{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Essai préliminaire" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['\\ufeffFormulation', 'Référence', '70%C', '50%C', '30%C']\n", "['Rc24h', '24.70', '19.80', '14.50', '9.90']\n", "['Rc7j', '60.20', '55.70', '39.40', '28.60']\n", "['Rc28j', '81.60', '75.60', '55.80', '42.70']\n", "['Rc90j', '87.50', '79.80', '61.20', '49.80']\n" ] } ], "source": [ "import csv\n", "\n", "fname = \"DonneesExo.csv\"\n", "file = open(fname,\"r\")\n", "\n", "test = csv.reader(file)\n", "for row in test :\n", " print(row)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "24.70\n", "60.20\n", "81.60\n", "87.50\n" ] } ], "source": [ "import csv\n", "fname = \"DonneesExo.csv\"\n", "with open(fname,newline='') as file:\n", " reader = csv.DictReader(file)\n", " for row in reader:\n", " print(row['Référence'])" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 24.7] [0, 19.8] [0, 14.5] [0, 9.9]\n", "[0, 24.7, 60.2] [0, 19.8, 55.7] [0, 14.5, 39.4] [0, 9.9, 28.6]\n", "[0, 24.7, 60.2, 81.6] [0, 19.8, 55.7, 75.6] [0, 14.5, 39.4, 55.8] [0, 9.9, 28.6, 42.7]\n", "[0, 24.7, 60.2, 81.6, 87.5] [0, 19.8, 55.7, 75.6, 79.8] [0, 14.5, 39.4, 55.8, 61.2] [0, 9.9, 28.6, 42.7, 49.8]\n" ] } ], "source": [ "import csv\n", "fname = \"DonneesExo.csv\"\n", "\n", "res1=[0]\n", "res2=[0]\n", "res3=[0]\n", "res4=[0]\n", "\n", "with open(fname) as file:\n", " reader = csv.DictReader(file)\n", " for row in reader:\n", " a=float(row['Référence'])\n", " res1.append(a)\n", " b=float(row['70%C'])\n", " res2.append(b)\n", " c=float(row['50%C'])\n", " res3.append(c)\n", " d=float(row['30%C'])\n", " res4.append(d)\n", " print(res1, res2, res3, res4)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 24.7, 60.2, 81.6, 87.5]\n" ] } ], "source": [ "print(res1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Graphiques" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Code pour le traçade des coubres présentant l'évolution des résistances pour les différentes compositions de mortier" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXlclFX3wL9XJBEX3HEXU3MXXDK1Usy1ssxKMs2sLOpXacvbgprlkmVlm75m2upbJprmmruJlpqmuZFKruCCOyIIyHZ+f9wZYBSGUWaG7X4/n/nMzDP3eZ4zl+Gee8859xwlIhgMBoOh+FIivwUwGAwGQ/5iFIHBYDAUc4wiMBgMhmKOUQQGg8FQzDGKwGAwGIo5RhEYDAZDMccoAoPBYCjmGEVgMBgMxRyjCAwGg6GYUzK/BXCEKlWqiJ+fn8PtL1++TJkyZVwnUCHD9Me1mD6xxfSHLUWlP7Zv335ORKrm1q5QKAI/Pz+2bdvmcPuwsDACAwNdJ1Ahw/THtZg+scX0hy1FpT+UUpGOtDOmIYPBYCjmGEVgMBgMxRyjCAwGg6GYUyh8BNmRkpLC8ePHSUpKuuYzHx8f9u3blw9SFUxc0R9eXl7Url0bT09Pp17XYDC4n0KrCI4fP065cuXw8/NDKWXzWVxcHOXKlcsnyQoezu4PEeH8+fMcP36c+vXrO+26BoMhfyi0pqGkpCQqV658jRIwuB6lFJUrV852NWYwGJzLmDGuv0ehVQSAUQL5iOl7g8E9jB3r+nsUakVQGPj111/Zs2dPru2mT59OTEyMGyQyGAyFARE4etQ993KpIlBKvaKU+kcpFa6Umq2U8lJKVVJKrVZKHbA8V3SlDK7Ew8ODgIAAWrRowX333cfFixdtPl+xYgXr16+nRYsWGccmT55M06ZNGTRoUMaxcePGUalSJSpWLLRdYTAY8kh6OuzaBZMnQ7NmUKIEWF1wSumHq8xELnMWK6VqAcOBZiKSqJSaCwwAmgFrRWSiUioECAHedJUcVzNmjPM6s3Tp0uzcuROAIUOGMHXqVEaNGpXxee/evendu7fNOV988QXLly+3cbK+/fbbOd4jNTWVkiULrU/fYDDkQGoq7NgBGzbA+vUQGQktW0LnzrBgAdxyS6YCEHGtLK42DZUESiulSgLewEmgLzDT8vlM4AEXy2CDq+xtHTt25MSJExnvP/roI2699VZatWrFO++8A8Bzzz3H4cOHuf/++/n000+5fPkyTz31FLfeeiutW7dm0aJFAHz//ff079+f++67j549e+Z4vaNHj9K0aVOeeeYZmjdvTs+ePUlMTATg4MGDdO/eHX9/f+68804OHTqU43UMBoPrSU6GjRvh/fehd29o1w6++AIqV4bPPoOdO+HHHyE4GBo31grAXbhsqikiJ5RSk4AoIBFYJSKrlFK+IhJtaROtlKrmKhncRVpaGmvXrmXo0KEArFq1igMHDrB161ZEhPvvv58NGzbw5ZdfsmLFCtatW0eVKlUYOXIkd911F99++y0XL16kffv2dO/eHYDNmzeze/duKlWqlOP16taty4EDB5g9ezZfffUVQUFBzJ8/n8cee4xBgwYREhJCv379OHv2LGXKlMnxOp07d87P7jMYiiSJibBli57tb9gAMTFw6616xv/VV1CnjmPXccd8zZWmoYro2X994CLws1Lqses4PxgIBvD19SUsLMzmcx8fH+Li4jLe9+tXmgsXtAoVKY1SaRmfRUcrTp3KXPxYNW316unUqJH9mqtSJWHBgkS7MiYmJtKqVSuioqIICAigQ4cOxMXFsXTpUlauXIm/vz8A8fHx7Nmzh9atWyMixMfHU6pUKVasWMHChQv58MMPM663b98+kpKSCAwMxNPT0+71KlWqRL169WjQoAFxcXG0aNGCiIgITp48yfHjx+nevTtxcXF4enqSlpZmV64bISkp6Zq/S2EhPj6+0MruCkx/2HIj/ZGY6EF4eHl2767A7t0+XLlSgmbNLtGqVSwvvHCRSpVSMtoeOqQfjhAYCK7+07jS+NwdOCIiZwGUUr8AnYDTSqkaltVADeBMdieLyAxgBkC7du3k6kyA+/bts9kktWZN5mf2NlDZ2ttys4zZ34RVunRpdu/eTWxsLH369OF///sfw4cPx9PTk5EjR/Lss89mc39F2bJlKVeuHEopFixYQOPGjW3ahIeHU6FChYzvkNP1jh49SunSpTPaeXt7Ex8fT9myZVFKZRy39oc9uW4ELy+vG1Yi+U1RyS7pLEx/2OJIf1y8qE0969fDH39oZ2+nTvDww9rUU7kyQHmgthskzhuu9BFEAR2UUt5KB513A/YBi4EhljZDgEUulMEt+Pj4MHnyZCZNmkRKSgq9evXi22+/JT4+HoATJ05w5sy1+q5Xr15MmTIFsWimHTt2ZHt9R69npXz58tSuXZuFCxcCcOXKFRISEq77OgaDIZNz57QT9+WX4bbboE8f+P136NoVli+HP/+ETz6Bvn2tSqDw4EofwRal1DzgbyAV2IGe4ZcF5iqlhqKVRX9XyZAdrrK3tW7dGn9/f0JDQxk8eDD79u2jY8eOAJQtW5Yff/yRatVs3SGjR4/m5ZdfplWrVogIfn5+LF269Jpr9+zZM9vreXh45CjPDz/8wLPPPsvbb7+Nh4cH8+fPz/E6V8tlMBggOlrb9jds0Lb+smW1fb9PH5gwAYpA3ZoMlLg6LskJtGvXTq4uTLNv3z6aNm2abXuTa8gWV/WHvb9BQceYQmwx/QFRUZmhnGFhcfj5laNzZ+jSBdq3By+v/Jbw+lFKbReRdrm1MwHqBoOh2CGinbXWgX/nTqhVSw/6Tz0FQUF/06NHl/wW020YRWAwGIo8IrB/f2YoZ3g43HyzHviHDwd/f8i6bzMsrOBbSpyJUQQGg6HIkZ4Oe/Zkzvj//ReaNNE2/hEjoHlzncLBoDGKwGAwFHpSU7V5Z/16/Th6VKdr6NIF3n3X/Tt1nUZ0NAwYAHPmQPXqLruNUQQGg6HQkZwM27Zlmnqio6F1az3j/+wznaytUA78VzN+vN6kMG6czkfhIowiMBgMBR5rugZrOOeFCzpXT5cuMGOG4+kaCgXp6VC6tNZ2VqZN0w8vL90ZTsZYyW6QiIgIAgICMh7ly5fns88+A+DChQv06NGDRo0a0aNHj2zrDERERNC2bVv8/f3ZvHkzoDONdu/enYSEhIx2KSkphISE0KhRI1q0aEH79u1Zvnw5APfcc881qa+dzXvvvefS6xsM2REfD6tXw1tv6cG+c2eYNw+aNtWJ2f7+WyuAQYOKgBKIi4O1a/Xsv3dvaNMG7rkH2rbNjFn19tZf9sgRl4hQvBRBdLT+VZ06ledLNW7cmJ07d7Jz5062b9+Ot7c3/fr1A2DixIl069aNAwcO0K1bNyZOnHjN+dOnT2fixInMmzePSZMmATBt2jQGDx6Mt7d3RrvRo0cTHR1NeHg44eHhLFmyJCPH0rJly6hQoUKev4s9jCIwuIPYWPj1V3jzTbj9dujeXe/WbdcOfvkF/voL/vtf6N/fpaZy12OtNvPTT/DCC3qDQq9esHSp1nLffKOdHQsW6Ax1yclaGSQlQfnyLvvyxcs05CJ729q1a2nQoAH16tUDYNGiRRkJq4YMGUJgYCAffPCBzTmenp4kJiaSkJCAp6cnFy9eZMmSJaxcuTKjTUJCAl999RVHjhyhVKlSgE7AFxQUBICfnx/btm0jPj6e3r17c8cdd/Dnn3/i7+/Pk08+yTvvvMOZM2eYMWMGXbt25fLlywwbNow9e/aQmprKmDFj6Nu3L99//z2LFy8mISGBQ4cO0a9fPz788ENCQkJITEwkICCA5s2bM2vWLKf1maF4c/58ppln0ybw9NQKoEsXGDkSfHzyW0InkZysiw5s3Ki/6L//gp+f/rIDBsCkSdoMlB2nT8Nzz+m81DNm6ImsqxCRAv9o27atXM3evXuvOWbl0qVLtge8vES0LrZ9eHnleI3r4cknn5QpU6ZkvPfx8bH5vEKFCtecExkZKV26dJEOHTrIrl275JVXXpGwsDCbNrt27ZKAgIAc71uvXj05e/asHDlyRDw8PGT37t2SlpYmbdq0kSeffFLS09Nl4cKFcu+994qIyIgRI+SHH34QEZGYmBhp1KiRxMfHy3fffSf169eXixcvSmJiotStW1eioqJERKRMmTI53t/e36Cgs27duvwWoUDh6v6IjhaZM0fk+edF2rYV6dJF5K23RFavFomPd+mtb4gb7o8zZ0QWLhR54w2RO+/UX/aZZ0S++04kIkIkPd2ZYuYKsE0cGGOLzoqgd2+dFQrwTk+3DRK+5RY4dkynCxTR4QQVKmjjYrscdl9XqQIrVuR62+TkZBYvXsz7779/XeLWrVs3Y9Vw8OBBTp48SZMmTRg8eDDJycmMHz/+uq5Xv359WrZsCUDz5s3p1q0bSilatmxJVFQUoOskLF68OMMUlZSUlPFZt27d8LFMw5o1a0ZkZCR1Cr3x1ZBfHDuWGdGzbZtOwta5MwQFwccfF850DdeQng579+qZ/qZNsHs3VKyoU5AGBkJIiH5fCCg6iiDLoJ2QXW6d//s/vbwqVUov1wYMcIp5aPny5bRp0wZfX9+MY76+vkRHR1OjRg2io6NzTeo2atQo3n33XSZPnsygQYPw8/Nj7NixfPXVV0RFRTmUK8hqOgIoUaJExvsSJUqQmpoK6NXf/Pnzr0l7vWXLFpvzPTw8Ms4xGHJDBA4ftk3XULOmHviffFLb9m+6Kb+ldAJxcbB1a+bAHx2tiwt36qS3J7dqZbs9uRBROKW+EVxkb5s9ezaPPvqozbH777+fmTNnEhISwsyZM+nbt2+O569fv55atWrRqFEjEhISKFGiBB4eHiQkJODt7c3QoUMZPnw406dP56abbiI6Opq1a9fy2GMO1/jJwJr2esqUKSil2LFjR671BDw9PUlJScHT0/O672comohARETm5q3wcB2336ULDBt2bbqGQonVqWsd9P/6Czw8dP7pTp20hqtd8OsMOEph/3M5zi+/ZL6eOtUpl0xISGD16tVMnz7d5nhISAhBQUF888031K1bl59//jnb80WEd999l7lz5wIQHBzMoEGDSE1NZdq0aQC8++67vPXWWzRr1gwvLy/KlCnDuHHjbkheR9NeZyU4OJhWrVrRpk0b4ywupqSn68HeauqJiNA7dbt00daPFi2KQLoGq1PXMvC3+/tvnYeiUydtz/rwQx3CWUQxaaiLASYN9bWYtMu2ZO0Pa7oGq6nnyBGdrsGakrnQpmvIytmzsHmzHvg3b4bLl/XW5E6d4PbbCTtxgsCuXfNbyjxj0lAbDAaHSE6G8PDy/PmnHvijoyEgQA/6n3yis3QW6oE/PR327dOD/saNsGtXplO3Sxe9eeFqp+7Jk/kjaz7hyuL1jYE5WQ7dDLwN/M9y3A84CgSJyLVbbw0Gg0tIStLpGqymngsXoGbN6jz6aBFJ1xAfr5261tj9kyeLjFPXVbiyVGUEEACglPIATgALgBBgrYhMVEqFWN6/6So5DIbizuXLejzcsEHX2L18Wfs8O3fWsRPVq0NY2L8EBtbMb1GvHxFdWsw62//rL+2wuO02vWmriDl1XYW71GI34JCIRCql+gKBluMzgTCMIjAYnEZsrB4T16/XG+nT0qBjR20FeeklvUWm0JKcrB0YWXfq1q2rB/1i4NR1FW5xFiulvgX+FpH/KqUuikiFLJ/FiMg1uy6UUsFAMICvr2/b0NBQm899fHxo2LBhtvdLS0uzW9i9uOGq/jh48CCxsbFOv647iI+Pp2zZsvkthlOIjS3Jnj0V2LXLh/BwHzw8hJYtY2nV6iItW8ZStmxartcoqP3hGRtL+fBwfP75h/L//INHYiJxt9zCpebNiW3enMQ6dVziwCio/XG9dO3a1SFnscsVgVLqJuAk0FxETjuqCLJioobyhokaupbCHDV06lRmnp4tW6BMGbjzTm3q6dgRbmT8KhD9kdWpu2mTdupWqKBt+506QYcOUKmSW0QpEP3hBApS1NDd6NXAacv700qpGiISrZSqAZxxgwwuwc/Pj3LlyuHh4UHJkiWxKqsLFy7wyCOPcPToUfz8/Jg7dy4Vr4pKiIiIYODAgaSmpvLll1/SsWNHUlNT6d27N4sXL87IQJqSksLo0aOZP38+pUqVwtvbm7Fjx3L33Xdzzz338NNPP7k0A+l7773HyJEjXXZ9Q+4cO5YZyrltmx4LO3fWmTg/+ijnnGUFHqtT1zrwnzypM3B26gQvvqidumYjo1twhyJ4FJid5f1iYAgw0fK8yA0yMGvPLEatHUVUbBR1feoyodsEBrUclOfrrlu3jipXGV2taahDQkKYOHEiEydOvCb7qDUNtZ+fHyEhIcyfPz/XNNSlSpXi9OnTrF+/HtBpqF2NUQTuRUTH7VsjenbsgBo1tH3/iScKcbqGrE5d607dEiV0GuZOnfSXM07dfMOlikAp5Q30AJ7NcngiMFcpNRSIAvq7UgbQSiB4STAJKbrgS2RsJMFLggGcogyuxqShNjhK1nQNGzboHbx+fnrgf+EFHc9fKCMdrU5d68AfEaGdup06wcMPwwcfGKduQcKRFKX5/chrGup6n9YTxnDNo96n9XK8hiP4+flJ69atpU2bNjJ9+vSM4yYNdcEnv9JQp6WJ7NolMmWKyMMPi7RsqZ8nT9bH09LyRay898fZsyKLF4uEhIh07izSpo3I0KEi33wjsn+/29Mv55Wikqac4paGuvePvTmXoNNQp6enUyJL8pPI2Mhsz4mMjaTdjOz9KFW8q7DiMftpqDdu3EjNmjU5c+YMPXr0oEmTJnTu3NkheU0a6uJBaqr2eVpn/IcP69w8Xbro+khNmhTCXbvp6bB/v+1OXR8fPdu/8054/XW3OXUNzqHIKIKsg/bVUTJ+n/llqwzq+dRjW/C2a447Ss2aegNOtWrV6NevH1u3bqVz584mDXUxJiVFO3Stzt2TJ7V5p3NnnYe/UKZriI/XNn1r7P6JE9qpe/vtxqlbRCjsOQMdYkK3CXh72tojvT29mdBtwg1f8/Llyxm1gy9fvsyqVato0aIFkJmGGnBaGurk5GQAoqOj+fHHH29IZmsaarGEDO/YsSPXc6xpqA3Zk5SkB/zx43Wd3dtug2+/hVq14MsvtZn8++/hqaegQYNCoASsTt3Zs3VO6dtugx49YNEiXeBp+nS9AggN1Z+3bWuUQBGgyKwI7GF1CDszauj06dMZxepTU1MZOHAgvXv3Bkwa6qLM5cs6WeX69TpdQ3y8Hiu7dIGnn9YRPoWKlBTYsYPa8+bpQk1XO3UnTtQbFQxFGpOGuhhgNpRdi6MbhqzpGjZs0OkaUlL0GNm5szaHF7p0DefO2aZfjouD1q3ZX6kSTZ56Ss/6C31xgbxjNpQZDMWY8+f1TH/DBj1WenhoU7i1CIsL9+45n6xO3U2btJ2qQgW9/fiOO+C113QxYeBUWBhNmjTJZ4EN+YVRBIZizenTmY7dLVt0aPudd8Ldd+uonkKVbubyZdudusePZ+7Uff55XUPS2PMN2WAUgaFYcfy4HvRDQ2/h1Vcz0zU8/HAhS9cgonNPWAf9rVu1J9q6U/fxx4tAYQGDuzCKwFBksaZrsM74rekaOneGXr1OERxcs/Cka0hJydypu3GjdurWqaMH/QcfhPffN05dww1jFIGhyCCi09OvX68fe/bknK4hLOxSwVYC589rZ+7GjZlO3YAAPfCPHasLBxunrsFJGEVgKLSkp8M//2Tu2t2/Xwe9dOkCb7yhC64XirEyO6euj4926t5+u41T12BwBYXh36RAkpSURPv27fH396d58+a88847GZ9duHCBHj160KhRI3r06EFMzLUlmSMiImjbti3+/v5s3rwZ0PsRunfvTkJCQka7lJQUQkJCaNSoES1atKB9+/YsX74cgHvuuYeLFy+69Hu+9957Lr3+9ZCWBtu3w6efwgMP6Any++/rWf7YsXqf07x5ep+Tv38BVgKXL8O6dTBhAtx7L7Rurb/A5cvaqbtli/78vfegTx+jBAwup1itCKKjYcAAmDNH12nNC6VKleK3336jbNmypKSkcMcdd3D33XfToUMHk4baSaSk6IHfOuM/cUIP8F26FLJ0DVnTL2/dqo+1b69n+8apaygAFCtFMH683hQ0fjxMnZq3aymlMkrZpaSkkJKSgrKMSiYN9Y2RlKTHSevAf/68zmDQpQtMm6Y3vBZ4sjp1N23SJp/atfWgb5y6hoKKIylK8/uR1zTUIiInT4p4eYmASOnSItHROZ7uMKmpqeLv7y9lypSRN954I+O4SUPtGPHxIqtXi4weLdKli0jbtiLPPy8SGqr/Xq7EaWmGz50TWbJEZMQIkcBAnX75qadEvv5aZO/e/MsrfZ0UlbTLzqKo9AcFIQ21UqoC8DXQAhDgKSACmAP4AUeBIBG51oh+nfTurXfPA6Sne19jH46MhCtX9OukJO1IrFcv5+tVqQIr7GehxsPDg507d3Lx4kX69etHeHh4RuK53CjKaajHjNGPq7l0SQfBrF+fma6hY0c94x82DKpWvaHbuY/0dB22aZ3t79iR6dTt1AlefbUQ5pwwGFxvGvocWCEiD1uK2HsDI4G1IjJRKRUChABv5vVGWQftuLgEm9w60dHanmxNqySi/XJLl+bdVwBQoUIFAgMDWbFiBS1atCj2aajHjtWK4MIF23QNJUpoC0nnzoUkXcPlyzr9sjV2//hxXUCgUyd47jntrTY7dQ1FAJfFVSilygOdgW8ARCRZRC4CfYGZlmYzgQdcJYOV8eP1ZC4raWn6+I1y9uzZjIidxMRE1qxZk5GrpTinobb6r2+9VUf2bN0KvXrB6tV6LP3wQx0IUyCVwLFjOpJg+HDo0AG6dYNfftGziGnTdFjSnDnw0kv6CxolYCgiuHJFcDNwFvhOKeUPbAdeAnxFJBpARKKVUvany05g82ZdQjUrycl6onejREdHM2TIENLS0khPTycoKIg+ffoAxTMN9ZgxeiVgxZos9q67oGfPGxLXpajUVC2ktdjKvn2ZO3X79TNOXUOxwmVpqJVS7YA/gdtFZItS6nPgEjBMRCpkaRcjIhWzOT8YCAbw9fVtGxoaavO5j48PDRs2zPbeaWlpeHh4OO27FHZc1R8HDx4kNjYWgD17fJg+/WY++mgX99zTmXXrwpx+v7xQMjYWn717KR8ejs8//6Di4ki45RYutWhBbIsWJNSpU4A3Hrie+Pj4jCg4Q9Hpj65duzqUhtqViqA68KeI+Fne34n2BzQEAi2rgRpAmIg0zvlKph5BXnF1PYKjR7UZaOlSHSmpVKY/Jl/IzqlbvnzmTt0OHQgLDy8S+eadRVHJv+8sikp/5Hs9AhE5pZQ6ppRqLCIRQDdgr+UxBJhoeV7kKhkMricuDoKCYMYMrQQAsmyydg9ZnbqbNukNXE2a6EH/uef0LrQCnVjIYMhfXB01NAyYZYkYOgw8iXZQz1VKDQWigP43enERydjEZXAv1pXkoEHwn//ojbJWsgsddSpXp18WyUy//Nhj2tZvfhcGg8M4pAiUUhWBmkAicFRE0nM5BQAR2Qlktyzp5rCEOeDl5cX58+epXLmyUQZuRkQ4f/48hw970aYNPPKIC2+WkqKjdawD/759eunRqZO2R02YUMiqxxgMBY8cFYFSygd4AXgUuAkdAeQF+Cql/gS+EJF1bpEyG2rXrs3x48c5e/bsNZ8lJSXh5eWVD1IVTFzRH2fPejFvXm2++capl9WbD6w1dTdt0kWDremX335bm3yKsVPXYHAF9lYE84D/AXda4v8zUEq1BQYrpW4WEWcPBQ7h6elJ/fr1s/0sLCyM1q1bu1migouz+2PDBhgxQu8NyNOYLJLp1N240dap26kTvPKK2alrMLiBHBWBiPSw89l29L4AQzHj8GGdDmLZMl3f9xrspXhNSNBOXWvsvtWp26kTPPusnvkbp67BAMCsPbMYtXYUUbFR1PWpy4RuExjUcpBL7nU9PoJGaNMQACKywSUSGQosly5pf8A330CtWjk0sqZ4HTcORo7MHPS3bNGf33qrHvgHDdLpRI1/x2C4hll7ZhG8JJiEFF2bJDI2kuAlwQAuUQa5KgKl1NPoHcG1gZ1AB2AzcJfTpTEUWNLSYOBAXfmrXXbu/9KldTY/K9Om6UfJkrBypXHqGgwOICKcij/FqytezVACVhJSEhi1dlT+KAK0ErgVvTmsq1KqCTA2l3MMRYzXX4fbboP+OQX7Hj6skwjt2qW1hre3TtUwaZJzMvsZDEWMtPQ0/j3/LztP7dSP0zs5HX+aGuVqcCbhTLbnRMVGuUQWRxRBkogkKaVQSpUSkf1KKbs7gQ1Fi6+/1qb/jz+202jnTjh1SjuAvbz06qB8eaMEDAYgPjmePaf3ZAz6u8/sJjktmVsq30KAbwB31b+LVzq+QvWy+v/F7zM/ImMjr7lOXR/XVGdyRBEct9QVWAisVkrFACddIo2hwBEWBt9/ryOEcjTn798Po0bp2rv16kFwsN5qHB3tRkkNhvzHatrJOss/cP4ApT1L06paKwKqB/BU66doUa0FZW7KOanhhG4TbHwEAN6e3kzoNsElcueqCESkn+XlGKXUOsAHyKVki6EocOgQvPwyLF+uXQDZcuGCdh7873+QtShPXmuBGgwFnNT0VBvTzq7TuzJMOwG+AQRUD+DBpg/SsFJDPEpcX9JHqx8g36OGlFJewHPoJHF7gG9EZL1LpDAUOGJjdRTod99BjRo5NEpJgUcf1TklHKzMZjAURuKT49l9enfGoL/nzB4b0063+t14teOrGaYdZzCo5SCXDfxXY29FMBNIAX4H7gaaoR3HhiJOaqpWAiNGaGtPjrz6KnTtCvff7zbZDAZXIiJEx0fz5/k/2fT7Jnae2smBCwco41mGVr7atPN0m6dpUa0F3p7ZbaQpnNhTBM1EpCWAUuobYKt7RDLkN//5D9xxBzz4oJ1GM2ZATAxMnuw2uQwGZ3K1aWfnqZ2cuXyGmuVqUvFKRfo26cvDzR6mQcUG123aKWzYUwQZ9QlFJNUkdiseTJ8O5848GOuMAAAgAElEQVTBZ5/ZabR+PfzwQy4eZIOh4JCTaadx5cYEVA+g+83d+U/H/+Bb1hew1CNoHpi/QrsRe4rAXyl1yfJaAaUt7xUgIlLe5dIZ3Mpvv8GsWbBqlZ3x/fBhXbN3+XIdJmowFCBEhJNxJzOct8XFtJNX7OUaKtprIYMNBw5ok/+KFXbG90uXtPPg66/teJANBveQmp5KxLkIm1DNM5fPUKtcLQKq66id4mLaySv2ooYq2TtRRC7kdnGl1FEgDkgDUkWkneW6cwA/4CgQJCIxjotscDYxMXp8//57O/u/0tJg8GDtQMg2x4TB4DrirsRdY9pJTU+lcZXG+Pv606NBD17r9FqGacdwfdgzDZ0DjgOplvdZjQUC3OzgPbqKyLks70OAtSIyUSkVYnn/poPXMjgZa4TQ6NE6+WeOvPUWtGrl4io0huJOVtOOdZZ/8MJByniWwd/Xn4DqAQS3DaZ5tebGtONE7CmCKUAgsBGYDfwhzql039dyXdAhqmEYRZBvvPKKjgB94AE7jWbN0nUD5s1zm1yGok92pp2zl89Sq3ytjA1ZQc2DaFCpASWUKUbkSuz5CF5SOlQoEBgMTFFKrQKmicgRB68vwCqllADTRWQG4Csi0ZZ7RCulquXpGxhumC++0BvH7EaAbtkCU6bAmjWmMpjhhsnOtJOSnkKTKk0I8A2gZ4OevH7761QrY4aD/EA5Msm35BoaAIwHRorIVw5dXKmaInLSMtivRhezXywiFbK0iRGRitmcGwwEA/j6+rYNDQ115JYAxMfHU9akPM4gu/7Yvr0i//tfPT76aDc33ZR9CepSZ8/ScsQI9rz7LleKWPI48xuxxVn9ISKcSz7HwfiDHIo/xMH4g5xIOoFXCS8alG1Aw7INaVimIfXL1KeURyknSO4aisrvo2vXrttFJFenXo6KQClVBm3GeQSoCvwCzBGRYzcikFJqDBAPPAMEWlYDNYAwEbGbzbRdu3aybds2h+8VFhZGYGDgjYhZJLm6PyIitKl/5Urwzcm3lpAA3bvDhx/q3WVFDPMbseVG+iMlLYWI8xE2G7LOJpyldvnaGaadgOoBhdK0U1R+H0ophxSBPR/BGeAA2j9wEG3muVUpdSuAiPySiwBlgBIiEmd53RMYBywGhgATLc+Lcv86BmeRNUdcjkpABIYO1Y8iqAQM18+lK5dsTDvhZ8JJTU/Vpp3qAfRu2Js3b3+TqmWq5reohhvAniL4GT34N7E8siLoFYI9fIEFlh3JJYGfRGSFUuovYK5SaigQBeRU6sTgZFJSdITQO+/oAKAcee89HUc6dKjbZDMUDESEE3EnbGb5h2IOUfamshlRO8+1e47mVZtT2jOnlLSGwoY9Z/ETebmwiBwG/LM5fh7olpdrG64fERg+HHr0yCVH3IIFus7w4sVuk82QP2Q17Sw5tIR3o97lXMI5bdqxmHUGtBjAzRVvLnSmHcP1YW9D2WPoWXy2nkSlVAOghoj84SrhDM5j6lRITITXXrPTaNcuXVt4zRpda9hQZMjNtNO+Unse7/m4Me0UU+z9t1cGdiiltgPbgbOAF7o+QRf0hrMQl0toyDN//VWRX3/VzuEccwidOQNDhsDcuVChQg6NDAUdEeH4peM2sfmHLhyiXKlydk07YWFhRgkUY+yZhj5XSv0XuAu4HWgFJAL7gMEi4poqygansn8/zJhxM5s2QamcovWSk3UY0UcfwS23uFU+w42TkpbC/nP7bQb98wnnqeNTJyNqZ2DLgdSvWN+Ydgx2sbv+F5E0dPz/aveIY3Am58/rCKGRI/dTteqt2TcSgf/7P+jXTzsQDAWS2KRYW9PO2XDS0tNoWrUpAb4B3NPoHkbcOYIq3lXyW1RDIcQYgoso1kn+uHFQtuzlnBt+/jl4eMCwYe4TzpAj2Zl2DsccptxNmaad5299nubVmuNV0qQBNzgHowiKICLw4otw993Qpw+EheXQcOVKHR20YoUpMJMPGNOOoaBgFEERZPJknTX61VftNIqIgJAQXYXmppvcJltxJTYpNqNQyq5Tu4xpx1CgyFURKKV8gfeAmiJyt1KqGdBRRL5xuXSG62bFCli0KJdJfkxM5vbiqiZSxJmICMcuHbPZkHU45jA+Xj60qtbKmHYMBRJHVgTfA98Boyzv/0UXljGKoICxdy+MGKFLCec4yU9NhUcfhbffhpYt3SpfUSMlLYV95/bZDPoXEi9Q16duxoasx1o9hl8FP2PaMRRoHFEEVURkrlJqBGQUsk9zsVyG6+TcORg0CH78EarYsy785z/QpQv07es22YoCWU071g1ZgtC0SlMCqgfQ55Y+jLpzFJW9K+e3qIYiRHS0TgszZ46d6oFOwBFFcFkpVRmdXwilVAcg1nUiGa6X5GQICtIpgpo3t9Pwq6+0xvjsM7fJVtiwZ9qxRu282P5FmlVtZkw7Bpczfjz88Yd+njrVdfdxRBG8is4Y2kAptRGdkvph14lkuB5E4Pnndf6gu++203DDBpg5U9uNTIQQAMlpybZRO8a0YyhAREfDd99Berp+Hj3adauCXBWBiPytlOoCNEbXLY4QkRTXiGO4Xj77TBcOe+mlnNt4RUfDBx/AsmVQunhmjLyYdJFdp3ZlhGn+eehPyh4oa0w7hgJBejocOwb79mU+liyBK1f052lprl0VOBI19AIwS0T+sbyvqJR6VES+cI1IBkf59Vf9WLbMziQ/Lo5m48bpCKGaNd0qX34gIkTFRtnE5h+JOYKPl09GbP6w9sN4tNyj9LyrZ36LayhmpKbCoUM6sMM64P/7rzbv1q0LTZvqxwMPwA8/6BU/6M9duSpwxDT0jIhk6CERiVFKPQMYRZCPhIfrH4XdCKH0dBg8mOMPP0yzW3NIMVGISU5LZt/ZfTaDfkxiDPUq1MsY9B/3fxy/Cn6oqzRlWERY/ghtKBYkJuqtOtbBfu9eOHJEr95vvhmaNdMD/n33QaNG4HWVu+n55/W/b1ZcuSpwRBGUUEopsdS0VEp5AA7vQLK03wacEJE+SqlK6PBTP+AoECQiMdcreHHm7FkYPBh++gkq27NkjB4NzZtzpls3mrlNOtdwtWnnnzP/IAjNqjYjwDeA+xvfz+guo6lUulJ+i2ooRsTGZg701kH/+HFtgW3cWA/27drB449D/fo6m4sjbN6sVwFZSU6GTZuc/x3AMUWwEl1R7Et05NBzwIrruMdL6Iyl5S3vQ4C1IjJRKRVief/mdVyvWHPlio4QmjhR/8hy5Kef9K9z/nztKC4kOGLaGd5+OM2qNqNUyYJb/NxQdBCB06dt7fd79+qyr+XL6//DZs2gZ0/tq6tVK+/xGDt2OEd2R3FEEbwJPAv8H9pZvAr42pGLK6VqA/cCE9DRRwB9gUDL65lAGEYROIQ1UeiDD0KvXnYabt2qk8mtXavXom5i1p5ZjFo7iqjYKOr61GVCtwkMajkox/bJacnsPbs3Y9DfdXqXw6Ydg8HZpKdDVJQe5Jcurc2PP+o07vHx2i5vtd8HBelnu/t1ChmORA2lA9Msj+vlM+ANoFyWY74iEm25drRSqtoNXLdY8vHH2h/w4ot2Gp04AcHBsHAhlC3rNtlm7ZlF8JJgElISAIiMjSR4STAAg1oOIiYxxmZD1j9n/0GhaFa1Gf6+/vRt3Je3u7xtTDsGl5OSAgcP2s7uDxzQjty6dfXsvkKFFB58EJo0ceu/Ub6hxOqWzqmBUrcDY4B6aMWhABGRm3M5rw9wj4g8r5QKBF6z+AguikiFLO1iRKRiNucHA8EAvr6+bUNDQx3+UvHx8ZQtYn+9TZsq88svtZg4cQ8lS2b/Nytx5Qr+r73G4aefJtY/s1y0O/pjwJ8DOH3l9DXHS5UoRe3StSlbsiwNyzbMeNT1rstNJfIv2V1R/I3khaLYH0lJJYiK8iYy0puoqDJERnpz6pQXJUoItWolUrduAvXqJVCv3mVq1Urkppsy/6+KSn907dp1u4i0y62dI4pgP/AKulxlRmoJSxF6e+e9DwwGUtElLssDvwC3AoGW1UANIExEGtu7Vrt27WTbtm25fZcMwsLCCAwMdLh9QWfPHl1Fcs0aqJTThFlE55i46y54+mmbj9zRHyXGlkC49rekUKS9nVbgTDtF7TeSVwpzf8TE2M7u9+2DkyfB21s7bK0ROk2bgp+fYw7bwtwfWVFKOaQIHPERxIrI8usVQERGACMswgSiVwSPKaU+AoYAEy3Pi6732sWJM2d0xEFoqB0lAPD++1Ct2jVKwF1UKl2J84nXzg3q+tQtcErAUPgQgVOnbKNz9u3TDtuKFTMH+rvv1um0atQwG+ivB0cUwTrL4P0LcMV6UET+vsF7TkRHIQ0FooD+N3idIo81QujDD/XMJkcWLdKRQUuXuk02K+mSzog1I2hQsQEJKQkkpiZmfObt6c2EbhPcLpOh8JKeDkeP2s7wIyIgIUE7bK2z+4ED9bPdyZHBYRxRBLdZnrMuLwRd1N4hRCQMHR1kNSl1c/Tc4oqI9vn2759LKeHdu3U9yjVroKR76wzFJ8czeMFgWlRtweanNzM7fPZ1RQ0Zii/JydpBm3V2f+CA3jTl55c5w7/rLj0JKlMmvyUu2jgSNdTVHYIYbPnwQx2t8MILdhqdPaudB6Ghen3sRo7FHqP/z/0Z1n4Yg1rpwX5Qy0Fm4DfYcPmyDsHMar+PjNRzloYN9Qy/WTN46CH93hTLyx8cmkIqpe4FmqOdvgCIyDhXCVXcWbQIfvstF0uPtTr9Bx/kYjdyPltPbCV4STDT7p1Gxzod3XpvQ8Hk/Hnb2f2+fTp7ZtmymTtsb78dnnkG6tVz6/YWgwM4knTuS8Ab6IreSPYwsNXFchVbdu3S+URWrwZPzxwaieilQt++ejujG5kTPodP/vyERQMWUa9CPbfe25C/iOhonKsjdGJj9YLUar/v0wdef13b9I3DtnDgyIqgk4i0UkrtFpGxSqmP0Y5jg5M5dUpbeubOzcXSM2WK/q8cPtxtsokI49aPY1v0NtYMXkO5UuVyP8lQKElL0wnSss7uIyJ0IrWaNTPt948/rjdcudkqaXABjigCaxhIglKqJnAeqO86kYonSUk6Qujjj+GWW+w0XLUKFiyAlSvdNt1KTEnkqcVPUbNsTRY+shCPEg5mzjIUaK5cyXTYLltWjy+/1CmS09O1w9Y6w+/RQ5t3vL3zW2KDq3BEESxVSlUAPgL+RkcMOZRryOAYIjr8f+BA6GYvnurff+HNN7UycJNX7VT8Kfr/3J/HWz3OM22fccs9Dc4lLi7TYWt9REbqn1CjRnqwr1//MkFB0KCBHZOkocjiiCL4UESuAPOVUkvRDuMk14pVvHj/fR0P/dxzdhrFxMCjj+pyk1WrukWuXad2MWThED7t9Sld65vgsYLOuXPXpkQ+fVo7bJs00TP8zp3h2Wd1Tp2sDtuwsHM0aZJ/shvyF0cUwWagDYBFIVxRSv1tPWbIG7/8Ar//rsvS5Uhqql4ujB4NrVq5Ra7FEYsZt34cP/f/mUaVG7nlnobcEdH57q9OiXzpks6GmbXC1YgRerO5cdgaciNHRaCUqg7UAkorpVqjk82BzhlkrIVOYMcOeO89B/aCvf463HGH/u92MSLCpE2TWH14NasHr6ZiaeMJzA9SUzMdttYZ/r//al9SrVqZ9vsnntCz/QoVcr2kwZAj9oafXsATQG3gYzIVQRww0rViFX2io+HJJ2HevFz+ib/5RocTffKJy2VKTkvmuaXPUcqjFL8O/BVPD2MsdjVJSXqAzzrDP3RIf1a/fmbRk7vv1kEEpUvnr7yGokmOikBEZgIzlVIPich8N8pU5ElM1KkjPv1U76bMkT/+gG+/1UsGF6/vzyWcI+jnIB5o8gDD2g8zieKczKVL2mGb1X5/7Jh22Fo3XAUEaDdQgwZuzxZiKOY48nOrrZQqj14JfIX2DYSIyCqXSlZEEYGhQ/V+ga72/K9Hj+oKNL/+6vJp4P5z+xk4fyAT7prA3Y3udum9ijIiOuvH1fb7s2d1ScMmTTLz57zwAtSubXbYGgoGjiiCp0Tkc6VUL6Aa8CTwHbpkpeE6mTABfH31VvsciY/X6SNmzNAGYRey6tAqQtaE8EO/H2herblL71VUENGz+az2+/379ay/atVM+/2DD8KoUfqYWWAZCjKOKALrT/ge4DsR2aWM3eCGmDcPNm/WuYRyJD1db9l86SVo396l8kzdOpWf9/7MysdWUrWMe0JSCxOpqdpef/UO2+RkqFMnM0Ln6af1bL98+fyW2GC4MRxRBNuVUqvQu4lHKKXKAemuFavosX27zg+Xa4TQ22/rUWXgQJfJkpqeyisrXuFS8iVWPraSUiVLuexehYHERO2wzWq/P3xYz+Jvvjlzhn/vvdph6+WV+zUNhsKEI4pgKBAAHBaRBKVUZbR5yOAgJ09qv8D8+eDjY6fh7NkQHq43F7iI2KRYBswfQOe6nZl8x+Ri5RSOjc0c6FeuvJlJk+DECT2w33KLHuzbtYPBg3XEjnHYGooL9vYRNBGR/WglAHDz9QwaSikvYANQynKfeSLyjlKqEjAH8AOOAkEiEnND0hcCEhJ0hNDkyToaJEf++kuHEa1d6zIP4qELhxgwfwAj7hjBg00fdMk98hsRXd7z6pKG585p0411dt+2bQwDBtSldm1jvzcY7M15XgWC0XsIrsaRCmVXgLtEJF4p5Qn8oZRaDjwIrBWRiUqpECAEePP6RS/4iMBTT+lH5852Gp48qb3HCxZAOddk9dwQuYHhy4fzbd9vaVOj8G8KT0+HqCjb6Jz9+3UhlGrVMu33QUH6uUoV2/PDwmKoUyd/ZDcYChr29hEEW55vKMmMiAgQb3nraXkI0BcItByfiS5hWSQVwbhxOuhn6FA7jRIT9Wj1+efaHuEClp9azh+H/2DZoGXULFfTJfdwFSkp2mGbdYb/77/6eL16mQP+s89q14qL9KjBUKRRery200Cp/sAKEYlTSr2F3kcwXkR25HpxpTyA7UBDYKqIvKmUuigiFbK0iRGRa/IYKKWC0SsSfH1924aGhjr8peLj4ylbtqzD7V3Bb79VZc0aX8aPD8cjp6zNIjR97z0u+vsT3aeP02VIl3S+OvIVx+KO8VaLt/DyKLhezqSkEhw75k1kpDdRUd4cPVqGU6e8KFFCqFkziXr1LlOvXgL16iVQq1YCN91k/3ebGwXhN1KQMP1hS1Hpj65du24XkXa5tXNEEey2FKa5A3gfmASMFJHb7J5oe40KwAJgGPCHI4ogK+3atZNt27Y5ejvCwsIIDAx0uL2z+esvvWFozZpcQgonTtRmocmTnS5D1sLyXVVX7uqamyXPOURHw4ABMGeOrlB1NTEx15Y0PHFC75mzbriyPurXJ2clmkfy+zdS0DD9YUtR6Q+llEOKwJG4iDTL873ANBFZpJQacz3CiMhFpVQY0Bs4rZSqISLRSqkawJnruVZB58SJTHO/XSWweDGsW6d3DjuZY7HHCJoXxIu3vsigVoMICwtz+j1yYvx4nRkjJERvh8i66SomRkdNWQf63r3hlVd01SvjsDUY8g9HFMEJpdR0oDvwgVKqFJBrWItSqiqQYlECpa3nA4uBIcBEy7O97VWFCmuE0H//m4u5f88eGDvWgU0F109+FpZfuhSmT9eO3B9+gFKldDjmo4/qgb9yZbeKYzAYHMSRUSgIPZOfZBnUawCvO3BeDXTSOg+04pgrIkuVUpuBuUqpoUAU0P8GZS9QpKfr/EHBwTpjdI6cPaunyrNnO73Ya2h4KJ/++anbC8tfugQjR8LChdqUk56u9VvJkrmk0jAYDAWCXGf2IpKANt9Yh7dU4IAD5+0WkdYi0kpEWojIOMvx8yLSTUQaWZ4v5OULFBTGjNGrgCeesNMoOVnnEHr/fZxZDkpEGBs2lll7ZrFm8Bq3KoEFC+DOO/WGrPPndTQP6K/63Xc6g7bBYCjYZKsIlFLNs7x+Bx3eOcJyyBP40fWiFR5mz4Zdu/T4niMiOpvoffdp47iTSExJZOAvA7l05RILH1lIuVLuiZ88fhz69dOrgLVrdQx/+lWJR9LStM/AYDAUbHJaEdRTSk20vO4H3A9cBhCRk4CJ1rawZQt89hn8+GMuES7//a8eGV9+2Wn3PhV/ip4/9qRb/W583OtjPEq4KMQmC2lpMGUK3H+/joyaOVNv1tq8Wa8CspKcDJs2uVwkg8GQR7L1EYjIMqWUNVooWUREKSUASqkybpOugHPsmPYJLFqUy0amNWt0/qAVK5wWHrPr1C6eWPQEn/T8xG2F5Xfv1oP/nXfCxo22ZRJ25LqrxGAwFFTs7SxeaXk51xI1VEEp9QzwFPC1O4QryFy+rCOEvvgC/PzsNDxwQNccXrlSh9E4AWth+bkPz3VLYfmEBL1LeuNG/X1btnT5LQ0GgxvJNWpIRCYppXoAl4DGwNsistrlkhVg3nlHR4A+/zzcfrudhhcv6tjJ77/XCXDySH4Ull+1Ct58U0f/TJjgug1eBoMh/3AoiN0y8K8GnTZCKTVIRGa5VLICzLhxmRumciQ1VdcUGDUK/P3zfE93F5Y/cwZefVWnQlq61OWF0gwGQz6SY/ioUqq8UmqEUuq/SqmeSvMicBi9t6BY8tNP+nnChFwavvEGdOqkQ2vyyLmEc/T+sTcB1QP44t4vXKoERHTYZ8+e2vQ1f75RAgZDUcfePoIf0KagPcDT6BrF/YG+ItLXDbIVKMaM0X7eQYP0ew8P/X7MmGwaf/utziE0alSe77vv7D56/tCT1zu9zvDbhru0kMy//0KPHrBzJ/z+O/Qtdn9lg6F4Ys80dLOItARQSn0NnAPqikicWyQrYIwZA7166RQKM2fqmXO2bNwI33wDq1fnOULIXYXlk5N1Gc1ff9X571xcKtlgMBQw7K0IUqwvRCQNOFJclYCV0FCdWTNHIiN1fOXcueDtnad7Td06lfd+f4+Vj610qRLYuFE7vEuV0qsAowQMhuKHvRWBv1LqkuW1Akpb3it03Rl7uTWLHGlp8NtvMGmSjhq6hvh4nT5i+vQ8GdVT01N5ecXLxCXHubSw/MWL2uF99KhOGX3zzS65jcFgKATkuCIQEQ8RKW95lBORklleFyslALBhg545e3pm4xewZpx78UW4zeEyDddwMeki982+j9rla/N93+9dogRE4OefoUsXvTFs+XKjBAyG4o5zcyAXYUJD9ZaAbBkzBho1gsceu+HrWwvLj7xjJP2a5j3SKDsiI7WuqlZNr25MWmiDwQBGEThESorOpfPFF9l8OGeOzjj3yy83fH1rYfnv+n5H6xqtb1zQHEhLU3z6qc6H9PHHUAQKLxkMBidiFIEDrF0LXbtms6t2+3Y9sq5de8Nbbr/b8R1f7/jaZYXl//4bXnopgAcf1I5hr4JbtthgMOQTLlMESqk6wP+A6kA6MENEPldKVQLmAH7AUSBIRGJcJYczCA2FZ5+96mB0NAwdqlcCdjPOZU9aehoj1o7g6MWjrB68Gm/PvEUZXU18vHZqb98Or70WwRNPmHAgg8GQPbkWpskDqcB/RKQp0AF4QSnVDAgB1opII2Ct5X2BJSlJZ9bs0MFyIDpae1kfeEDnn74BT2t8cjwPzX0Ir5JehD4c6nQlsGyZrpLWuLH2Bfj5JTj1+gaDoWjhshWBiEQD0ZbXcUqpfUAtoC8QaGk2EwhDF74pkKxYoTeSZewNGzdOV2fv3PmGjO1RsVEE/RzE8NuGM7DlQKfKeuqULncgoqOBatRw6uUNBkMRRUmOW2SdeBOl/IANQAsgSkQqZPksRkSuSaOplAoGggF8fX3bhoaGOny/+Ph4ypYtm0epNePHN+WRR44xdNjteFxdeQVIu+kmfl+5Mpszr2Xvpb188u8nvNLoFZr7OG+TWHo6LFtWg4ULazF06GE6drSt/unM/igqmD6xxfSHLUWlP7p27bpdRNrl2lBEXPoAygLbgQct7y9e9XlMbtdo27atXA/r1q27rvY5ER8vEhAgkp4uIidPivTvL6KUCIh4e4sMGiQSHe3QtWbvmS3tv2ovR2OOOkU2K3v3igQGirzyikhcXPZtnNUfRQnTJ7aY/rClqPQHsE0cGKddGjWklPIE5gOzRMQaX3laKVVDRKKVUjWAM66UIS8sXapLDCuFtrNER+sPvLy086B8eahe3e41RISx68fyd/TfrBm8xmk1hZOSdI3kVat0Fcy2bZ1yWYPBUAxxmbNY6TSZ3wD7ROSTLB8tBoZYXg8BFrlKhrxik1tIBMLD4ckn4c8/4bnntFHeDokpiTw6/1Hik+NZ8MgCpymB9eu1M9jHR+cHMkrAYDDkBVeuCG4HBgN7lFI7LcdGAhPR5S+HAlHo1NYFjthYOH4cmjWzHFizRifonzFDv5861e750XHRBM0L4gn/JxjaZqhTZLpwQVe9PH0a5s3LpUSmwWAwOIgro4b+QCeoy45urrqvs1i0SEeIZjBligPVaDQ7T+3kiYVP8Fnvzwj0C8yzLCIwe7ZOFT1qlNZHLixLYDAYihlmZ3EOhIbq3PwAHD6sq9U7ULXdWlh+XtA8GlZqmGc5jhzRma1r14awMKjo+jLFBoOhmGEUQTacO6fTNDe0juNTp+rR2A4iwkebPmLtkbVOKSyfmgqffqpTGX36qd7DZjAYDK7AlTuLCy2//AIPPWR5Ex+v/QP3359j++S0ZIYuHsrRi0dZ+ujSPCuBv/7SzuDERJ0fyCgBg8HgSsyKIBvmztUF3AGdsnPQICiZfVedSzhH0M9B9GvSjxfbv5inmsJxcfDWWzo4aeZMnSLCYDAYXI1ZEVxFdLSu4VunDtpL+/XXOrlcNuw7u49eP/bijdvfYNhtw/KkBBYv1jN/f3+9ADFKwGAwuAuzIriKefMgKMjy5rffoHXrjAous/bMYtTaUUTFRlG1TFVKe5Rm2WPLaFa1Wc4XzLcyMJMAAA8OSURBVIWTJ2H4cF0zeNUqXTTGYDAY3IlZEVzFzz/Dww9b3kyeDMOGAVoJBC8JJjI2EkE4c/kMZxLOsOPUjhu6T3o6TJsG994LzzwDs2YZJWAwGPIHowiyEBWlZ+bVq6PjNuPioFUrAEatHUVCim0658TUREatHXXd9wkP14lLjxzRiUx79XKC8AaDwXCDGNNQFubOzWIWuipkNCo2KttzcjqeHYmJ8O67ej/A1KkQEJAHYQ0Gg8FJmBVBFubPhwcfRG8eW7MG+vbN+KyOT51sz6nrU9eha69dC7ffDr6+sGGDUQIGg6HgYFYEFg4cgEqVLH7h6T/qbHNZQkbvaXgPX+/4mtT01Ixj3p7eTOhmP+3EuXPw2msQE6PTVtTJXp8YDAZDvmFWBBbmzLFkGrWGjD79dMZncVfi2HR8E1PvmUo9n3ooFPV86jHjvhkMajko2+uJwA8/QLduei/awoVGCRgMhoKJWRFYWLhQR4uybp12EFepkvHZhN8n8MKtLxDcNpjgtsG5XuvgQe1eaNhQm4F8fFwouMFgMOQRowjQUTx16+o6M0yZAu+8k/HZgfMHWB+5ngl35Z55NCUFJk2CBQvg88+hY0cXCm0wGAxOwpiGyGIWOnpUZ5vL4sl9ddWrTOoxCY8SHnavsXmzdgaL6JBQowQMBkNhwWUrAqXUt0Af4IyItLAcqwTMAfyAo0CQiMS4SgZHENElKUNCgLFf2ISMLj+wnPKlynN73dtzPD82FkaOhH//1ZvCGjVyg9AGg8HgRFy5Ivge6H3VsRBgrYg0AtZa3ucrf/8NTZtCGZUAK1dmVKNJTkvmrXVv8WH3D23aR0dDly76+ZdfoHNnuO02nR7CKAGDwVAYcWWFsg1KKb+rDvcFAi2vZwJhwJuuksERQkPhkUfQ0/ksIaOTt0zmoaYPUat8LZv248frOsGdOmklsHatjV/ZYDAYCh3udhb7ikg0gIhEK6XyNbtOerqeyb87XqDzV7BsGQCn4k8xa88sNg/dbNM+OlpHloroZHEffGCUgMFgKPwU2KghpVQwEAzg6+tLWFiYw+fGx8c71D48vDw1a9Zg35dz8K1cmYjwcAA+2P8BD1V5iD//+NOm/WuvtSQ1tRKgSE9P57nnonn55QMOy5VfONofxQnTJ7aY/rCl2PWHiLjsgXYKh2d5HwHUsLyuAUQ4cp22bdvK9bBu3TqH2g0bJrJihYj06yfy998iIrLl+Bbp/WNvSU9Pt2m7ZImIUiJ6PaAfpUuLREdfl2j5gqP9UZwwfWKL6Q9bikp/ANvEgTHW3eGji4EhltdDgEVuvn8GaWk6+dtdDSLhwgVo3Zp0SefVla/ySc9PbIrMHDkCQ4aAp+e11xg/3r1yGwwGg7NxmSJQSs0GNgONlVLHlVJDgYlAD6XUAaCH5X2+sGGDdvh6fvUFPP88AD/s+oH2tdrTtGrTjHYXL+qMpFWq6MplWUlOhk2b3Cm1wWAwOB9XRg09msNH3Vx1z+shNBQG9UuAN1fAu+9y6colPvnzE9Y/sT6jTUqKjigaORL69ctHYQ0Gg8GFFMudxSkpeifwHVE/6em+pyfvbniX4e2HU8GrAqC9AM8/Dz17GiVgMBiKNsVSEaxZA3d1FUp8PQOCg4k4F8EfUX/wZOsnM9p89BF4eMCrr+ajoAaDweAGCmz4qCsJDYU3btsAsc2galVe/ekJJvWcRAml9eL8+ToJ6eLFkMVnbDAYDEWSYqcIkpJg505oFj8ZRo7k139/pVLpSnSq0wmArVv1RrHVq6+NEjIYDIaiSLFTBCtWwIBOUai957ji34LR3zzD0oFLAYiMhOBgXUnM1BAwGAzFhWLnIwgNhaeSdMjo51s+J6h5EDXL1SQ2Fvr3hxkzoF69/JbSYDAY3EexUgSXL0Pk/kSqbV9GdM+OhIaH8kqHV0hJ0fnm3nwT2rfPbykNBoPBvRQr09CSJfBmnZ9QtwURsn40YwPHcpNHKf7v/6BrV3joofyW0GAwGNxPsVoRzAkVekXO4M/723D28ln63NKHTz7RqSJefz2/pTMYDIb8odisCGJjoer+3yl1W2P+s20C39z/DYsWKVat0hXKTJiowWAorhQbRbBwIbziOYXvH2hKxzLViD/ahAkTTJiowWAwFBtFsOa7Y/Qqd4LPT//LrLt+57EgWLAAKlTIb8kMBoMhfykWPoJz56D7wWl8NKAizzZ/naGDy/Pll1C/fn5LZjAYDPlPsVAEi0ITaVR+HptLXWLpxEG89hp06JDfUhkMBkPBoFiYhs5Nnc3bDwk1Nv1MuzsU/fvnt0QGg8FQcMiXFYFSqrdSKkIpdVApFeLKe0WfFMp4fUBs1CgqlKxOiEvvZjAYDIUPtysCpZQHMBW4G2gGPKqUaubs+8zaM4va77ShZqcNDK/TgbiIbkybZsJEDQaD4WryY0XQHjgoIodFJBkIBfo68wZrTq8heEkwJ5Y9DZF3Ims/IqpnB36OmOXM2xgMBkORID8UQS3gWJb3xy3HnMYPWyaQcKE87HgKKAFXypGYmMao7x5z5m0MBoOhSJAfzuLsjDNyTSOlgoFgAF9fX8LCwhy+QVR5Bb+Otr3l+tFE3jvsuq5TVIiPjy+W39sepk9sMf1hS3Hrj/xQBMeBOlne1wZOXt1IRGYAMwDatWsngYGBDt+gyqoWnNv5/+3df6xXdR3H8ecLbozA7Ie/IpBAu1GMTWSkBmYqzvmrrC2Kio2xsfqjH9oiKteallFLc7ZZbUGak7SVmbH8Af7CqZvGVW4g3lgOTa7DwBJJRhHw6o/P5+b3/pJ74d7vgfN5P7a7+z3nfM/5vL/vfb/f9/d8zjmfsxD2jU4z9o2G9oVM+MgvGcx26mLNmjVFvu43EjnpLvLRXWn5qKJraC3QKmmypFHAPGDlUDYwsW0ZuMeOh0cw5ZkVQ9lMCCHUQtP3CGzvlfRFYBUwErjR9sahbGPnc1Nf3xvosm80/9g0ZSibCSGEWqjkgjLbdwN3D9f2ly17sqjduhBCOBRFDDERQgihf1EIQgihcFEIQgihcFEIQgihcFEIQgihcLJ7XdR72JG0HfjbIFY5Fnh5mMI5EkU+eoucdBf56K4u+Xi37eMO9KQjohAMlqQ22zOrjuNwEfnoLXLSXeSju9LyEV1DIYRQuCgEIYRQuLoWgp9XHcBhJvLRW+Sku8hHd0Xlo5bHCEIIIQxcXfcIQgghDFCtCoGkCyRtkvSspCJvUy/pREkPSeqQtFHSZXn+OyTdJ+mv+f/bq461mSSNlLRO0h/zdLH5kPQ2SbdL+kt+n3yw5HwASPpK/rw8Lek2SaNLykltCoGkkcBPgAuBqcCnJU2tNqpK7AW+avv9wBnAF3IevgE8YLsVeCBPl+QyoKNhuuR8/Bi41/b7gFNIeSk2H5LGA18GZtqeRhoefx4F5aQ2hQA4DXjW9mbbe4BfA5dWHFPT2d5q+6n8+F+kD/l4Ui5uzk+7GfhYNRE2n6QJwMXA8obZReZD0tHAWcAvAGzvsb2DQvPRoAV4s6QWYAzpronF5KROhWA8sKVhujPPK5akScCpwBPACba3QioWwPHVRdZ01wNLgP0N80rNx0nAduCm3FW2XNJYys0Htl8ErgVeALYCr9peTUE5qVMhUB/zij0lStJRwO+Ay23vrDqeqki6BNhm+8mqYzlMtAAzgJ/ZPhXYRY27PAYi9/1fCkwG3gWMlTS/2qiaq06FoBM4sWF6Amn3rjiS3kQqAr+yfUee/XdJ4/LyccC2quJrstnARyU9T+ouPFfSCsrNRyfQafuJPH07qTCUmg+A84DnbG+3/V/gDmAWBeWkToVgLdAqabKkUaSDPSsrjqnpJInU/9th+7qGRSuBBfnxAuAPzY6tCra/aXuC7Umk98SDtudTbj5eArZI6rqB9xzgGQrNR/YCcIakMfnzM4d0bK2YnNTqgjJJF5H6g0cCN9r+XsUhNZ2kM4FHgA283id+Bek4wW+AiaQ3/lzb/6wkyIpIOhtYbPsSScdQaD4kTScdOB8FbAYWkn4UFpkPAElXAZ8inXW3DlgEHEUhOalVIQghhDB4deoaCiGEcBCiEIQQQuGiEIQQQuGiEIQQQuGiEIQQQuGiEIQjkqRjJLXnv5ckvdgwParCuG6QNCs/vqnhfP3haOudku4aru2HcsTpo+GIJ+lK4DXb11Ycx3HAnbZnD/F2W2zv7WfZLcANDVcKhzBosUcQakfSAkl/ynsHP5U0QlKLpB2SrpH0lKRVkk6X9LCkzfliRCQtkvT7vHyTpG/l+W+RdI+kP+cx6z/RR9NzgXsa4ng0X7yFpPmSNuR1l+Z5LZJ2NDx/nqTl+fEKST+S9BCwVNK5ue32HP/YvNqdwGeHIY2hIFEIQq1ImgZ8HJhlezppkLV5efFbgdW2ZwB7gCtJwwnMBb7TsJnT8jozgM/kL/OLgOdtn5LHrL+vj+ZnA70Gt8vDYF8NnEMaDXZ2HgzvQE4G5theAnwN+Fx+TWcB/87PaQM+NIBthdCvKAShbs4DPgC0SWoHPkz6QgXYbbvrC3wDsCZ3uWwAJjVsY5XtV2zvIv3iPhNYD1wg6QeSZtt+tY+2x5GGeO7pdNIYRy/nQc1uJX2ZH8hvbXcNE/IYcL2kLwFH296X528jjZgZwkGLQhDqRqRxpqbnvym2v5uX7Wl43n7gPw2PWxqW9TxwZtsdwExgI3CNpCv6aHs3MLqfmPqyv8eynuvuagjgauDzpPFv1kpqbVhndz/bD2FAohCEurkf+KSkY+H/ZxdNHOQ2zle6r+8Y0jj1j+XbGb5m+xbgOlK3UU8dwHv6mP84cE6Opaur6uH8a/8VSa2SRpC6tPok6WTb621/nzQoWtfZSO8Fnh7k6wuhmygEoVZsbwCuAu6XtB5YDZwwyM08Suq+WQfcZruddG/ftbm7aQmwtI/17gLO7h2SO4FvA2uAduBx212nfX4duJd0T9zON4hpcT7QvB7YkV8XpOMOcQppOCRx+mgIDSQtAqbZvvwg1hWpiFxoe6ekDuB821sOsOpBye09AlzczzGLEAYk9ghCGCJOv6oWAxMlPQi0DVcRyI4HfhhFIByq2CMIIYTCxR5BCCEULgpBCCEULgpBCCEULgpBCCEULgpBCCEULgpBCCEU7n/RBR6ca1SDRQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "plt.grid(True)\n", "plt.plot([1,7,28,90],[res1[0],res1[1],res1[2],res1[3]],\"b\",linewidth=0.8,marker=\"+\",label=\"Référence\")\n", "plt.plot([1,7,28,90],[res2[0],res2[1],res2[2],res2[3]],\"r\",linewidth=0.8,marker=\"*\",label=\"70 %Ciment\")\n", "plt.plot([1,7,28,90],[res3[0],res3[1],res3[2],res3[3]],\"g\",linewidth=0.8,marker=\"o\",label=\"50 %Ciment\")\n", "plt.plot([1,7,28,90],[res4[0],res4[1],res4[2],res4[3]],\"b\",linewidth=0.8,marker=\"^\",label=\"30 %Ciment\")\n", "plt.xlabel('Temps (jours)')\n", "plt.ylabel('Résistance (MPa)')\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }