr2VH3/kI8Cf/pR+QTDf2WjchB4wRM/udxq/piiT6Mavo29r4/9xc7P3e155JfAP/2Dv6M88E1i+3N++2eFVXukk9H4dvZRX+qC/n4XcKbrR+TxgLBnnNZw5TB59lG8PV670uD8MQFcXOzIzOp8H7DP6QkU31pO6spJdrNeamjfeCPzwh86/t0YPukPWbgSkedCUXWklEPxub8cObr+dO/2/xsnJ2tX6P/wwP/dd7+LHs2dzPGEdmGTXqeol9I2Nxtw4Tvg5NpJJdqxa6MOYmre2ls/P0VHuiPWKbTRVVcBTTxlTEJg56yyegiNTvMornYR+7lxjHQwnxNH7RAu9k6M3Cz2Qv/hmfBz45jeBz30OePvbgd7ecCpNAHdHD9hn9E7RTT4cvXV4eX39mOtUysPDfNL+9a/Oz7Fz9F1d6RU3QPjRTX8/32287W3B4hsngbMT+jvuYDdvFuNrrkmPb+wGCZmF3ql23Cm20fg5T/bs4WOttpY7Ivv6/M3Y6NYZa56q2E8+nw+sbTE4CPzHf/D0C6Oj6aWVmqlT3acMB0TofeNH6M0ndr6E/sMfZqFat47XCA2j0kTT3W3M6KexOvpiiW7sl4wbdT0Bnn2WHezf/uY8CZq1A9LL0YcZ3WgH19oaTOidHL01uunr44m8rrgi9Xkf/CDw5JOpd6921TMNDdzuPT3O0Y2X0Ps5NrZuTR2XMW8e3+l44RVX6OO3WIV+7Vrg+98HPvtZnktn5Up7R19fz23oFu8VrLxSKfUrpVS3UmqTadu3lVL7lVIbJr4uC3/XMqO/n09yp5Vp9GApTb6EfuVKnuyppYUP3LCEfniYv+bM4cEkmmKObqyOvq7O3dE/9hiXzDU2cgZshzW6CeLorTNXAsHnHT/tNBZ6vwtMAP6jm+3bOd+1VnE0N/N6sw8/bGyzE3qlWIDeeMM9unHDT3uY504C/Of0XuLW1MTR5LZtPBVxobFm9Pv2AStW8Jq1b7wB/OEPvOKVFaf+MjOFdPS/AfAem+3/QUTnTHwFnMIod/T3A3V17FLscvpCRDe6ikKf1I2N4Qm9Frg5c1LjG7PQF1t0Yz2Q6+udHT0RC/3ll3M08sIL9s9z6oy11tADhpAmk/ZTFAPBjosdOwyhD+ro7U5qq9Bv28YVG3Zcey3wX/9l3Om4jQY9eNBZ6J0GS2mCOnrAv9B7iVtTE09WduaZ7rNK5gtrRm8+hqZN4/l27Ob1B/hc9IopCyL0RPQcAI9kqXgwC71dfGMV+nyI29gY/+P1SLywhb6lhaMNJ6G3uoihIb7bsZuPu9gcfVsbi9iZZ7oLfdDOWD2RV20tl6BaCdIWmQq9U2RhPXa1o7fjQx/i/h89v0smw/4XL3aeO0Zjd+Gztk82jt4rulm5sjhiGyC9LZzMgh2FEvps1OYmpdTHAKwD8GUisr0hUUrdCOBGAJg+fToSiUQWf9Kgv78C4+MKjY2pgVdHx2LU1BxDWdkcrFq1FXv3Gr1B4+PA/v0XYseONdi7l+v5Tpw4By+8sBNDQyGsyOzA0FA5KisvQCLBxe5vvFGL3t6FobTFCy9MRUXFLABDePbZEbS0cPnN668vxLx5g0gkDuDw4Uno6joXiQSr5P79VWhsPBvPPvtSynt1d5+Kzk6FRGJX1vvlRFvbKRgaKkciYZSnVFXNwbp1O5BI7El7/oMPnoxly6rw7LPbMGlSLZ5++nQkEi+nPW/XrvOwe/cmJBKsPgcONKKjYy6amw+jr68SiYQRFm/fXot9+xbhT3/qQHNzKxKJV9Leb2CgAgMD5//9f+bGyy8vxcyZB/DGG4fR3f0OPPHEX1Fd7b2iSk/Pm7F5czvGxoxjdGBgAEeP7sTBg2V/b6M1axZj6dJjSCQO2r7PZz4zBbfccjaamtZh06b5qKs7jEQidYV0otMBtGDDhufQ3p66b8uW8Xe3w3FoaAnWru1CVRVPYLNvXzU+//k34Z571qKhgc/BjRsvwNGj65FIcGfR4GAzXn55DhKJja7tsGXLKejvr0j5H+m2SCQSGBpaiFdfnY33vndL2ucqBLt3z8SOHfVIJDhH3LBhKebMOYBE4rDna4mW4tln9+PECXu17+pahq1bd6CyMmQ9IiLPLwBzAWwyPW4BUA6+I/gugF/5eZ/W1lYKi9tuI7rllvTtV15J9PvfE114IdHq1am/O3CAqKUlddu73kX0xBOh7ZYt3d1E06YZj3fsIGppOR7Ke//850Q33ED07/9O9KUvGds/8hGiBx/kn48fJ6qsJEom+fHzzxNdcEH6e33/+0Rf/nIou+XIv/4r0be/nbrtM5/Z7vh33/EOoscf559HR4nq6ogOHUp/XlNT6vYtW4gWLSL6+teJvvvd1Ofu2EE0dy7RQw8RXXGF/d8dHuY288PixUSbNvHPS5YQbdjg/3WbN6duW716Nf34x0Sf+5yxbflyokTC/b2++U2iD3yAaMUKoqeeSv/9F75AVFZmHANBueYaovvuMx7/5S9EANHNN/Pj3l6imhqi8XHjOR0dRPPmeb/3//7f/GVl9cQJ/I1v8N/ati2zfQ+be+/l9tCcdRbR+vX+XnvttUT33OP8+ze/mejll9O3A1hHPjTW6Sujqhsi6iKicSJKAvg5AB9j1cKlu5tnqbOiV9Gxi27sJjnK13qY1kFCuYhuzLX0evoDgP92RYVxq21XcQMUMroZte2gOnKEO7guuogfV1TwqMi//S31eSdO8P9df17A6Iy1i270sH+nihuA50YfG3OeT0aTTKauJhQkvvFbdeOW0WtuvZWn7/3rX52jG+vqUkGwHhv793MWff/9HC11dPA+mjuMTz2Vn+c1iMxPZ2xzM0dBxUApRjcZCb1SytyNdyWATU7PzRWHDtk3mM7o6+uLS+jN4lZfDxw/Xo7x8ezfWwu9W2cskJrT21XcAMFXmdqwwVjkwS/2nbH2Gf3KlSzyZjG0y+n1/9UsMnwx5d9ZO2Pr6/k42bXLWeiV8ldi2dnJ769HogYVeq/OWF2L7jQtr6aqCvj5z/miZzf7ohb6TLGeJwcO8ICtW24BvvGN9I5YgC+Ws2b5GyTkltFPneo+Y2W+MbfF4CDv/9Sp/l7rJfSFLK98EMCLABYppfYppT4J4PtKqdeVUhsBXAzgS+HvmjuHD7sLvV3VTaGE3ipuZWVATc2Y68RrfvHTGQukllgePBiOo3/sMeAXvwi2v06O3u5/+ec/A+97X+o2O6G3m5CrrIz/19u2pQt9RQV/1i1b3J2Yn2NDd8Rqggi9nwFTuiPWj8i94x0suLkQejtHP2sW8M//zAOF7r03tSNW46dD1kvcPvQhriwqFszllXpKFb8XoaJ19ER0NRHNJKJKIppDRL8koo8S0VIiOouI/pGIXJZByA1ejr6YoxuAZyl0q6f1ixb6WbOMRRmAdKE3l1g6OfqgQt/e7lzX7kQQR//kkxwPmDn/fB50Zo4DnCpNZsxgoXcaDbpxo7OjB3Iv9H6iG7eKGztaW+23z5uXuvZAUKxtsX8/v19NDfCd7/D/yuroAX9C7yVudXWplXKFxlxeGSS2AYpY6IuVUotuMllJyA/azVZVsUD09HB10cBAqsD5iW6CCv3WrXxxCXJn4ndkbG8v/1+sJ1FjI59PlUFWAAAgAElEQVT0G02FHNYaek1LC38eq6PX79PV5S70ftojU6F3WyfV7Oj95PN+eNObOArLFGtbHDhgXDg+9jG+87KbVdLPnDe5msgrV5g1Q4Q+x+joxjzrIRGLTpDopnDD/sN19IAR3+gOSGtmHWZ0Q8Ru/pRTgtWO2811Y1dHv3s3zxdid0tsjW+c5lL3Whu0osJ97vFMHP306SzgdoUCZrSbt/t85vnygzr6XGHn6PXCGuXlPFmfXWdpGNFNsWGNbsISej2wsuSFfnjYYbhY4PdhwaisTJ0//fhx3lZZWXzRjVXcwnD0utpEdwTpyhtrbAOEH90cPMgH5PnnB4tv7A7kyZN5Dnbz/2HXLvuJoQAW+mefNR47OXot9E6Ofs4c5xGMQGZCr5S/qRDcxK2ujv8PY2PhOfpsMU/yNjbG55LXAh2AvyUFS9HR5yK6GRtjc2a3xGG25FXoh4bCEfrDh1ncrLPB6dJKoPiEPhcZfU8PD7nWzl1X3tgJvY5uxse5/ewccBCh11UWixfzz36xu+gplX4CuAn95ZcDr7xidNA5OfqWFmMxcCuNje6xDZBZdAP4i2/cxK2sjI/jvr7icfTmCqSuLj7u7KYAtjJrFpsCN0rN0ecqusmVmweyGxkbmPHxcOqjDh3iA628nBtNn7A6nweME8VMsVTdAOE4enNsAxjRzdy59kLf1sbut7nZ3jUEWWFKD3dftCh1Ui0v7NoCME4Anfvu2uXcATd9Os99oksv3TpjGxrs45HGRu8FZ7yOjaEhjlisd0d+hN5r2H9DA4tIf3/62qOFwOzozbGNF7qU1Y1cClwuyEbo9VoIyWT6JHW5vODl1dEnk+EI/eHDLPTWq6NZ6EvB0Yct9HPmOEc3OqN3im2A4I5+0aJwHD0QzNED7KKfeopruF980bkz1i620b/zcsp+loybOzf9hA1D6Bsb+a5l/vziqB83O3pzR6wXkyfzBdVtcR+vtig2dEZPFFzoKyr4DtOugCEyjj4sodeOnsi/0I+Ppy7GoSmU0IfRGevk6N0yertZKzVBhL69nZdqa23leMHOodjh5eg1XkIP8IVm5UrgAx+wj2Hmz3cuN/zKV7z31WvAlF1sA4Qn9C+/XBz5PJB6nujSSr/ou2unGTJLzdFXVvLF99AhY+nHIOhj3WpCctkOeXX0YYwEBbiBp05Nn5XRGt2Yhf7IEf6HWCOLKDl6t85Y3VZO0x8AfAAT+Vv3VDv62lr+X+xJn4/MFqeD2Sr0uurGi6VLucPSTkR4yUb7102aZF/aaMZrlSknoT/tNO8lBb1u0xsaeLxAsQi92QQEiW4A+xjVTKl1xgK8v9u2BXPzGqecPjJCH7ajtzaYLq0E+OAaGDAGENnFNkAhq27s53cJgl10ox29ed4XwF90o4f9e7n648f5zkDP77Jokf/4xi260e3R18fPmzbN33vmCq9jw0norceeHV7ipgd0FUNHLJDaFkGiG8A7py+1zliA26OjIzOht1sICMjtBa8khd5PRl9ezqKl16x0E/pCLLbh5uiJ+CD62c+ATS6zCFmFvqGB75p27cosugH8Cf327Szy+u5o0SL/JZZ+ohu9ZkChs2kvod++3V7o9bHn1rHtJ7o5cSIajr6uLnqOvqoqc6GPvKMPs+pm6lR3oQdS4xsnoQ+yNmimOGX0dkL/zW/ywXPJJcBvf+ueJVuFXil2Wq+/ni70erTlgQPu9c9+VxIyz2sSpEPWT2esn3w+H7i1xRtv8Cyab3ub/e+9xM1P1Q1QnI4+04zeDj1IqBhWjgpCNo4+8kKf6+jGXEcPpI6OLXR046eOngj4wQ+4mmTPHuCJJ4D165079qxCD3B8s3NnutBXVhoHZ7aOvr09dV6TsB19sQi927HxjW8AX/qScwejn7jCy9FXVxdHaSWQelyEGd2cOMF3hm4D14qRXGT0kSmv9NvR54Wf6AZIrbwpRqG3Onq9tN3pp7M7r6oCPvUp4Cc/sX9fu4FC+gS0Cr3e1tFROEefTPLoP7uBNtboppiF/qWXeN73W25xfq2fDki3k7qx0f+slflAt8XgIF+srX1Abrjd3ZRibAPw/046Y53+WBnZruNq5rbbeEV1t9F0bo6+VIR+8uQkkknnRYY1n/0scN996SfK2Bh/dutnchP6pia+0Ibh6M1CP2cOt7PX5GZ6nhs78SpGR28X6xEB//IvPGOjnoPejmyjm9NOA97+9mD7m0sqKrh8dtcuvssIcgFyu+iVYkcsYOiGCL0N5eXkWVL4xBPsZs49l12THUEy+mKJbuyG/ZtnKQTshX7OHK5Xv/vu1O2HDrFwW8tF58zh73aOq6mJ28duMWyN1+IjejIzs9CXlfkf9u90IJsrEdxGxeYTu476Rx7hi9r117u/Ntvo5qKLgJ/+1Peu5oXqau6ADjrdsVtblKqj1/ssQm/3x8rSR6uaOX6cVy267z7grrt4IMxdd6U+Z3iYc726OvfySiCYo/caDp8NTrl0U5O30APAzTdzfGMu17PL5wE+Cevq7OORpibviai8HH1nJ38W6x2DnxJLt063YnT0VhMwNgZ89avA97/vnSl7RTelNhoU4GNj+/bg/QZudzel7Oibm93v6pxwE/pIlFd6RTcvvQScdRY33mWXAU8/DXzrW6nP0fm8rvkeGzPij0yim/JydsUnTmT32dxwulI3NqYO+HIS+uXL+bM++aSxzWnGxtmznfPT5mbvJem8hN7aEatZvNi7Q9bpggewMA4NcXsMDdnPXZNvrNFNWxtfbN/9bu/XZhvdFCPZOPooZvSZuHkgdcyImcg4eq/o5rnngAsvNB6feSZ3/pgvDjqfB1jszaNjM4lugNzX0rsJvR9HrxS7+jvvNO48nBz9smXOy/s1NWUv9NaOWI1fR+90IOv/5YYNxVFDD6QfFx0dwBln+Nu3bDtjixHt6MMU+lJ29NkIfcSjG3dH/9xzvO6lRikeMGKe21vn8xpzozk5eqLUC4SVILX0L7wA3HGHv+dqnP6B1ikc3CZIuvZarl/+wx/4sZPQV1YCl15q/x4tLd4Hpx9H7yT0fhy9W710czOXkxZDbAOkRzcdHc5z51jJNqMvRnRJYSbRjVtGHzeh1/1R1rg4MuWVZWXOjn50lKOb5ctTt1s7+XR0o7EKvbWOvreXXXNNjbPIBOmQvece4He/8/dcjVM27dfRAzwvyy9+AXzxi/x5nYTejZtuAr79bffnOAl9MskDuH7/e75rsOJnsQ2vk1oLfTF0xALZCX0Uo5uaGh7fIdENR4t2hscPVVUcF1vPs8jMXlle7twZu349l5RZ82Wr0FuduR9H7xbbAP6Fngj485+NdVn9DvJwc/Ra6MfHuaTU7SS64ALggx/k0bJjY1xvHwQ/B1FNTfpJ+fjjwNe/zher3/yGy1+t1NbyZ3Bz7V4jIJubgVdf5TVIiwHrRa+jA7jhBn+vjWJnbHU1nwNBHX0Uo5tvfSu7Ag6tW+YKuFhEN2vWpObzGjuht0Y3R4+y8I2MpPaC6wMsLKHfuJGFauZM7+XRzDh1Qpo7Yw8e5M/iNaPi7bdzJ/VTTwV39H6wiltXF3DVVVw3/tJLHAs5ZdRut+iAe2cswJ9/61aJbooVfW6FHd2UWjtosulHspvYLFJC7xTdWPN5jV9HPzDArtLc+GE7+sce49XulywBNm/2fr7GT2es3wUM6uq4vrqzMz9C/8YbfOdwxRXeB7aXuPlx9ETFKfRHj/KFym+b+5nIq9ScrC4pDCrMUXT02WLXIRv58spkEnj+eXuh152x+jbJKaO31tADxS/05s7YICvVXH458MADXJUUNtZZF3fuNKYj9sJL3Pw4eqD4hJ6Ij8HWVv8uLqrRTSZz72hHbxd1lLKjzwYnoY+Eo3cqr9y8meMYu9K/5mauJOnu5sdOjt6azwPhRjc9PVxHfeGFLPRbtrg/30yYjl5z9dW5mfHP6uiDCr2Xo/cS+smTi6OGHuA+mMpKvkAFiW2A6EY3QTtiAe54rKqy7+QvxTubMIi00DuNjLXWz1sxxzdO5ZV2Qm929G6LWPipo3/iCZ6KYNKkYI5er5dpl71n6uhzSTZCH0Z0c+qp/pYkzBfaBHR0BJsbPopVN9XVmQk94NweEt0YRKa8srzcPrpZs8Y+ttGYhd4purGWVgJGo+3b5+7o/dTR69gG4FGgHR3cAezFiRMs8nbilY2jzxV2Qu83Ssk2upk71750s5DoYyMTRx81oZ8zhweMZYJTe8Q5urGOjo2Qo7ePbtau5dJBJ6yO3m90A/ABtn17dtHNiRNc5fLe9/LjKVP8V954TeRVCkIfZnTj5uiXL+da/WJC3+0FFfqaGj5unMxAKUYWX/gC8OUvZ/Zap7s9cfQGkRJ6PVJVk0zyiM9TTnF+nRb648d5YFVtrfE7XabkJPQNDSzI2Qj988/zPpgrLvzGN27/PB0tJZPFKfRjY7zIhNv/xoxXdOPl6IsRs9AHiW6U4uPUqT1K0dFng9PdXpwdfWSFXinu3DI7xkOH+CBw+2droT98mPN5c+WDl6NvaODfZSP05thGE4bQV1Tw3z5yhNvBax6afGAW+n37uGPUb6dvVEsKd+zgu7jGxmCvdYorxsfZsJTa8nnZ4NQW4ugNIlNeCaTOKAmwmHh18CxYwCdbd3d6p2pDA9fQHz3qLPRA5kKfTAIPPQS8//2p24MIvdsJ3dTEFTwnnVQcy6mZhT5IbAP4GzBVauJWUwO89lqw2EbjlktXVRXHxG35QjL6VCLt6AF2RWah97PQcE0NC/X69elCX1bGYr5nj3NGX13tvtiGm9C/8AK/x9Klqdv9llj6WTJu48biiG2A7ITeT9VNqbm36mqeUTMToXe68MUttgGc26IUj4kwiHTVDcCibO6Q3b/fWBXJjdZW4MUXU0srNc3NvM6ok6N3c/OAu9A/8ABwzTXp2xcv5kE0XpU3Xrl0UxPw+uvFI/TV1XzyJZOZOXqv6KbUHH11NV+Ic+Ho44REN6nEztH7iW4AQ+jt6uGbm50dvV+ht6ujHx3laYGvuir9dzU1PEpw+3b39/bj6ItJ6MvKeH+Hh4OVVgLZz3VTjNTUcGwYptDH0dFLdJPKlClclTUywo91v43XXFeZUlKOvq3NWeh3706vowd4W6aO/umnuX/AydX6yen9Cr2fNsgXOr7ZtSv86KYUHT0g0U22uLVFqV38w8C6aJI2Qbnqt/EUeqXUr5RS3UqpTaZtzUqpp5RS2ya+Oyxel461M9ZPRg8YJ5qT0A8PZ+7onQZMPfigfWyjCUPom5q4M7lYHD1gCH3Y0U0pOvrqaj755s8P/lpx9Abi6NNpbuZKQiD3cZ4fR/8bAO+xbPsagFVEtBDAqonHvsgmugGcM3rAXugvu8x7DnE7Rz80BDz6KPDhDzu/zq/Qu7lYXbJXbEKvSz6DDHnPdq6bYqSmhqdlyGS/RdwMpL8indZW7v8Bcn9MeAo9ET0HwLrC4RUA7p74+W4AluJDZzKNbubO5bpzJ0cP2Av9kiXAxRe7v7ed0D/2GHDeee7T0vqpvPHTGQsUn9C3tfE+BSn5zHZkbDFSXR1soJQZiSsM3EbGxu2ip7n8ctYZIPcXvExXmGohok4AIKJOpZTjfINKqRsB3AgA06dPR3d3B3bvnoJEYhuGhsoxMvI2bNiwxlc2NXv2W7BvXxsSiYGU7YcPzwGwAJs2vYhDh0YCf5ht22rR07MYicS6v2/78Y+XYPnyw0gkDjq+bmSkDO3tb8eqVc85CuJrr83E0aN1SCQ6UrYPDAwgkUigs7MFFRWLsGXLc56La+eL0dFlePzxY2hsrEMisdH364aHy9DbuxyJxBrb3/f0LMOWLW9AqVRrp9uiGOnpmYP6+iokEh697jZ0ds5ER0f6//7ll6dhcPAkJBKb0l5TzG2RDR0dddi/fyESifUp2/v734ZXXnkZO3aMpr0mqm2haWqahMceewtWrXoBe/ZUI5lcgkTi5dz8MSLy/AIwF8Am0+Njlt8f9fM+ra2tdO+9RNdcQ0RE1NZGtGAB+aanhyiZTN9+991EANHhw/7fy0xbG1Frq/F4aIiotpbo2DHv19bXuz/vRz8iuumm9O2rV68mIqKHHyaaNy/Y/uaaSy8lev/7iT796WCvSyaJysuJRkftf3/OOUSvvJK+XbdFMTI0RNTfn9lrH3iA6CMfSd9+//1EV11l/5pibotssJ5jmtpaot5e+9dEtS3MnHMO0Zo1ROvWES1b5vw8AOvIh8Y6fWVaddOllJoJABPfu/2+0NwZ6ze20UybZt8r7Rbd+MEa3WzbxrGFHlXrhtcshV63ZAsWAO98p/99zQc1NRxJBemIBbzndynVzljz3EpBkLjCQPor7Hnf+zi+KYbOWDseAXD9xM/XA/gfvy80d8b67Yj1Qi9YUVmZ2eutdfTt7Twgyg9+hN4tl16yBPj1r/39rXxRU8PjAzJZ6cmtxDJuHW8ykZeBXX/F2BgPzKvINECOAEUj9EqpBwG8CGCRUmqfUuqTAL4H4FKl1DYAl0489oW5M9ZvaaUXzc32NfR+sTr6rVuBRYv8vTZbR1+M1NTwCRjU0QPuJZalONdNNshoUIMpU/hzj48b2/QFL05z/lh5y1uM1esK2hlLRFc7/OqSTP6g2dHv3+/fObsxfz5w552Zv968NqhS7OgvvdTfa+vr7VfN0oyMGJU1pUJNDX/PVOjF0TNSR29QVmbEerqkOG7Hgx1lZVwC/tBDRgSdk7+Tu7e2x+zow4puKiuB667L/PUVFfx14gQ/bm8XR19Tk9narV7RTZwcvYyMTcXaHnG8s7Hj8st5OdVizOgzpq4OGBzkW7ignbG5xOzqgwh9Q0M0hX7u3Mxuqb2im1Jri2zQJsC80A4QX6G3mqI49lXY8a53GXNM5Yq8d4OUlRlX9rAy+jDQQj80xD/7jVui6ugziW0AZxerZ/mMU8fb5Ml8sbRe4OIqcNZzRRw9U1/PlXeREnqAXXBPDw+xdxt5mk+00O/a5d/NA9lX3RQjixfbL2buB6foJm4dsRp94TOfxHF19FYTENcLnh0f/7i7jmRLQYS+sZErW1paisfhaaEPUloJsLDt2+f8+1KMK6zLJgbBraSw1NohDLQRME+sF1cnaxfdxLEd7Mimj9EPec/oAXb0mzcXT2wDGLX0QUorgWhGN9ngtpJQHB293fERV0dvF93EsR0KQcGEfsuW4hN67ehF6DPHLbqJUzto7C58cRU4691e3M6NQlIQoW9sZEdfLBU3QHbRjQi9gVt0I46eiWs2bTUBcY2wCkHBHH1bW3E5ej0He2dnsKH/UeyMzQan6Caujl6iGwMprywcBXP0x48Xn6PfuJFH2QbpIBZHn4pTdBO3dtA4RTdxbAvruXLoUHZTlwj+KZijB4rL0VdXAxs2BMvnAW+hj5uTdYpu4lpeKY7ewHrRW70auPDCwu1PnBChn6C6Gnj11cyE3m2um7g5Wbeqmzi1g0YyegNzW4yMAGvWACtWFHaf4kLBohug+IS+qyv4JGt1dby4dzJp//u4CZxbdBNHRy9VNwZmof/rX4EzzsjtRF6CQcEcfVOTMUtiMaBPvKCOvrycP8fgoP3v4yb0btFNnNpBI9GNgfmi9+STwLvfXdj9iRMFEfrp0zNb1CKXZCr0gHNOn0zyHC+ZLohSiuh5x613OHG74Gmsx0YyybOkxvHuxtwWf/kLT+Yl5IeCCP2yZXxFLyaqq3la3kzmjncSet0BGaeFFcrKWOwHUtdvj21nrN0gobgdExp9nnR18ZxSb31rofcoPhRE6JXi9V+LiZqazNw84L4eZhxdrF18E9e2sPZZxLUjFjCOi6efBi6+uHjmuYoDBRH6YmTpUuBDH8rstSL0qdh1QMa1M1bmdzGoquLo6tFHJbbJN3JNnWD5cv7KBBH6VOyEPq6dsda7mzgLvVJ8rjz2GHDHHYXem3ghQh8CbkIfVxdr5+jjKHAyv0sqdXVcUpnpwjZCZkh0EwLi6FOxy+jj7Oj7+43lBOPs6AE+V6SsMv+I0IeAW9VNnMXNTFwvehUVfFenx1nE9c5GM20a8N73Fnov4odENyFQXw90d6dvj6u42UU3cS2vBIz2qK0VR//ww2wEhPwijj4EJLpJRcorUzEfH3EX+vr6eI4hKDQi9CHgNLFZXMVNyitT0Re+sTFg27Z4HhNCYRGhDwGpuknFKbqJq8DV1wOf/Szn0/fdB3zkI4XeIyFuSEYfAg0N0hlrRqKbVL72Nb7ju/hinudJEPKNCH0ISEafitOAqTje3QBSTigUHoluQkCEPhWnAVNxbAtBKAZE6ENAhD4Vp+gmro5eEAqNCH0IaGHTox81cRU3metGEIoLEfoQqKwEJk3iGmkzcXX0Et0IQnEhQh8SdvFNXF2s01w3cby7EYRiQIQ+JOyEPq4utraWV5gyR1lxbQtBKAayKq9USu0C0A9gHMAYEZ0bxk6VIiL0BhUV/LmHhnhZQUAcvSAUkjDq6C8mokMhvE9JI0Kfio5vpkxhZx/XjmlBKAYkugkJJ6GPq7iZK29GR4Hycv4SBCH/ZOvoCcCTSikC8DMiusv6BKXUjQBuBIDp06cjkUhk+SeLk6Ghxfjb346isbHr79sOHFiKjo79SCSOpD1/YGAgsm0BAEq9GatXt+PAgQEMDZWjsvICJBLP2z436m0RBGkLA2mLECGijL8AzJr4PgPAawAudHt+a2srRZWbbiL60Y9St61YQfT00/bPX716dc73qZC8851EzzzDP3d3E02b5vzcqLdFEKQtDKQtDACsoyy0OqvohogOTHzvBvAnAOdlddUpYSSjT6WuDjh2jH+WjlhBKCwZC71SaopSqk7/DOBdADaFtWOlhgh9KhddBPz2t/xznNtBEIqBbBx9C4DnlVKvAVgL4M9EtDKc3So9pDM2lc98Bli9Gmhvj3c7CEIxkHFnLBHtAHB2iPtS0oijT6W2FrjpJuB73+PvcW0HQSgGZD76kJApENL5wheABQuASy+NdzsIQqGROvqQEEefTlMT8OlPA9/9rkQ3glBIROhDQoTeni99CdixQ9pBEAqJCH1IiNDb09LCrj7u7SAIhUQy+pCwCv3YGM/xUiEtjO98B9i7t9B7IQjxRWQoJKxCH/eOWDONjfwlCEJhkOgmJHRn4/Cw8V2EXhCEYkCEPkQaGgxXL0IvCEKxIEIfIub4RoReEIRiQYQ+RKxCL7XjgiAUAyL0ISKOXhCEYkSEPkTMQi9VN4IgFAtSXhkiJ58M3Hor8NJLPKmXCL0gCMWAOPoQufNO4Ic/BJQCHnkEWLiw0HskCIIgjj5UJk8GVqzgr9tuK/TeCIIgMOLoBUEQIo4IvSAIQsQRoRcEQYg4IvSCIAgRR4ReEAQh4ojQC4IgRBwRekEQhIgjQi8IghBxROgFQRAijgi9IAhCxBGhFwRBiDgi9IIgCBFHhF4QBCHiiNALgiBEHBF6QRCEiCNCLwiCEHFE6AVBECKOCL0gCELEEaEXBEGIOCL0giAIEScroVdKvUcp1a6U2q6U+lpYOyUIgiCER8ZCr5QqB/CfAN4L4AwAVyulzghrxwRBEIRwyMbRnwdgOxHtIKITAH4L4IpwdksQBEEIi4osXjsbwF7T430A3mp9klLqRgA3TjwcUUptyuJvRolpAA4VeieKBGkLA2kLA2kLg0XZvDgboVc22yhtA9FdAO4CAKXUOiI6N4u/GRmkLQykLQykLQykLQyUUuuyeX020c0+ACebHs8BcCCbnREEQRDCJxuhfxnAQqXUPKXUJABXAXgknN0SBEEQwiLj6IaIxpRSNwH4C4ByAL8ios0eL7sr078XQaQtDKQtDKQtDKQtDLJqC0WUFqsLgiAIEUJGxgqCIEQcEXpBEISIkxehj/NUCUqpk5VSq5VSbUqpzUqpL05sb1ZKPaWU2jbxvanQ+5ovlFLlSqlXlVKPTTyOZVsopRqVUn9QSm2dOD4uiHFbfGni/NiklHpQKVUVl7ZQSv1KKdVtHmPk9tmVUl+f0NJ2pdS7/fyNnAu9TJWAMQBfJqLTAZwP4PMTn/9rAFYR0UIAqyYex4UvAmgzPY5rW/wQwEoiWgzgbHCbxK4tlFKzAdwM4FwiOhNc3HEV4tMWvwHwHss2288+oR1XAVgy8ZqfTmisK/lw9LGeKoGIOolo/cTP/eCTeTa4De6eeNrdAN5fmD3ML0qpOQAuB/AL0+bYtYVSqh7AhQB+CQBEdIKIjiGGbTFBBYBqpVQFgBrwmJxYtAURPQfgiGWz02e/AsBviWiEiHYC2A7WWFfyIfR2UyXMzsPfLTqUUnMBLAPwEoAWIuoE+GIAYEbh9iyv/F8A/wtA0rQtjm1xGoAeAL+eiLF+oZSaghi2BRHtB/ADAHsAdALoJaInEcO2MOH02TPS03wIva+pEqKOUqoWwEMA/pmI+gq9P4VAKfU+AN1E9Eqh96UIqADwJgD/j4iWARhEdKMJVyby5ysAzAMwC8AUpdR1hd2roiUjPc2H0Md+qgSlVCVY5O8noj9ObO5SSs2c+P1MAN2F2r88shzAPyqldoEjvBVKqfsQz7bYB2AfEb008fgPYOGPY1v8A4CdRNRDRKMA/gjgbYhnW2icPntGepoPoY/1VAlKKQXOYduI6E7Trx4BcP3Ez9cD+J9871u+IaKvE9EcIpoLPg6eIaLrEM+2OAhgr1JKz0p4CYAtiGFbgCOb85VSNRPnyyXgvqw4toXG6bM/AuAqpdRkpdQ8AAsBrPV8NyLK+ReAywB0AHgDwK35+JvF8gXg7eBbq40ANkx8XQZgKrg3fdvE9+ZC72ue2+UiAI9N/BzLtgBwDoB1E8fGwwCaYtwW/wfAVgCbANwLYHJc2gLAg+C+iVGwY/+k22cHcOuElrYDeK+fvyFTIAiCIEQcGRkrCIIQcUToBUEQIo4IvSAIQsQRoSgVJ8UAAAAfSURBVBcEQYg4IvSCIAgRR4ReEAQh4ojQC4IgRJz/D6TkOpgkTfGkAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "plt.grid(True)\n", "plt.plot(tuple,\"b\",linewidth=1)\n", "plt.axis([0, 100, 0, 25])" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[0, 25, 0, 25]" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADVlJREFUeJzt3V+InXV6wPHv48YiOMIqOytTo6QtOqwEajvBFizLDIuL9UaF7tJcSGS3jBcrWGqg4s0GFkHK1PamlCrKpuBaBoxVlqWtSGbtQimbI2mNDaPLNtjRkBDMonNVNE8v5k3PbHaSM+f/yTPfDxzmnHfOmffh5zvfHN85cyYyE0lSLdeMewBJ0uAZd0kqyLhLUkHGXZIKMu6SVJBxl6SCOsY9Im6NiKMRcTIi3o2Ix5vthyLiw4g43lzuH/64kqTtiE6vc4+IGWAmM9+OiBuAFvAg8E1gPTOXhj+mJKkbuzrdITNPA6eb659GxEnglmEPJknqXcdn7r9054g9wFvAXuDPgEeAT4BjwBOZeX6LxywCiwDXXXfd3G233dbvzCVcuHCBa67xRx7gWmzmWrS5Fm3vvffeucyc7uYx2457REwBPwaezswjEXEzcA5I4HtsnLr51pW+xuzsbK6urnYzX1krKyvMz8+Pe4yJ4Fq0uRZtrkVbRLQyc183j9nWP4sRcS3wCvBSZh4ByMwzmfl5Zl4Angfu7nZgSdJwbOfVMgG8AJzMzGc3bZ/ZdLeHgBODH0+S1IuOP1AF7gEeBt6JiOPNtqeA/RFxFxunZU4Bjw5lQklS17bzapmfALHFp340+HEkSYPgj6IlqSDjLkkFGXdJKsi4S1JBxl2SCjLuklSQcZekgoy7JBVk3CWpIOMuSQUZd0kqyLhLUkHGXZIKMu6SVJBxl6SCjLskFWTcJakg4y5JBRl3SSrIuEtSQR3/QLak0Yut/iT9EGWOdn8aPp+5S1JBxl2SCjLuklSQcZekgoy7JBVk3CWpIOMuSQUZd0kqyLhLUkHGXZIKMu6SVJBxl6SCjLskFWTcJamgjnGPiFsj4mhEnIyIdyPi8Wb7TRHxRkS833y8cfjjSpK2YzvP3D8DnsjMrwC/D3wnIu4EngTezMzbgTeb25KkCdAx7pl5OjPfbq5/CpwEbgEeAA43dzsMPDisISVJ3Yns4k+wRMQe4C1gL/BBZn5x0+fOZ+avnJqJiEVgEWB6enpueXm5z5FrWF9fZ2pqatxjTISrYS1ardHsZ/fuddbWRr8Wc3Mj32VHV8NxMSoLCwutzNzXzWO2HfeImAJ+DDydmUci4hfbiftms7Ozubq62s18Za2srDA/Pz/uMSbC1bAWo/qzd0tLKxw8OD+anW0yiX9m72o4LkYlIrqO+7ZeLRMR1wKvAC9l5pFm85mImGk+PwOc7WbHkqTh2c6rZQJ4ATiZmc9u+tTrwIHm+gHgtcGPJ0nqxa5t3Oce4GHgnYg43mx7CngGWI6IbwMfAN8YzoiSpG51jHtm/gS43BnHrw12HEnSIPgbqpJUkHGXpIKMuyQVZNwlqSDjLkkFGXdJKsi4S1JBxl2SCjLuklSQcZekgoy7JBVk3CWpIOMuSQUZd0kqyLhLUkHGXZIKMu6SVJBxl6SCjLskFWTcJakg4y5JBRl3SSrIuEtSQcZdkgoy7pJUkHGXpIKMuyQVZNwlqSDjLkkF7Rr3AFKvIsY9gTS5fOYuSQUZd0kqyLhLUkHGXZIK6hj3iHgxIs5GxIlN2w5FxIcRcby53D/cMSVJ3djOM/fvA/dtsf2vMvOu5vKjwY4lSepHx7hn5lvAxyOYRZI0IJGZne8UsQf4YWbubW4fAh4BPgGOAU9k5vnLPHYRWASYnp6eW15eHsDYV7/19XWmpqbGPcZE6HUtWq0hDDNmu3evs7Y2+uNibm7ku+zI75G2hYWFVmbu6+Yxvcb9ZuAckMD3gJnM/FanrzM7O5urq6vdzFfWysoK8/Pz4x5jIvS6FhV/iWlpaYWDB+dHvt9tZGDk/B5pi4iu497Tq2Uy80xmfp6ZF4Dngbt7+TqSpOHoKe4RMbPp5kPAicvdV5I0eh3fWyYiXgbmgS9FxBrwXWA+Iu5i47TMKeDRIc4oSepSx7hn5v4tNr8whFkkSQPib6hKUkHGXZIKMu6SVJBxl6SCjLskFWTcJakg4y5JBRl3SSrIuEtSQcZdkgoy7pJUkHGXpIKMuyQVZNwlqSDjLkkFGXdJKsi4S1JBxl2SCjLuklSQcZekgoy7JBVk3CWpIOMuSQUZd0kqyLhLUkHGXZIKMu6SVJBxl6SCjLskFWTcJakg4y5JBRl3SSrIuEtSQcZdkgoy7pJUUMe4R8SLEXE2Ik5s2nZTRLwREe83H28c7piSpG5s55n794H7Ltn2JPBmZt4OvNncliRNiI5xz8y3gI8v2fwAcLi5fhh4cMBzSZL6EJnZ+U4Re4AfZube5vYvMvOLmz5/PjO3PDUTEYvAIsD09PTc8vLyAMa++q2vrzM1NTXuMSZCr2vRag1hmDHbvXudtbXRHxdzcyPfZUd+j7QtLCy0MnNfN48Zetw3m52dzdXV1W7mK2tlZYX5+flxjzERel2LiMHPMm5LSyscPDg/8v1uIwMj5/dIW0R0HfdeXy1zJiJmmp3OAGd7/DqSpCHoNe6vAwea6weA1wYzjiRpELbzUsiXgX8DZiNiLSK+DTwD3BsR7wP3NrclSRNiV6c7ZOb+y3zqawOeRZI0IP6GqiQVZNwlqSDjLkkFGXcNTERvl1art8dpcHr9b+d/t8ll3CWpIOMuSQUZd0kqyLhLUkHGXZIKMu6SVJBxl6SCjLukkRr27z/4uvoNxl2SCjLuklSQcZekgoy7JBVk3CWpIOMuSQUZd0kqyLhLUkHGXZIKMu6SVJBxl6SCjLskFWTcJakg4y5JBRl3SSrIuEtSQcZdkgoy7pJUkHGXpIKMuyQVZNwlqSDjLkkF7ernwRFxCvgU+Bz4LDP3DWIoSVJ/+op7YyEzzw3g60iSBsTTMpJUUGRm7w+O+G/gPJDA32Xmc1vcZxFYBJienp5bXl7ueX+VrK+vMzU1NfT9tFpD30Xfdu9eZ21t+GtxNXAt2ga1FnNzAxhmzBYWFlpdn/bOzJ4vwK83H78M/Afw1Svd/4477khtOHr06Ej2A5N/WVo6OvYZJuXiWgx+LSoAjmV21+e+Tstk5kfNx7PAq8Dd/Xw9SdJg9Bz3iLg+Im64eB34OnBiUINJknrXz6tlbgZejYiLX+cHmflPA5lKktSXnuOemT8HfnuAs0iSBsSXQkpSQcZdkgoy7pJU0CDefuCqtvHz4NHJHO3+pJ1ulN/jk/T97TN3SSrIuEtSQcZdkgoy7pJUkHGXpIKMuyQVZNwlqSDjLkkFGfcRi9i4tFrt68O8SNqZjLskFWTcJakg4y5JBRl3SSrIuEtSQcZdkgoy7pJUkHGXpIKMuyQVZNwlqSDjLkkFGXdJKsi4S1JBxl2SCjLuklSQcZekgoy7JBVk3CWpIOMuSQUZd0kqyLhLUkHGXZIK6ivuEXFfRKxGxM8i4slBDSVJ6k/PcY+ILwB/A/whcCewPyLuHNRgkqTe9fPM/W7gZ5n588z8X+AfgAcGM5YkqR+Rmb09MOKPgPsy80+a2w8Dv5eZj11yv0Vgsbm5FzjR+7ilfAk4N+4hJoRr0eZatLkWbbOZeUM3D9jVx85ii22/8i9FZj4HPAcQEccyc18f+yzDtWhzLdpcizbXoi0ijnX7mH5Oy6wBt266vRv4qI+vJ0kakH7i/lPg9oj4jYj4NeCPgdcHM5YkqR89n5bJzM8i4jHgn4EvAC9m5rsdHvZcr/sryLVocy3aXIs216Kt67Xo+QeqkqTJ5W+oSlJBxl2SChpJ3H2bgl8WEaci4p2ION7LS5yuZhHxYkScjYgTm7bdFBFvRMT7zccbxznjqFxmLQ5FxIfNsXE8Iu4f54yjEBG3RsTRiDgZEe9GxOPN9h13XFxhLbo+LoZ+zr15m4L3gHvZePnkT4H9mflfQ93xBIuIU8C+zNxxv6AREV8F1oG/z8y9zba/AD7OzGeaf/xvzMw/H+eco3CZtTgErGfm0jhnG6WImAFmMvPtiLgBaAEPAo+ww46LK6zFN+nyuBjFM3ffpkD/LzPfAj6+ZPMDwOHm+mE2DubyLrMWO05mns7Mt5vrnwIngVvYgcfFFdaia6OI+y3A/2y6vUaPwxaSwL9ERKt5e4ad7ubMPA0bBzfw5THPM26PRcR/Nqdtyp+K2Cwi9gC/A/w7O/y4uGQtoMvjYhRx39bbFOww92Tm77Lxjprfaf73XAL4W+C3gLuA08Bfjnec0YmIKeAV4E8z85NxzzNOW6xF18fFKOLu2xRcIjM/aj6eBV5l49TVTnamOdd48Zzj2THPMzaZeSYzP8/MC8Dz7JBjIyKuZSNmL2XmkWbzjjwutlqLXo6LUcTdtynYJCKub35QQkRcD3wd3ynzdeBAc/0A8NoYZxmrizFrPMQOODYiIoAXgJOZ+eymT+244+Jya9HLcTGS31BtXrbz17TfpuDpoe90QkXEb7LxbB023v7hBztpPSLiZWCejbdzPQN8F/hHYBm4DfgA+EZmlv9B42XWYp6N//VO4BTw6MXzzlVFxB8A/wq8A1xoNj/FxrnmHXVcXGEt9tPlceHbD0hSQf6GqiQVZNwlqSDjLkkFGXdJKsi4S1JBxl2SCjLuklTQ/wGOZtKc/YmKtwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.grid(True)\n", "plt.hist(tuple, facecolor=\"b\")\n", "plt.axis([0, 25, 0, 25])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }