"
]
@@ -752,37 +771,38 @@
"\n",
"ax.set_ylabel('Number of women')\n",
"ax2.set_ylabel('Mortality rate')\n",
+ "ax2.set_ylim(0,1)\n",
"ax.set_xticks(x)\n",
- "ax.set_xticklabels(['Smoker', 'Non-Smoker'])\n",
+ "ax.set_xticklabels(['Non Smoker', 'Smoker'])\n",
"ax.legend()\n",
- "ax2.legend()"
+ "ax2.legend(bbox_to_anchor=(0.8, 1))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "A partir de ces graphiques et résultats il serait logique de conclure que les non fumeuses ont une mortalité plus importante (31%) par rapport aux fumeuses (24%) et que donc fumer aide à vivre longtemps. Même en regardant les intervales de confiance sur la condition (morte **0** ou vivante **1**) de la personne suivant son statut de fumeur nous indique que les fumeurs ont plus de chance de survie."
+ "A partir de ces graphiques et résultats il serait logique de conclure que les non fumeuses ont une mortalité plus importante (31%) par rapport aux fumeuses (24%) et que donc fumer aide à vivre longtemps. Même en regardant les intervales de confiance sur la condition (morte **1** ou vivante **0**) de la personne suivant son statut de fumeur nous indique que les fumeurs ont plus de chance de survie."
]
},
{
"cell_type": "code",
- "execution_count": 79,
+ "execution_count": 258,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 79,
+ "execution_count": 258,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE4hJREFUeJzt3X+QXWd93/H3h3UUhx/mR7StqWRhkagQNbEJLEpNSeKUmMo0qfg1ICdTCCSjqo3ipjMG1OkUQpjQAZc0PxBR1VQYMlMEDCQRVEEEGAwUGCSnxrZMRRclWIuiIOMG/yi1WfvbP+7R4fp6tXtt69GVve/XzM7e5znPnv1Ko7kfnefc5zmpKiRJAnjMpAuQJJ09DAVJUs9QkCT1DAVJUs9QkCT1DAVJUs9QkCT1DAVJUs9QkCT1zpl0AQ/WypUr68ILL5x0GZL0iHLdddfdWlXTS417xIXChRdeyMGDByddhiQ9oiT5+jjjnD6SJPUMBUlSz1CQJPUMBUlSr2koJNmY5HCS2STbFzj+xCQfSfLlJIeSvKZlPZKkxTULhSRTwA7gcmA9cEWS9SPDfhW4uaouBi4F3pFkRauaJEmLa3mlsAGYraojVXUPsAfYNDKmgCckCfB44DZgvmFNkqRFtAyFVcDRofZc1zfsncCPAMeAG4F/XVX3NaxJkrSIlovXskDf6AOh/wlwPfCPgR8C/jzJZ6vq9vudKNkCbAFYs2ZNg1KXp9e//vUcP36c888/n7e//e2TLkfSWaDllcIccMFQezWDK4JhrwE+XAOzwF8Czxw9UVXtqqqZqpqZnl5ylbbGdPz4cb7xjW9w/PjxSZci6SzRMhQOAOuSrO1uHm8G9o6MuQV4AUCSvws8AzjSsCZJ0iKaTR9V1XySbcB+YArYXVWHkmztju8E3gJck+RGBtNNb6iqW1vVJElaXNMN8apqH7BvpG/n0OtjwAtb1iBJGp8rmiVJPUNBktQzFCRJPUNBktQzFCRJvUfc4zhPh+e87r2TLuGs8IRb72AKuOXWO/w7Aa67+lWTLkGaOK8UJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEm9ZbmiWQP3rXjc/b5LZwufHz45hsIydtc6n2+ks9PJ54frzGs6fZRkY5LDSWaTbF/g+OuSXN993ZTk3iRPaVmTJOnUmoVCkilgB3A5sB64Isn64TFVdXVVPauqngX8W+DaqrqtVU2SpMW1vFLYAMxW1ZGqugfYA2xaZPwVwPsa1iNJWkLLUFgFHB1qz3V9D5DkscBG4EMN65EkLaFlKGSBvjrF2J8H/seppo6SbElyMMnBEydOnLYCJUn31zIU5oALhtqrgWOnGLuZRaaOqmpXVc1U1cz09PRpLFGSNKxlKBwA1iVZm2QFgzf+vaODkjwR+GngTxvWIkkaQ7N1ClU1n2QbsB+YAnZX1aEkW7vjO7uhLwE+XlV3tapFeqS45Td/bNIlnBXmb3sKcA7zt33dvxNgzRtvPGO/q+nitaraB+wb6ds50r4GuKZlHZKk8bj3kSSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSp5+M4JZ11Vp57HzDffdeZZChIOutcddHfTrqEZcvpI0lSz1CQJPUMBUlSz1CQJPUMBUlSz1CQJPWahkKSjUkOJ5lNsv0UYy5Ncn2SQ0mubVmPJGlxzdYpJJkCdgCXAXPAgSR7q+rmoTFPAt4FbKyqW5L8nVb1SJKW1vJKYQMwW1VHquoeYA+waWTMLwAfrqpbAKrqmw3rkSQtoWUorAKODrXnur5hfx94cpJPJ7kuyasa1iNJWkLLbS6yQF8t8PufA7wA+AHgC0m+WFVfvd+Jki3AFoA1a9Y0KFWSBG2vFOaAC4baq4FjC4z5WFXdVVW3Ap8BLh49UVXtqqqZqpqZnp5uVrAkLXctQ+EAsC7J2iQrgM3A3pExfwr8ZJJzkjwW+AngKw1rkiQtotn0UVXNJ9kG7AemgN1VdSjJ1u74zqr6SpKPATcA9wF/WFU3tapJkrS4pltnV9U+YN9I386R9tXA1S3rkCSNxxXNkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqRe01BIsjHJ4SSzSbYvcPzSJN9Ocn339caW9UiSFtfscZxJpoAdwGXAHHAgyd6qunlk6Ger6uda1SFJGl/LK4UNwGxVHamqe4A9wKaGv0+S9DC1DIVVwNGh9lzXN+qSJF9O8mdJ/kHDeiRJS2g2fQRkgb4aaf8F8LSqujPJi4A/AdY94ETJFmALwJo1a053nZKkTssrhTnggqH2auDY8ICqur2q7uxe7wO+L8nK0RNV1a6qmqmqmenp6YYlS9Ly1jIUDgDrkqxNsgLYDOwdHpDk/CTpXm/o6vlWw5okSYtoNn1UVfNJtgH7gSlgd1UdSrK1O74TeDnwL5PMA98BNlfV6BSTJOkMaXlP4eSU0L6Rvp1Dr98JvLNlDZKk8bmiWZLUMxQkSb0HHQpJnpzkohbFSJIma6xQSPLpJOcleQrwZeDdSX67bWmSpDNt3CuFJ1bV7cBLgXdX1XOAn21XliRpEsYNhXOSPBV4BfDRhvVIkiZo3FD4TQbrDWar6kCSpwP/u11ZkqRJGGudQlV9EPjgUPsI8LJWRUmSJmOsUEjybh64mR1V9drTXpEkaWLGXdE8fB/hXOAljGxuJ0l65Bt3+uhDw+0k7wM+0aQiSdLEPNQVzesAH2wgSY8y495TuIP731M4DryhSUWSpIkZd/roCa0LkSRN3rjbXHxynD5J0iPbolcKSc4FHgusTPJkvvfc5fOAv9e4NknSGbbU9NG/AH6dQQBcx/dC4XZgR8O6JEkTsOj0UVX9blWtBa6qqqdX1dru6+LuqWmLSrIxyeEks0m2LzLuuUnuTfLyh/BnkCSdJuPeaP79JD8KrGeweO1k/3tP9TNJphhcTVwGzAEHkuytqpsXGPc2BnsrSZImaNyPpL4JuJRBKOwDLgc+B5wyFIANDDbQO9KdYw+wCbh5ZNyvAR8CnvtgCpcknX7jLl57OfAC4HhVvQa4GPj+JX5mFXB0qD3X9fWSrGKwZcbOMeuQJDU0bih8p6ruA+aTnAd8E3j6Ej+TBfpGN9X7HeANVXXvoidKtiQ5mOTgiRMnxixZkvRgjbsh3sEkTwL+C4NPId0JfGmJn5kDLhhqr+aBm+jNAHuSAKwEXpRkvqr+ZHhQVe0CdgHMzMw8YLdWSdLpMe6N5n/VvdyZ5GPAeVV1wxI/dgBYl2Qt8A1gM/ALI+dde/J1kmuAj44GgiTpzHnQK5qr6q+q6oalVjRX1TywjcGnir4CfKCqDiXZmmTrwylaktRG0xXNVbWPwaeVhvsWvKlcVb80Rr2SpIYe7Irmk+7AFc2S9Kiz1PTR54Hn0a1oBt4M3ARcC/y3xrVJks6wpULhPwN3dyuafwr4D8B7gG/TfRpIkvTosdT00VRV3da9fiWwq3s054eSXN+2NEnSmbbUlcJUkpPB8QLgU0PHxl3jIEl6hFjqjf19wLVJbgW+A3wWIMkPM5hCkiQ9iiwaClX1W916hKcCH6+qk6uJH8NgIztJ0qPIklNAVfXFBfq+2qYcSdIkjbshniRpGTAUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1GsaCkk2JjmcZDbJ9gWOb0pyQ5LrkxxM8vyW9UiSFtdsp9MkUwyeznYZMAccSLK3qm4eGvZJYG9VVZKLgA8Az2xVkyRpcS2vFDYAs1V1pKruAfYAm4YHVNWdQ5vsPQ4oJEkT0zIUVgFHh9pzXd/9JHlJkv8F/HfgtQ3rkSQtoWUoZIG+B1wJVNUfV9UzgRcDb1nwRMmW7p7DwRMnTpzmMiVJJ7UMhTnggqH2auDYqQZX1WeAH0qycoFju6pqpqpmpqenT3+lkiSgbSgcANYlWZtkBbAZ2Ds8IMkPJ0n3+tnACuBbDWuSJC2i2aePqmo+yTZgPzAF7K6qQ0m2dsd3Ai8DXpXkuwwe9/nKoRvPkqQzrFkoAFTVPmDfSN/OoddvA97WsgZJ0vhc0SxJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6jUNhSQbkxxOMptk+wLHfzHJDd3X55Nc3LIeSdLimoVCkilgB3A5sB64Isn6kWF/Cfx0VV0EvAXY1aoeSdLSWl4pbABmq+pIVd0D7AE2DQ+oqs9X1f/pml8EVjesR5K0hJahsAo4OtSe6/pO5ZeBP2tYjyRpCec0PHcW6KsFByY/wyAUnn+K41uALQBr1qw5XfVJkka0vFKYAy4Yaq8Gjo0OSnIR8IfApqr61kInqqpdVTVTVTPT09NNipUktQ2FA8C6JGuTrAA2A3uHByRZA3wY+OdV9dWGtUiSxtBs+qiq5pNsA/YDU8DuqjqUZGt3fCfwRuAHgXclAZivqplWNUmSFtfyngJVtQ/YN9K3c+j1rwC/0rIGSdL4XNEsSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeo1DYUkG5McTjKbZPsCx5+Z5AtJ7k5yVctaJElLa/Y4ziRTwA7gMmAOOJBkb1XdPDTsNuBK4MWt6pAkja/llcIGYLaqjlTVPcAeYNPwgKr6ZlUdAL7bsA5J0phahsIq4OhQe67rkySdpVqGQhboq4d0omRLkoNJDp44ceJhliVJOpWWoTAHXDDUXg0ceygnqqpdVTVTVTPT09OnpThJ0gO1DIUDwLoka5OsADYDexv+PknSw9Ts00dVNZ9kG7AfmAJ2V9WhJFu74zuTnA8cBM4D7kvy68D6qrq9VV2SpFNrFgoAVbUP2DfSt3Po9XEG00qSpLOAK5olST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkSb2moZBkY5LDSWaTbF/geJL8Xnf8hiTPblmPJGlxzUIhyRSwA7gcWA9ckWT9yLDLgXXd1xbgD1rVI0laWssrhQ3AbFUdqap7gD3AppExm4D31sAXgScleWrDmiRJi2gZCquAo0Ptua7vwY6RJJ0h5zQ8dxboq4cwhiRbGEwvAdyZ5PDDrE3fsxK4ddJFnA3yH1896RJ0f/7bPOlNC71VPmhPG2dQy1CYAy4Yaq8Gjj2EMVTVLmDX6S5QkORgVc1Mug5plP82J6Pl9NEBYF2StUlWAJuBvSNj9gKv6j6F9A+Bb1fVXzesSZK0iGZXClU1n2QbsB+YAnZX1aEkW7vjO4F9wIuAWeD/Aq9pVY8kaWmpesAUvpaRJFu66TnprOK/zckwFCRJPbe5kCT1DIVHse4G/ueSXD7U94okH5tkXdKoJJXkHUPtq5L8xgRLWrYMhUexGswNbgV+O8m5SR4H/Bbwq5OtTHqAu4GXJlk56UKWO0PhUa6qbgI+ArwBeBODbUW+luTVSb6U5Pok70rymCTnJPmjJDcmuSnJlZOtXsvIPIO1SP9m9ECSpyX5ZLdp5ieTrDnz5S0fLRev6ezxZuAvgHuAmSQ/CrwEeF730eFdDNaRfA1YWVU/BpDkSZMqWMvSDuCGJG8f6X8ng//MvCfJa4HfA158xqtbJgyFZaCq7kryfuDOqro7yc8CzwUOJgH4AQZ7UO0HnpHkdxmsIfn4pGrW8lNVtyd5L3Al8J2hQ5cAL+1e/xEwGho6jQyF5eO+7gsGe07trqp/PzooyUUMtjS/EngZ39tzSjoTfofBVe27Fxnj5+gb8p7C8vQJ4BUnb+ol+cEka5JMM1i78kEG9x986JHOqKq6DfgA8MtD3Z9nML0J8IvA5850XcuJVwrLUFXdmOTNwCeSPAb4LoNPKd0L/NcM5pSKwc1p6Ux7B7BtqH0lsDvJ64ATuB1OU65oliT1nD6SJPUMBUlSz1CQJPUMBUlSz1CQJPUMBQlI8u+SHOr217k+yU88zPNdmuSjp6s+6UxxnYKWvSSXAD8HPLvbBmQlsGKC9ZxTVfOT+v1a3rxSkOCpwK1VdTdAVd1aVceS/FWStyb5QpKDSZ6dZH+Sr5181nj3zIqru11lb0zyytGTJ3lukv+Z5OlJHpdkd5IDXd+mbswvJflgko/gnlOaIK8UpMGb8BuTfJXBFiDvr6pru2NHq+qSJP8JuAb4R8C5wCFgJ4ON2p4FXAysBA4k+czJEyd5HvD7wKaquiXJW4FPVdVru11ov5TkE93wS4CLuq0epIkwFLTsVdWdSZ4D/CTwM8D7k2zvDu/tvt8IPL6q7gDuSPL/ujf15wPvq6p7gb9Jci2DHWhvB36EwTMCXlhVx7rzvBD4Z0mu6trnAiefD/DnBoImzVCQgO5N/dPAp5PcCLy6O3R39/2+odcn2+cw2HH2VP6awZv+jwMnQyHAy6rq8PDA7sb2XQ/jjyCdFt5T0LKX5BlJ1g11PQv4+pg//hnglUmmul1mfwr4Unfsb4F/Crw1yaVd337g17pNB0ny4w+3ful0MhQkeDzwniQ3J7kBWA/8xpg/+8fADcCXgU8Br6+q4ycPVtXfAD8P7OiuBt4CfB+DJ4zd1LWls4a7pEqSel4pSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqff/AYemX950QIirAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE+xJREFUeJzt3X+w3XV95/Hny5tN6aawtuYqLiEFa6ZupgWLt1CFtTJVBtrdjcqO4DrF+mOyzIqMO0spMzurtU7tSH+tutg068ZKZxDrtJlJuylBcZQ6yJhLlyaEMW5MUS4xJRErYFkg8t4/zveOh8vh3s+FfO+5eJ+PmTv3fD8/zn0nk7mvfD/f8/18U1VIkrSQ5427AEnSc4OBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpyapxF3A8rV27tk477bRxlyFJzxl33HHH0aqabBn7QxUYp512GtPT0+MuQ5KeM5J8o3WsS1KSpCYGhiSpiYEhSWpiYEiSmhgYkqQmvQZGkguT7E9yIMk1I/o3JdmT5M4k00nOG+q7J8ne2b4+65QkLay3j9UmmQCuA14HzAC7k+yoqruHht0C7KiqSnIG8GfAy4b6z6+qo33VKElq1+cZxtnAgao6WFWPATcCm4YHVNXD9YNnxK4BfF6sJC1Tfd64dwpw79DxDHDO3EFJ3gD8DvBC4FeGugq4OUkBf1xVW3usVdJzxNVXX83hw4c5+eSTufbaa8ddzorSZ2BkRNtTziCqajuwPcmrgQ8Ar+26zq2qQ0leCHw2yVer6tan/JBkM7AZYP369ceteEnL0+HDh7nvvvvGXcaK1OeS1Axw6tDxOuDQ0w3uwuCnkqztjg913+8HtjNY4ho1b2tVTVXV1ORk03YokqRnoM/A2A1sSHJ6ktXApcCO4QFJXpok3euzgNXAt5OsSXJi174GuAC4q8daJUkL6G1JqqqOJbkC2AVMANuqal+Sy7v+LcDFwGVJHgceAS7pPjH1IgbLVLM13lBVN/VVqyRpYb3uVltVO4Gdc9q2DL3+EPChEfMOAmf2WZskaXG801uS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSk14foCTp+Pnmb/3suEtYFo498BPAKo498A3/ToD17927ZD/LMwxJUhMDQ5LUxMCQJDXpNTCSXJhkf5IDSa4Z0b8pyZ4kdyaZTnJe61xJ0tLqLTCSTADXARcBG4E3J9k4Z9gtwJlV9XLg7cDHFzFXkrSE+jzDOBs4UFUHq+ox4EZg0/CAqnq4qqo7XANU61xJ0tLqMzBOAe4dOp7p2p4kyRuSfBX43wzOMprnSpKWTp+BkRFt9ZSGqu1V9TLg9cAHFjMXIMnm7vrH9JEjR55xsZKk+fUZGDPAqUPH64BDTze4qm4FfirJ2sXMraqtVTVVVVOTk5PPvmpJ0kh9BsZuYEOS05OsBi4FdgwPSPLSJOlenwWsBr7dMleStLR62xqkqo4luQLYBUwA26pqX5LLu/4twMXAZUkeBx4BLukugo+c21etkqSF9bqXVFXtBHbOadsy9PpDwIda50qSxsc7vSVJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEx/RKuk5Ze0JTwDHuu9aSgaGpOeUq874x3GXsGK5JCVJamJgSJKauCSlp7j66qs5fPgwJ598Mtdee+24y5G0TBgYeorDhw9z3333jbsMScuMS1KSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJr0GRpILk+xPciDJNSP635JkT/d1W5Izh/ruSbI3yZ1JpvusU5K0sN62BkkyAVwHvA6YAXYn2VFVdw8N+3vgF6vqO0kuArYC5wz1n19VR/uqUZLUrs8zjLOBA1V1sKoeA24ENg0PqKrbquo73eHtwLoe65EkPQt9BsYpwL1DxzNd29N5B/DXQ8cF3JzkjiSbe6hPkrQIfe5WmxFtNXJgcj6DwDhvqPncqjqU5IXAZ5N8tapuHTF3M7AZYP369c++aknSSH2eYcwApw4drwMOzR2U5Azg48Cmqvr2bHtVHeq+3w9sZ7DE9RRVtbWqpqpqanJy8jiWL0ka1mdg7AY2JDk9yWrgUmDH8IAk64G/AH61qr421L4myYmzr4ELgLt6rFWStIDelqSq6liSK4BdwASwrar2Jbm8698CvBd4AfCxJADHqmoKeBGwvWtbBdxQVTf1VaskaWG9PnGvqnYCO+e0bRl6/U7gnSPmHQTOnNsuSRof7/SWJDXxmd5DXvHr14+7hGXhxKMPMQF88+hD/p0Ad/zuZeMuQVoWPMOQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0WHRhJfjzJGX0UI0lavpoCI8kXkpyU5CeAvwM+keQPGuZdmGR/kgNJrhnR/5Yke7qv25Kc2TpXkrS0Ws8w/kVVPQi8EfhEVb0CeO18E5JMANcBFwEbgTcn2Thn2N8Dv1hVZwAfALYuYq4kaQm1BsaqJC8G3gT8VeOcs4EDVXWwqh4DbgQ2DQ+oqtuq6jvd4e3Auta56s8Tq9fw/R85iSdWrxl3KZKWkVWN434L2AV8qap2J3kJ8H8XmHMKcO/Q8Qxwzjzj3wH89WLnJtkMbAZYv379AiWpxfc2XDDuEiQtQ02BUVWfAT4zdHwQuHiBaRn1ViMHJuczCIzzFju3qrbSLWVNTU2NHCNJevaaAiPJJxjxC7uq3j7PtBng1KHjdcChEe99BvBx4KKq+vZi5kqSlk7rktTwdYsTgDew8C/w3cCGJKcD9wGXAv9heECS9cBfAL9aVV9bzFxJ0tJqXZL68+HjJJ8CPrfAnGNJrmBw7WMC2FZV+5Jc3vVvAd4LvAD4WBKAY1U19XRzF/dHkyQdT61nGHNtABa8wlxVO4Gdc9q2DL1+J/DO1rmSpPFpvYbxEE++hnEY+I1eKpIkLUutS1In9l2IJGl5a90a5JaWNknSD695zzCSnAD8c2Btkh/nB/dHnAT8y55rkyQtIwstSf1H4D0MwuEOfhAYDzLY60mStELMGxhV9WHgw0neXVUfXaKaJEnLUOtF748m+RkGO8eeMNR+fV+FSZKWl9aP1b4PeA2DwNjJYNvxLwEGhiStEK3bm/974JeAw1X1NuBM4Ed6q0qStOy0BsYjVfUEcCzJScD9wEv6K0uStNy0bg0yneT5wP9k8Gmph4Gv9FaVJGnZab3o/Z+6l1uS3AScVFV7+itLkrTcLPpO76q6p6r2eKe3JK0s3uktSWqy2Du9Zz2Ed3pL0oqy0JLUbcCrgKuq6iXA+4G7gC8CN/RcmyRpGVkoMP4YeLS70/vVwO8AnwS+C2ztuzhJ0vKx0JLURFU90L2+BNjaPa71z5Pc2W9pkqTlZKEzjIkks6HyS8Dnh/qe6eNdJUnPQQv90v8U8MUkR4FHgL8BSPJSBstSkqQVYt4zjKr6beC/AH8CnFdVs8/1fh7w7oXePMmFSfYnOZDkmhH9L0vy5SSPJrlqTt89SfYmuTPJdOsfSJLUjwWXlarq9hFtX1toXpIJBh+9fR0wA+xOsqOq7h4a9gBwJfD6p3mb86vq6EI/S5LUv9bNB5+Js4EDVXWwqh4DbgQ2DQ+oqvurajfweI91SJKOgz4D4xTg3qHjma6tVQE3J7kjyebjWpkkadH6/KRTRrTViLanc25VHUryQuCzSb5aVbc+5YcMwmQzwPr1659ZpZKkBfV5hjEDnDp0vA441Dq5qg513+8HtjNY4ho1bmtVTVXV1OTk5LMoV5I0nz4DYzewIcnpSVYDlwI7WiYmWZPkxNnXwAUMtiSRJI1Jb0tSVXUsyRXALmAC2FZV+5Jc3vVvSXIyMM1g99snkryHwXPD1wLbk8zWeENV3dRXrZKkhfV6t3ZV7QR2zmnbMvT6MIOlqrkeZPDccEnSMtHnkpQk6YeIgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqUmvgZHkwiT7kxxIcs2I/pcl+XKSR5NctZi5kqSl1VtgJJkArgMuAjYCb06ycc6wB4Argd97BnMlSUuozzOMs4EDVXWwqh4DbgQ2DQ+oqvurajfw+GLnSpKWVp+BcQpw79DxTNfW91xJUg/6DIyMaKvjPTfJ5iTTSaaPHDnSXJwkaXH6DIwZ4NSh43XAoeM9t6q2VtVUVU1NTk4+o0IlSQvrMzB2AxuSnJ5kNXApsGMJ5kqSerCqrzeuqmNJrgB2ARPAtqral+Tyrn9LkpOBaeAk4Ikk7wE2VtWDo+b2VaskaWG9BQZAVe0Eds5p2zL0+jCD5aamuZKk8fFOb0lSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVKTXgMjyYVJ9ic5kOSaEf1J8pGuf0+Ss4b67kmyN8mdSab7rFOStLBVfb1xkgngOuB1wAywO8mOqrp7aNhFwIbu6xzgj7rvs86vqqN91ShJatfnGcbZwIGqOlhVjwE3ApvmjNkEXF8DtwPPT/LiHmuSJD1DfQbGKcC9Q8czXVvrmAJuTnJHks1P90OSbE4ynWT6yJEjx6FsSdIofQZGRrTVIsacW1VnMVi2eleSV4/6IVW1taqmqmpqcnLymVcrSZpXn4ExA5w6dLwOONQ6pqpmv98PbGewxCVJGpM+A2M3sCHJ6UlWA5cCO+aM2QFc1n1a6heA71bVt5KsSXIiQJI1wAXAXT3WKklaQG+fkqqqY0muAHYBE8C2qtqX5PKufwuwE/hl4ADwT8DbuukvArYnma3xhqq6qa9aJUkL6y0wAKpqJ4NQGG7bMvS6gHeNmHcQOLPP2iRJi+Od3pKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmvQaGEkuTLI/yYEk14zoT5KPdP17kpzVOleStLR6C4wkE8B1wEXARuDNSTbOGXYRsKH72gz80SLmSpKWUJ9nGGcDB6rqYFU9BtwIbJozZhNwfQ3cDjw/yYsb50qSllCfgXEKcO/Q8UzX1jKmZa4kaQmt6vG9M6KtGse0zB28QbKZwXIWwMNJ9jdXqPmsBY6Ou4jlIL/31nGXoKfy3+es9436dbkoP9k6sM/AmAFOHTpeBxxqHLO6YS4AVbUV2Ppsi9WTJZmuqqlx1yGN4r/P8ehzSWo3sCHJ6UlWA5cCO+aM2QFc1n1a6heA71bVtxrnSpKWUG9nGFV1LMkVwC5gAthWVfuSXN71bwF2Ar8MHAD+CXjbfHP7qlWStLBUjbw0oBUuyeZuuU9advz3OR4GhiSpiVuDSJKaGBgrVPdBgy8luWio7U1JbhpnXdKwJJXk94eOr0rym2MsaUUzMFaoGqxFXg78QZITkqwBfht413grk57kUeCNSdaOuxAZGCtaVd0F/CXwG8D7GGzT8vUkb03ylSR3JvlYkuclWZXkT5PsTXJXkivHW71WiGMM7rP6z3M7kvxkklu6jUtvSbJ+6ctbWfq8cU/PDe8H/hZ4DJhK8jPAG4BXdR9v3srgPpivA2ur6mcBkjx/XAVrxbkO2JPk2jnt/4PBf3I+meTtwEeA1y95dSuIgbHCVdX3knwaeLiqHk3yWuDngekkAD/KYF+vXcBPJ/kwg/tnbh5XzVpZqurBJNcDVwKPDHW9Enhj9/pPgbmBouPMwBDAE90XDPbx2lZV/23uoCRnMNhy/krgYn6wh5fUt//O4Ez4E/OM8R6BnnkNQ3N9DnjT7EXGJC9Isj7JJIP7dj7D4HrHWfO9iXQ8VdUDwJ8B7xhqvo3BcinAW4AvLXVdK41nGHqSqtqb5P3A55I8D3icwaepvg/8rwzWqYrBhXJpKf0+cMXQ8ZXAtiS/Dhyh21pI/fFOb0lSE5ekJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMaQFJ/muSfd2eRXcmOedZvt9rkvzV8apPWirehyHNI8krgX8DnNVtnbIWWD3GelZV1bFx/XytbJ5hSPN7MXC0qh4FqKqjVXUoyT1JPpjky0mmk5yVZFeSr88+t7575sjvdrv77k1yydw3T/LzSf5PkpckWZNkW5LdXdumbsyvJflMkr/EPbw0Rp5hSPO7GXhvkq8x2Dbl01X1xa7v3qp6ZZI/BP4EOBc4AdgHbGGwMd7LgTOBtcDuJLfOvnGSVwEfBTZV1TeTfBD4fFW9vdsN+CtJPtcNfyVwRrdFhjQWBoY0j6p6OMkrgH8NnA98Osk1XfeO7vte4Meq6iHgoST/r/uFfx7wqar6PvAPSb7IYCfgB4F/xeA5DxdU1aHufS4A/l2Sq7rjE4DZZzx81rDQuBkY0gK6X/hfAL6QZC/w1q7r0e77E0OvZ49XMdj59+l8i0Eg/BwwGxgBLq6q/cMDu4vs33sWfwTpuPAahjSPJD+dZMNQ08uBbzROvxW4JMlEt9vvq4GvdH3/CPwK8MEkr+nadgHv7jZ4JMnPPdv6pePJwJDm92PAJ5PcnWQPsBH4zca524E9wN8BnweurqrDs51V9Q/AvwWu684iPgD8MwZPl7urO5aWDXerlSQ18QxDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVKT/w8EVuTDdrvMXgAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
@@ -794,34 +814,34 @@
}
],
"source": [
- "sns.barplot(x='Smoker', y='Status', ci=95, data=data.replace('Alive', 1).replace('Dead', 0))"
+ "sns.barplot(x='Smoker', y='Status', ci=95, data=data.replace('Alive', 0).replace('Dead', 1))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "Mais est-ce vraiment le cas ? Nous avons regardé les données de manière globale sans rentrer dans les détails. Si l'on regarde l'âge des femmes suivant leur statut de fumeur un paradoxe commence à apparaître:"
+ "Mais il est de connaissance publique que \"fumer tue\". **Alors comment les données nous trompent-elles ?** Nous avons regardé les données de manière globale sans rentrer dans les détails. Si l'on regarde l'âge des femmes suivant leur statut de fumeur un paradoxe commence à apparaître:"
]
},
{
"cell_type": "code",
- "execution_count": 82,
+ "execution_count": 259,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 82,
+ "execution_count": 259,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADzVJREFUeJzt3XuQXnV9x/H3x0QHB+0IZgmpiGk7kcp4AV0viG1VhMF6CUK9TS/bykzGGS1qq2naTr116jixWnuhtmmlLtRacFqGyFgxRhFtrbAoEigi4igK2WSBosC0aMi3fzwn7RoTdlM5z9nk937NZM5zznP7wmT2nXPO85xNVSFJatdDhh5AkjQsQyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktS45UMPsBgrVqyo1atXDz2GJB1Urr766turamKhxx0UIVi9ejUzMzNDjyFJB5Uk31rM4zw0JEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1LiD4gtlkg5969evZ3Z2lqOPPpqNGzcOPU5TDIGkJWF2dpZbb7116DGa1GsIknwTuBu4H9hVVZNJjgQuBFYD3wReUVX/2ecckqT9G8c5gudV1QlVNdmtbwC2VtUaYGu3LkkayBAni9cC093taeCMAWaQJHX6DkEBn0xydZJ13baVVbUdoFse1fMMkqQH0PfJ4pOr6rYkRwFbknx1sU/swrEO4Nhjj+1rPklqXq8hqKrbuuXOJBcDzwB2JFlVVduTrAJ27ue5m4BNAJOTk9XnnNKQbnnnk4YeYUnYdeeRwHJ23fkt/58Ax75129jeq7dDQ0kOT/LIPbeB04DrgM3AVPewKeCSvmaQJC2szz2ClcDFSfa8zz9U1SeSXAVclORs4Bbg5T3OIElaQG8hqKpvAE/Zx/Y7gFP6el9J0oHxWkOS1DhDIEmN81pDkpaEFYftBnZ1S42TIZC0JLz5yXcNPUKzPDQkSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOL9Q1pj169czOzvL0UcfzcaNG4ceR9ISYAgaMzs7y6233jr0GJKWEA8NSVLjDIEkNc4QSFLjDIEkNa6Zk8VPe8v5Q4+wJDzy9rtZBtxy+93+PwGufs+vDT2CNDj3CCSpcYZAkhpnCCSpcYZAkhpnCCSpcc18akgjux92+A8tJckQNObeNacNPYKkJcZDQ5LUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY3rPQRJliX5cpJLu/Ujk2xJclO3PKLvGSRJ+zeOPYI3ADfMW98AbK2qNcDWbl2SNJBeQ5DkGOBFwN/O27wWmO5uTwNn9DmDJOmB9b1H8H5gPbB73raVVbUdoFseta8nJlmXZCbJzNzcXM9jSlK7egtBkhcDO6vq6v/P86tqU1VNVtXkxMTEgzydJGmPPq81dDLw0iS/CBwG/ESSvwd2JFlVVduTrAJ29jiDJGkBve0RVNXvVtUxVbUaeBXw6ar6FWAzMNU9bAq4pK8ZJEkLG+J7BO8GTk1yE3Bqty5JGshYLkNdVZcDl3e37wBOGcf7SpIW5jeLJalxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxvYUgyWFJrkzylSTXJ3lHt/3IJFuS3NQtj+hrBknSwvrcI7gPeH5VPQU4ATg9ybOADcDWqloDbO3WJUkD6S0ENXJPt/rQ7k8Ba4Hpbvs0cEZfM0iSFtbrOYIky5JcA+wEtlTVF4GVVbUdoFse1ecMkqQH1msIqur+qjoBOAZ4RpInLva5SdYlmUkyMzc319+QktS4sXxqqKruAi4HTgd2JFkF0C137uc5m6pqsqomJyYmxjGmJDWpz08NTSR5VHf74cALgK8Cm4Gp7mFTwCV9zSBJWtjyHl97FTCdZBmj4FxUVZcm+QJwUZKzgVuAl/c4gyRpAb2FoKquBU7cx/Y7gFP6el9J0oFZ8NBQkpVJPpjkX7r147t/zUuSDgGLOUfwIeAy4Ce79a8Bb+xrIEnSeC0mBCuq6iJgN0BV7QLu73UqSdLYLCYE9yZ5NKNvBdNdJuK7vU4lSRqbxZws/i1GH/n8mST/CkwAv9TrVJKksVkwBFX1pSS/ABwHBLixqn7Q+2SSpLFYMARJztxr0+OTfBfYVlX7/FawJOngsZhDQ2cDJwGf6dafC/w7oyC8s6ou6Gk2SdIYLCYEu4EnVNUOGH2vAPgA8EzgCsAQSNJBbDGfGlq9JwKdncDjq+pOwHMFknSQW8weweeSXAp8tFs/C7giyeHAXb1NJkkai8WE4HXAmcBzuvUrgVVVdS/wvL4GkySNx4KHhqqqgJsZHQZ6GaMLxt3Q81ySpDHZ7x5BkscDrwJeDdwBXAikqtwLkKRDyAMdGvoq8DngJVX1dYAkbxrLVJKksXmgQ0NnAbPAZ5L8TZJTGH2zWJJ0CNlvCKrq4qp6JfCzjH7f8JuAlUk+kOS0Mc0nSerZYk4W31tVH66qFwPHANcAG3qfTJI0Fgf0y+ur6s6q+uuqen5fA0mSxuuAQiBJOvQYAklqnCGQpMYZAklqnCGQpMYZAklqnCGQpMYZAklqnCGQpMYZAklqnCGQpMYZAklqXG8hSPLYJJ9JckOS65O8odt+ZJItSW7qlkf0NYMkaWF97hHsAn67qp4APAt4XZLjGV3CemtVrQG24iWtJWlQvYWgqrZX1Ze623cz+oX3jwHWAtPdw6aBM/qaQZK0sLGcI0iyGjgR+CKwsqq2wygWwFHjmEGStG+9hyDJI4B/At5YVd87gOetSzKTZGZubq6/ASWpcb2GIMlDGUXgw1X1z93mHUlWdfevAnbu67lVtamqJqtqcmJios8xJalpfX5qKMAHgRuq6n3z7toMTHW3p4BL+ppBkrSw5T2+9snArwLbklzTbfs94N3ARUnOBm4BXt7jDJKkBfQWgqr6PJD93H1KX+8rSTowfrNYkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcb2FIMl5SXYmuW7etiOTbElyU7c8oq/3lyQtTp97BB8CTt9r2wZga1WtAbZ265KkAfUWgqq6Arhzr81rgenu9jRwRl/vL0lanHGfI1hZVdsBuuVR+3tgknVJZpLMzM3NjW1ASWrNkj1ZXFWbqmqyqiYnJiaGHkeSDlnjDsGOJKsAuuXOMb+/JGkv4w7BZmCquz0FXDLm95ck7aXPj49+BPgCcFyS7yQ5G3g3cGqSm4BTu3VJ0oCW9/XCVfXq/dx1Sl/vKUk6cEv2ZLEkaTwMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMGCUGS05PcmOTrSTYMMYMkaWTsIUiyDDgXeCFwPPDqJMePew5J0sgQewTPAL5eVd+oqu8D/wisHWAOSRLDhOAxwLfnrX+n2yZJGsDyAd4z+9hWP/KgZB2wrlu9J8mNvU7VlhXA7UMPsRTkj6eGHkE/zL+be7xtXz8qD9jjFvOgIULwHeCx89aPAW7b+0FVtQnYNK6hWpJkpqomh55D2pt/N4cxxKGhq4A1SX4qycOAVwGbB5hDksQAewRVtSvJ64HLgGXAeVV1/bjnkCSNDHFoiKr6OPDxId5bgIfctHT5d3MAqfqR87SSpIZ4iQlJapwhOMRk5PNJXjhv2yuSfGLIuaT5klSS985bf3OStw84UtMMwSGmRsf6Xgu8L8lhSQ4H/gh43bCTST/kPuDMJCuGHkSG4JBUVdcBHwN+B3gbcH5V3ZxkKsmVSa5J8pdJHpJkeZILkmxLcl2Sc4adXo3YxejE8Jv2viPJ45JsTXJttzx2/OO1ZZBPDWks3gF8Cfg+MJnkicDLgGd3H+HdxOg7HDcDK6rqSQBJHjXUwGrOucC1STbutf0vGP3jZTrJa4A/A84Y+3QNMQSHqKq6N8mFwD1VdV+SFwBPB2aSADyc0TWfLgOOS/KnjD7S+8mhZlZbqup7Sc4HzgH+a95dJwFndrcvAPYOhR5khuDQtrv7A6NrPJ1XVX+w94OSPJnRZcHPAc7i/67xJPXt/Yz2XP/uAR7jZ9x75jmCdnwKeMWek3NJHp3k2CQTjL5P8lFG5xOeOuSQaktV3QlcBJw9b/O/MTpsCfDLwOfHPVdr3CNoRFVtS/IO4FNJHgL8gNGni+4HPpjR8aJidIJZGqf3Aq+ft34OcF6StwBzwG8MMlVD/GaxJDXOQ0OS1DhDIEmNMwSS1DhDIEmNMwSS1DhDoGYl+f0k13fXtLkmyTN/zNd7bpJLH6z5pHHxewRqUpKTgBcDT+0uwbECeNiA8yyvql1Dvb/a5h6BWrUKuL2q7gOoqtur6rYk30zyriRfSDKT5KlJLktyc5LXwv/+zof3dFdr3ZbklXu/eJKnJ/lykp9OcniS85Jc1W1b2z3m15N8NMnH8BpPGpB7BGrVJ4G3Jvkao8tvXFhVn+3u+3ZVnZTkT4APAScDhwHXA3/F6IJoJwBPAVYAVyW5Ys8LJ3k28OfA2qq6Jcm7gE9X1Wu6q7temeRT3cNPAp7cXWpBGoQhUJOq6p4kTwN+DngecGGSDd3dm7vlNuARVXU3cHeS/+5+kD8H+EhV3Q/sSPJZRld2/R7wBEbX2T+tqm7rXuc04KVJ3tytHwbsucb+FiOgoRkCNav7QX45cHmSbcBUd9d93XL3vNt71pczupLr/mxn9IP+RGBPCAKcVVU3zn9gd3L63h/jP0F6UHiOQE1KclySNfM2nQB8a5FPvwJ4ZZJl3dVbfx64srvvLuBFwLuSPLfbdhnwm92F/Uhy4o87v/RgMgRq1SOA6ST/keRa4Hjg7Yt87sXAtcBXgE8D66tqds+dVbUDeAlwbvev/j8EHsrot3Fd161LS4ZXH5WkxrlHIEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1Lj/AWsiiWHJqZ+iAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADzVJREFUeJzt3XuQXnV9x/H3x0QHB+0IZgmpiGk7kcp4AV0viG1VhMF6CUK9TS/bykzGGS1qq2naTr116jixWnuhtmmlLtRacFqGyFgxRhFtrbAoEigi4igK2WSBosC0aMi3fzwn7RoTdlM5z9nk937NZM5zznP7wmT2nXPO85xNVSFJatdDhh5AkjQsQyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktS45UMPsBgrVqyo1atXDz2GJB1Urr766turamKhxx0UIVi9ejUzMzNDjyFJB5Uk31rM4zw0JEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1LiD4gtlkg5969evZ3Z2lqOPPpqNGzcOPU5TDIGkJWF2dpZbb7116DGa1GsIknwTuBu4H9hVVZNJjgQuBFYD3wReUVX/2ecckqT9G8c5gudV1QlVNdmtbwC2VtUaYGu3LkkayBAni9cC093taeCMAWaQJHX6DkEBn0xydZJ13baVVbUdoFse1fMMkqQH0PfJ4pOr6rYkRwFbknx1sU/swrEO4Nhjj+1rPklqXq8hqKrbuuXOJBcDzwB2JFlVVduTrAJ27ue5m4BNAJOTk9XnnNKQbnnnk4YeYUnYdeeRwHJ23fkt/58Ax75129jeq7dDQ0kOT/LIPbeB04DrgM3AVPewKeCSvmaQJC2szz2ClcDFSfa8zz9U1SeSXAVclORs4Bbg5T3OIElaQG8hqKpvAE/Zx/Y7gFP6el9J0oHxWkOS1DhDIEmNMwSS1DgvOidpSVhx2G5gV7fUOBkCSUvCm59819AjNMtDQ5LUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOL9H0Jj169czOzvL0UcfzcaNG4ceR9ISYAgaMzs7y6233jr0GJKWEA8NSVLjDIEkNc4QSFLjDIEkNa6Zk8VPe8v5Q4+wJDzy9rtZBtxy+93+PwGufs+vDT2CNDj3CCSpcYZAkhpnCCSpcYZAkhpnCCSpcc18akgjux92+A8tJckQNObeNacNPYKkJcZDQ5LUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY3rPQRJliX5cpJLu/Ujk2xJclO3PKLvGSRJ+zeOPYI3ADfMW98AbK2qNcDWbl2SNJBeQ5DkGOBFwN/O27wWmO5uTwNn9DmDJOmB9b1H8H5gPbB73raVVbUdoFseta8nJlmXZCbJzNzcXM9jSlK7egtBkhcDO6vq6v/P86tqU1VNVtXkxMTEgzydJGmPPq81dDLw0iS/CBwG/ESSvwd2JFlVVduTrAJ29jiDJGkBve0RVNXvVtUxVbUaeBXw6ar6FWAzMNU9bAq4pK8ZJEkLG+J7BO8GTk1yE3Bqty5JGshYLkNdVZcDl3e37wBOGcf7SpIW5jeLJalxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxvYUgyWFJrkzylSTXJ3lHt/3IJFuS3NQtj+hrBknSwvrcI7gPeH5VPQU4ATg9ybOADcDWqloDbO3WJUkD6S0ENXJPt/rQ7k8Ba4Hpbvs0cEZfM0iSFtbrOYIky5JcA+wEtlTVF4GVVbUdoFse1ecMkqQH1msIqur+qjoBOAZ4RpInLva5SdYlmUkyMzc319+QktS4sXxqqKruAi4HTgd2JFkF0C137uc5m6pqsqomJyYmxjGmJDWpz08NTSR5VHf74cALgK8Cm4Gp7mFTwCV9zSBJWtjyHl97FTCdZBmj4FxUVZcm+QJwUZKzgVuAl/c4gyRpAb2FoKquBU7cx/Y7gFP6el9J0oFZ8NBQkpVJPpjkX7r147t/zUuSDgGLOUfwIeAy4Ce79a8Bb+xrIEnSeC0mBCuq6iJgN0BV7QLu73UqSdLYLCYE9yZ5NKNvBdNdJuK7vU4lSRqbxZws/i1GH/n8mST/CkwAv9TrVJKksVkwBFX1pSS/ABwHBLixqn7Q+2SSpLFYMARJztxr0+OTfBfYVlX7/FawJOngsZhDQ2cDJwGf6dafC/w7oyC8s6ou6Gk2SdIYLCYEu4EnVNUOGH2vAPgA8EzgCsAQSNJBbDGfGlq9JwKdncDjq+pOwHMFknSQW8weweeSXAp8tFs/C7giyeHAXb1NJkkai8WE4HXAmcBzuvUrgVVVdS/wvL4GkySNx4KHhqqqgJsZHQZ6GaMLxt3Q81ySpDHZ7x5BkscDrwJeDdwBXAikqtwLkKRDyAMdGvoq8DngJVX1dYAkbxrLVJKksXmgQ0NnAbPAZ5L8TZJTGH2zWJJ0CNlvCKrq4qp6JfCzjH7f8JuAlUk+kOS0Mc0nSerZYk4W31tVH66qFwPHANcAG3qfTJI0Fgf0y+ur6s6q+uuqen5fA0mSxuuAQiBJOvQYAklqnCGQpMYZAklqnCGQpMYZAklqnCGQpMYZAklqnCGQpMYZAklqnCGQpMYZAklqXG8hSPLYJJ9JckOS65O8odt+ZJItSW7qlkf0NYMkaWF97hHsAn67qp4APAt4XZLjGV3CemtVrQG24iWtJWlQvYWgqrZX1Ze623cz+oX3jwHWAtPdw6aBM/qaQZK0sLGcI0iyGjgR+CKwsqq2wygWwFHjmEGStG+9hyDJI4B/At5YVd87gOetSzKTZGZubq6/ASWpcb2GIMlDGUXgw1X1z93mHUlWdfevAnbu67lVtamqJqtqcmJios8xJalpfX5qKMAHgRuq6n3z7toMTHW3p4BL+ppBkrSw5T2+9snArwLbklzTbfs94N3ARUnOBm4BXt7jDJKkBfQWgqr6PJD93H1KX+8rSTowfrNYkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcb2FIMl5SXYmuW7etiOTbElyU7c8oq/3lyQtTp97BB8CTt9r2wZga1WtAbZ265KkAfUWgqq6Arhzr81rgenu9jRwRl/vL0lanHGfI1hZVdsBuuVR+3tgknVJZpLMzM3NjW1ASWrNkj1ZXFWbqmqyqiYnJiaGHkeSDlnjDsGOJKsAuuXOMb+/JGkv4w7BZmCquz0FXDLm95ck7aXPj49+BPgCcFyS7yQ5G3g3cGqSm4BTu3VJ0oCW9/XCVfXq/dx1Sl/vKUk6cEv2ZLEkaTwMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMGCUGS05PcmOTrSTYMMYMkaWTsIUiyDDgXeCFwPPDqJMePew5J0sgQewTPAL5eVd+oqu8D/wisHWAOSRLDhOAxwLfnrX+n2yZJGsDyAd4z+9hWP/KgZB2wrlu9J8mNvU7VlhXA7UMPsRTkj6eGHkE/zL+be7xtXz8qD9jjFvOgIULwHeCx89aPAW7b+0FVtQnYNK6hWpJkpqomh55D2pt/N4cxxKGhq4A1SX4qycOAVwGbB5hDksQAewRVtSvJ64HLgGXAeVV1/bjnkCSNDHFoiKr6OPDxId5bgIfctHT5d3MAqfqR87SSpIZ4iQlJapwhOMRk5PNJXjhv2yuSfGLIuaT5klSS985bf3OStw84UtMMwSGmRsf6Xgu8L8lhSQ4H/gh43bCTST/kPuDMJCuGHkSG4JBUVdcBHwN+B3gbcH5V3ZxkKsmVSa5J8pdJHpJkeZILkmxLcl2Sc4adXo3YxejE8Jv2viPJ45JsTXJttzx2/OO1ZZBPDWks3gF8Cfg+MJnkicDLgGd3H+HdxOg7HDcDK6rqSQBJHjXUwGrOucC1STbutf0vGP3jZTrJa4A/A84Y+3QNMQSHqKq6N8mFwD1VdV+SFwBPB2aSADyc0TWfLgOOS/KnjD7S+8mhZlZbqup7Sc4HzgH+a95dJwFndrcvAPYOhR5khuDQtrv7A6NrPJ1XVX+w94OSPJnRZcHPAc7i/67xJPXt/Yz2XP/uAR7jZ9x75jmCdnwKeMWek3NJHp3k2CQTjL5P8lFG5xOeOuSQaktV3QlcBJw9b/O/MTpsCfDLwOfHPVdr3CNoRFVtS/IO4FNJHgL8gNGni+4HPpjR8aJidIJZGqf3Aq+ft34OcF6StwBzwG8MMlVD/GaxJDXOQ0OS1DhDIEmNMwSS1DhDIEmNMwSS1DhDoGYl+f0k13fXtLkmyTN/zNd7bpJLH6z5pHHxewRqUpKTgBcDT+0uwbECeNiA8yyvql1Dvb/a5h6BWrUKuL2q7gOoqtur6rYk30zyriRfSDKT5KlJLktyc5LXwv/+zof3dFdr3ZbklXu/eJKnJ/lykp9OcniS85Jc1W1b2z3m15N8NMnH8BpPGpB7BGrVJ4G3Jvkao8tvXFhVn+3u+3ZVnZTkT4APAScDhwHXA3/F6IJoJwBPAVYAVyW5Ys8LJ3k28OfA2qq6Jcm7gE9X1Wu6q7temeRT3cNPAp7cXWpBGoQhUJOq6p4kTwN+DngecGGSDd3dm7vlNuARVXU3cHeS/+5+kD8H+EhV3Q/sSPJZRld2/R7wBEbX2T+tqm7rXuc04KVJ3tytHwbsucb+FiOgoRkCNav7QX45cHmSbcBUd9d93XL3vNt71pczupLr/mxn9IP+RGBPCAKcVVU3zn9gd3L63h/jP0F6UHiOQE1KclySNfM2nQB8a5FPvwJ4ZZJl3dVbfx64srvvLuBFwLuSPLfbdhnwm92F/Uhy4o87v/RgMgRq1SOA6ST/keRa4Hjg7Yt87sXAtcBXgE8D66tqds+dVbUDeAlwbvev/j8EHsrot3Fd161LS4ZXH5WkxrlHIEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1Lj/AZp5iWFf4mMkAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
@@ -843,15 +863,635 @@
"La prochaine étape est donc d'étudier les données plus précisément, notamment suivant les tranches d'âges.\n",
"\n",
"## Décès liés au tabagisme suivant l'âge\n",
+ "\n",
+ "En reprenant les données précédentes et en rajoutant une catégorie d'âge (18-34 ans, 34-54 ans, 55-64 ans, plus de 65 ans), on réalise les mêmes analyses."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 260,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Visualisation du taux de mortalité suivant les âges et le statut de fumeur\n",
+ "\n",
+ "tranche_age_label = ['[18-34]', '[35-54]', '[55-64]', '[65-100]'] # the label text\n",
+ "x = np.arange(len(tranche_age_label)) # the label locations\n",
+ "width = 0.35 # the width of the bars\n",
+ "\n",
+ "fig, ax = plt.subplots()\n",
+ "ax.bar(x - width/2, data_age.reset_index()[data_age.reset_index().Smoker == 'Yes']['Mortality'], width, label='Smoker')\n",
+ "ax.bar(x + width/2, data_age.reset_index()[data_age.reset_index().Smoker == 'No']['Mortality'], width, label='Non smoker')\n",
+ "\n",
+ "ax.set_ylabel('Mortality rate')\n",
+ "ax.set_xlabel(\"Age group\")\n",
+ "ax.set_xticks(x)\n",
+ "ax.set_xticklabels(tranche_age_label)\n",
+ "ax.legend()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "On remarque sur le graphique ci-dessus que finalement pour chaque classe d'âge le taux de mortalité chez les fumeuses est supérieur ou égal à celui des non fumeuses !\n",
+ "\n",
+ "En s'intéressant à l'histogramme des âges chez ces deux populations ci-dessous, on s'aperçoit qu'il y a plus de non fumeuses d'âge supérieur à 65ans, qui ont donc plus de chance de décéder naturellement. Cette tranche est donc sur-représentée chez les non-fumeuses, amenant en moyenne à un taux de mortalité plus élevé.\n",
+ "\n",
+ "**Etudier des données dans leur ensemble peut donner des résultats très différents par rapport à des études sur des sous-groupes. Cela peut amener à des erreurs d'interprétation importantes.**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 262,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 262,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4XOWZ8OHfO0UaadSL1Ytlyb33ggum995CqEkICSQhS0gIu8my7JcNm8CmQQyEmgRCMSR2TA3FgHuVu41lWV2yei8jzbzfH2csZGNbozqamee+Ll2jOXPOmeeonGferrTWCCGEECZvByCEEGJkkIQghBACkIQghBDCTRKCEEIIQBKCEEIIN0kIQgghAEkIQggh3CQhCCGEACQhCCGEcLN4O4C+iIuL05mZmd4OQwghfMr27durtdbxve3nUwkhMzOTbdu2eTsMIYTwKUqpQk/2kyojIYQQgCQEIYQQbpIQhBBCAD7WhiCEGPk6OzspKSmhvb3d26EEHJvNRmpqKlartV/HS0IQQgyqkpISwsPDyczMRCnl7XAChtaampoaSkpKGD16dL/OIVVGQohB1d7eTmxsrCSDYaaUIjY2dkAlM0kIQohBJ8nAOwb6c5eEIIQQApA2BCHEEHtlc9Ggnu9r89I92u8Xv/gFr7zyCmazGZPJxNNPP828efP6/b5r167lscceY82aNf0+x0gnCUF4zWDcKDy9OYjAsnHjRtasWcOOHTsIDg6muroah8PhtXi6urqwWEb+7VaqjIQQfqe8vJy4uDiCg4MBiIuLIzk5mczMTB566CEWLFjA7Nmz2bFjBxdccAFjxozhqaeeAozeOg888ACTJ09mypQpvPbaa185/9atW5kxYwb5+fm0tLRw5513MmfOHGbMmMGqVasAePHFF7nuuuu47LLLOP/884fv4gdg5KcsIYToo/PPP59HHnmEsWPHcu6553LDDTewdOlSANLS0ti4cSM//OEPuf3221m/fj3t7e1MmjSJu+++m7feeovc3Fx27dpFdXU1c+bMYcmSJd3n3rBhA9/73vdYtWoV6enpPPTQQyxfvpznn3+e+vp65s6dy7nnngsYJZXdu3cTExPjlZ9DX0lCEEL4nbCwMLZv387nn3/OJ598wg033MCjjz4KwOWXXw7AlClTaG5uJjw8nPDwcGw2G/X19axbt46bbroJs9lMQkICS5cuZevWrURERHDgwAHuuusuPvjgA5KTkwH44IMPWL16NY899hhgdLstKjKqQ8877zyfSQYgCUEMI6dLsz6vmo35NewsqmN/WSPtXS6cLk1YsIUIm4W0mFDGxIcxJj6MIIvUaIr+M5vNLFu2jGXLljFlyhReeuklgO5qJJPJ1P398eddXV1orU97zqSkJNrb29m5c2d3QtBa8+abbzJu3LgT9t28eTN2u32wL2tIyX+cGHINrZ383weHWPTox9z6/Bb+9Fk+bQ4n2aPCmZMRzcIxsWTF2TGbTGw5WstfNhXyy3cPsHpXKZVNMv2B6LtDhw5x+PDh7ue5ublkZGR4dOySJUt47bXXcDqdVFVV8dlnnzF37lwAoqKiePvtt3nooYdYu3YtABdccAF/+MMfuhPJzp07B/dihpGUEMSQcXS5eGlDAU98kkdjeydLx8bz88smsnz8KGxW8yl7GXU6XRTWtLKjqI5tBXVszq9lVkY0505MIMLWv/lZhHd5oydYc3Mz3/ve96ivr8disZCdnc0zzzzjUZfRq666io0bNzJt2jSUUvzqV78iMTGRgwcPApCQkMA///lPLrroIp5//nl+9rOfcd999zF16lS01mRmZvps11R1puLRSDN79mwtC+T4hvyqZu57LZfdJQ0sHRvPgxeNZ0JSxAn79NbttLmji08PVbIpvxazWXHJ5CRmZ0afMBpTup2OPAcOHGDChAneDiNgnernr5TarrWe3duxUkIQg25VbikPvrmHYKuJp74+kwsnJ/XrPGHBFi6Zmsz8rFj+nlvK33NL2V/eyDWzUgkLlj9dIQabtCGIQaO15slP8vjBq7lMSYnkvR8s6Xcy6Ck2LJg7F43m0qlJHKlq5o9r8yhvaBuEiIUQPUlCEINCa83Dq/fx6/cPccX0ZP7yzbkkRtoG7fwmpVg4Jo67lmThcmme+vQI+8saB+38QghJCGIQaK35xdsHeGljId9aPJrfXD+dYIt5SN4rNTqU756dTUKEjVe2FPLm9pIheR8hApEkBDFgv/3wMM+uO8rtCzN56OIJmExDO/VxhM3KN84azeg4O/e/sYs/bywY0vcTIlBIy5zol+M9hHYU1bFyewmz0qPJHhXG37YUD8v7B1vM3Logk3V51fx81T4sJpP0OBJigCQhiH4rrm3lHztLyYq3c+WMFEzDvCiK1Wziya/N5Nt/2ca//2MPNquJq2emDmsMwgPbXhjc882+o9ddlFL827/9G48//jgAjz32GM3NzTz88MODG8sgGEnTakuVkeiXpvZO/rq5kIgQK1+bk455iKuJTifIYmLF12excEwsD6zczdpDlV6JQ4wswcHBvPXWW1RXV3s7lCHV1dU1qOeThCD6zOXSrNxeQnunk6/PzyDUy2MCbFYzT98ym7EJ4dz7yk4OlEvvo0BnsVi46667+M1vfvOV1woLCznnnHOYOnUq55xzTvdEdLfffjvf//73WbhwIVlZWaxcufIrx7a0tHDJJZcwbdo0Jk+e3D01tr9Mqy0JQfTZCxsKOFzZzMVTkkiMGLyupQMRFmzh+dtnYw82c+eLWznWKHMgBbp77rmHl19+mYaGhhO233vvvdx6663s3r2bm2++me9///vdr5WXl7Nu3TrWrFnDgw8++JVzvvfeeyQnJ7Nr1y727t3LhRde2P3a8Wm1Fy9ezO23387KlSvZtGkTP//5zwFOmFb7ww8/5IEHHqC8vLz7+A0bNnD33XezatUqsrKy+MUvfsHy5cvZunUrn3zyCQ888AAtLS2AMa32Sy+9xMcffzyoPzNpQxB9cqC8kf999yATEsOZm+n9aX1Pnv7iullpPPNZPlf9cT13LR7j0Yyp0hjtnyIiIrj11lv5/e9/T0hISPf2jRs38tZbbwFwyy238OMf/7j7tSuvvBKTycTEiRM5duzYV845ZcoUfvSjH/GTn/yESy+9lMWLF3e/5g/TaksJQXjM6dL85M3dRIRYuGpm6glzCo0UyVEh3DgnjfL6dl7dWoTLh+bqEoPvvvvu47nnnuv+ZH0qPf+Oe06Hfap53saOHcv27duZMmUKP/3pT3nkkUe+cmx/p9W22WwnzJR6fFrt3NxccnNzKSoq6p6jaKim1faohKCUuhD4HWAGntVaP3rS68r9+sVAK3C71nqHUioN+DOQCLiAZ7TWv3MfEwO8BmQCBcD1Wuu6Qbgm/zbYPTbAo14bAC9tKGB3SQN/uGkGTe2D25g1mMYnRXDp1CT+ubuc9/ZWcPGUgU+fIXxTTEwM119/Pc899xx33nknAAsXLuTVV1/llltu4eWXX+ass87y+HxlZWXExMTw9a9/nbCwMF588UWPj12yZAlPP/00t912G7W1tXz22Wf8+te/5uDBg0RFRfHcc89x/vnnY7fbWbZsWfe02n/4wx9QSrFz505mzJjR1x9Bn/SaEJRSZuBJ4DygBNiqlFqttd7fY7eLgBz31zxghfuxC7jfnRzCge1KqX+5j30Q+Ehr/ahS6kH3858M4rWJ09h8tPaE50ecvS92X9/q4LcfHWZsQhiNbZ0jsnTQ04IxcVQ1d7Aur5rESBsz06O9HVLg8vADx1C5//77eeKJJ7qf//73v+fOO+/k17/+NfHx8bzwgucfsvbs2cMDDzyAyWTCarWyYsUKj4/1hWm1e53+Wim1AHhYa32B+/lPAbTWv+yxz9PAWq3139zPDwHLtNblJ51rFfCE1vpfPfdRSiW5jz9xyaGTyPTXDEoJ4SsJIf26Xo95eXMhXxxr4gfnjCXGHjTgGIaD06V5Yf1Rimpb+dbiLNJiQk+5n7QhDC6Z/tq7BjL9tSdtCClAz+GnJe5tfdpHKZUJzAA2uzclHE8Y7sdRp3pzpdRdSqltSqltVVVVHoQrBtvR6hb2lTWybNwon0kGAGaT4qa56YTbLPx1cyGNbZ3eDkmIEc2TNoRT1Q2cXKw44z5KqTDgTeA+rXWfOolrrZ8BngGjhNCXY8XAubTmnT3lRIZYWTQmztvh9Jk92MIt8zN56tMj/HVzId9anIXVPLh9KXpb6McTUkoRI4En/xklQFqP56lAmaf7KKWsGMngZa31Wz32OeauKsL9KENMR6DdJfWU1rdx/sQEn130PjHSxnWzUympa2NVbukZe3uIwSE/Y+8Y6M/dk//wrUCOUmq0UioIuBFYfdI+q4FblWE+0OBuG1DAc8ABrfX/neKY29zf3was6vdViCHR5XTxwb5jpESFMC0tytvhDMik5EjOGT+KHUX1rD9S4+1w/JrNZqOmpkaSwjDTWlNTU4PN1v/Bor1WGWmtu5RS9wLvY3Q7fV5rvU8pdbf79aeAdzC6nOZhdDs93q1gEXALsEcpleve9pDW+h3gUeB1pdQ3gCKg95ZNMay2FdZR39bJVTOHf+K6oXD2+FFUNLbz7p5yEsKDyUkI93ZIfik1NZWSkhKkzW/42Ww2UlP7P8GjR+MQ3Dfwd07a9lSP7zVwzymOW8ep2xfQWtcA5/QlWDF8upwuPv2iioyYULLjw7wdzqAwKcW1s1J5ujmfv20t4u4lYxg1Qqbe8CdWq5XRo0d7OwzRD75ZKSyG3LbCOhraOjlnQsKIH3PQF8EWM7fMz8BiMvHixgIa26XnkRDHSUIQX9GzdDAmfmiGyHtTtD2I2xZk0trh5M8bCmjuGLmjroUYTpIQxFfsKqmnoa2Ts8eP8qvSQU8p0SHcNDedisZ27nxhK60OSQpCSEIQJ9BaG9M9RNjIGeUfbQenMy4xnOtnp7GtsJY7X9xKm8Pp7ZCE8CpJCOIEeZXNHGvs4KzsOL8tHfQ0NTWK/7t+OpuP1nLLc5upa3F4OyQhvEYSgjjBurxqwm0WpqZFejuUYXPljBT+cNMMdpc2cPWKDRRUn36qZCH8mSQE0a2isZ3Dlc0syIrFYgqsP41Lpybz8jfnUdfq4LIn1rEqt9TbIQkx7ALrv16c0aYjNVhMakSshOYNczJjWH3PWeSMCuMHr+Zyz8s7KKpp9XZYQgwbSQgCgI5OJ7kl9UxNjSQ0OHBXVk2PDeX1by/gR+eP5cMDx1j++Fp+vHIXWwtqcbpkKgbh3wL3P1+cYFdJA44uV8CWDnqymE3cuzyH62ansWLtEV7ZUsTr20qICwtiamoUmbF2YsOCUAqcTs2m/BraOp20Opy0dTpBG1NvR4ZYSXWP5RgVLiOixcgnCUEAsKWghsQI22kXkQlECRE2Hr58EvefP5a1h6r48MAxDlU0sfGIkQCOC7KYCLWaCQkyE2I1g8lYnOdwZTM7i+sBmJISyTkTRkliECOaJARBSV0rZfXtXD4tOSC6mvZVuM3KZdOSuWxaMmCM1XA4XWhtzI+0cnvJKY/TWlPf2sm2wlrW59Wwr6yBa2amMkOW8xQjlCQEwdaCWqxmxXQfn+J6uCilCLaYPdov2h7EeRMTWTAmjle3FvHG9hJaHU4WZfveYkPC/0lCCHAOl2JPaQOTkyOxWXu/yfmjwVjxrDdhwRZuW5DJ69uKeXtPOVazibmjpb1GjCzSyyjAbW8Io73TJdUYw8BqNnHT3HRyRoXx9p4yKpvavR2SECeQhBDgPq+JIMJmIcsPZzUdiUxKcc2sVKxmE69vK6bL5fJ2SEJ0k4QQwBo7zeQ2hDEtLcovVkTzFRE2K1fPSKGsvp21h2RVMTFySEIIYBvqwnGimJEm1UXDbWJyJFNSIll3uFrWYxAjhiSEAPZ5TSQZIe0kRkrfeG84d0ICnU4Xn38hpQQxMkhCCFCVHVbyWkNYFNPo7VACVnx4MNPToth0tEYamMWIIAkhQG2uDwdgfnSTlyMJbMvHj8Lp0qxYe8TboQghCSFQba4LZ3RoOwnBssi8N8WGGaWEV7cU09QuvwvhXZIQAlC1w8LhlhDmRUl10Ugwb3QsbZ1O/rmr3NuhiAAnCSEAbakzqovmSXXRiJAaHcK4hHBe2zr0I6aFOBNJCAFoc3046SHtJNtOX0Vh66gmojmfsJZighz1wxhd4FFKcePcNHaVNLC/TEptwntkLqMAU9lu4lBzCNclV3dvG1P0BgBBjgYSazYR2ZJPaMeJXSHbgmJptGdQEzmZptAMOMNAtiPp1w1N8H7sqhkp/PLdg7y2tYj/umKyt8MRAUoSgo/ZfLR2QMd/VB2JRjEnqrl7m3I5SazZSErV5yhcNIZmUB01jQ5rBCbtwtrVRHhLEbEN+0io20FrcDwVsfOoipoOSgqZgyEqNIgLJyXy952l/PTiCQE70aDwLkkIAWZHfRhxQZ2k2ToAMDs7GFf4MuFtJdSGj6Mw8QIcQV+dBrs8bhHK1Ulswz4Sa7eSVbaGpOqNFCcspy58/BlLDMIz18xKZfWuMtbnVXPOhARvhyMCkHy8CyAOl2JPk51Zkc0o9WUysLeVcTj1ag6n33DKZHCcNlmpjp7O3qxv8kXaDYBibPEbjC36G0GOhuG7ED+1ICuWcJuF9/ZWeDsUEaAkIQSQfU2hdLhMzIxsRrm6upNBXtq11Eb2od5aKeoixrE7+24KE88noqWQqUdWkFCzBbQsRN9fQRYT505I4F8HjtHllFlQxfCThBBAtjeEEWxyMTG8lbTKjwhvK+FI6tXURYzv3wmViYrY+ezO/g5NIalkVrzHxKMvENGcP7iBB5ALJiVS39rJlgG2FQnRH5IQAoTWRvvB1IgW4lqPkFSzmYqYOdRGThzwuR1BURzKuJkjKVdgc9Rw0frrGJ//Iko7ez9YnGDp2HhsVhPv7ZNqIzH8JCEEiMK2YGo6rSwMr2RM6SraguIoTjh38N5AKaqjprE7+7uUxS9m5qHHOWfzHYS1yGCrvggJMrNs7Cje31eByyXVb2J4SS+jALGr0VgR7RrHKixdLRzKuhGXyTro79NlsfP5jN+QWbaG2ft/ycXrr2XHuPvJS7/er3siHR/L0W/mL9dXvtAezHuNkeSW1DNTljYVw0hKCAFid6OdhbZC0hq2Uxkzi9aQpKF7M6UoSLmMt896i6roGczd//84e+u3CW2TahBPnJ3owISW1dTEsJOEEADanYqDzSHcb30Dl7JQFrd4WN63LSSRT2Y/xZZJPyOuPpeL113N6NLV0hOpF5FBmmkxXXx+WBKCGF6SEALAgeZQxlHErM4dVMTOo9MaNnxvrhR56dfzzllvUh+ew4Ld/87infdh66ju/dgAtjjBwa7iehpaZUpsMXw8akNQSl0I/A4wA89qrR896XXlfv1ioBW4XWu9w/3a88ClQKXWenKPYx4GvgUc/xj0kNb6nQFdjTil3Y12HrD8iU5zCOVxC70SQ0toGh/Ne55xBX9l2he/5+LPr2bbpIcoSrzAr9sWPHXylCSxrjZc2s7/vneQySmRHp3ja/PShyI0EUB6LSEopczAk8BFwETgJqXUyX0VLwJy3F93ASt6vPYicOFpTv8brfV095ckgyHS2FjPMvMuKmLn4zR7b/1krcwcHH0b7y56g5bQFM7KfYCl2+8htK3MazGNVNn2NoItJvIqm3vfWYhB4kmV0VwgT2udr7V2AK8CV5y0zxXAn7VhExCllEoC0Fp/BsgoGy+pcVi4oGstnViojJ7l7XAAaAzL4oMFf2X7hJ8wqnYbl35+JeOO/hnl6vJ2aCOGRUFWfBiHK5vQ0uYihoknVUYpQHGP5yXAPA/2SQF6WwLqXqXUrcA24H6tdd3JOyil7sIodZCeLkXivjpUb+Lb5s8pCZtKlyV0WN7T0y6YXaZg9mbdRWb5O8w6+GvGF/yVo8kX0xKS8pV9A3FK7ZxRYRwob6S2xUFsWLC3wxEBwJMSwqkqeE/+yOLJPidbAYwBpmMkjsdPtZPW+hmt9Wyt9ez4+PjeYhUniavPJVR10BQ/MkoHJ3MERfJF+o0cTr0Ga1cTk/OfY3TpaixdUlWSM8po/P9Cqo3EMPEkIZQAaT2epwInV/p6ss8JtNbHtNZOrbUL+BNG1ZQYRNrlYpnjUw6asmkLHcJxBwOlFLWRk9idfQ9lsQuIa9jNtMNPkli9MaCnv4ixBxEVaiW/ShKCGB6eJIStQI5SarRSKgi4EVh90j6rgVuVYT7QoLU+Y3XR8TYGt6uAvX2IW3jAWV9EmqpiX5h3ehb1ldMcTHHieewZczfNoalkHPsXU/KeJrrxYECOXVBKMTrWTkF1i7QjiGHRaxuC1rpLKXUv8D5Gt9Pntdb7lFJ3u19/CngHo8tpHka30zuOH6+U+huwDIhTSpUA/6m1fg74lVJqOkbVUgHw7UG8LgFE1O6lTodhjhtN7zV4I0d7cByH0r9GVPNh0iv+xdji14luOkTuuPuoipnt7fB6ZXa2YW+rIKSjkmBHPSbdhdIuOi122oNiaA1JpDU4waPutqPj7OwsrqeqqYNREd7rISYCg0fjENxdQt85adtTPb7XwD2nOfam02y/xfMwRV+ZnA5yOvayRi8i1eY7yaCbUtSHj6U+LJv4ulwSa7dw3uY7KI1fwq6x36c+Ypy3IzxBsKOO2Po9RDUfJqytDOVOwE6TFZeyopUJa1dL9/b2oGhqIyZSETOHTmvEac+bGWfMQXW0pkUSghhyMrmdn4puPIgNB/tCZpLmy+O+lImqmJlsnfJzxha8wqT857h4/bWUjFrG/qxvUB093WuhmZwOUis/ZkzxmyTVbEIDLSHJlMYvpik0jbbgBDot9u6SgNJOghz1RLQWEtOwn6TqDSS6pyEvizsLpyXkK+8Raw8i3GahoLqFeaNjh/kKRaCRhOCnwuv2UeyKxxqZCDR5O5wByyxdg8Mawe4xd5NYu4WEms2kVq6lMTSDsvhFNNjH9GnE80C6sUY25TGm5E0yS9dg66ynOSSZ4vhlVEdPw2E9/ahircx0BMdSFRxLVfRMgh11pFR+SlLNRuIa9nAk5Uoaw7JOOEYpRWasnaPudgQlo7rFEJKE4IcsXc3Et+XxR9flTApv93Y4g8ppCaF01FLKYxcwqn4HidWbGF/4Cq3BozgWM4uayKk4zYPfZ9/S1Up6+fuMKXmT+PpdOJWFkoTlHEm7horY+YwpfrPP5+wIiiY/9UoqYueRXfJ3xhf+lfK4hRSPWg7qy/4eo+Ps7CltoK61kxh70GBelhAnkITgh2Ib9hnTJ6t5/CjYvxLCcS5zEBWx8zkWPYfYhj0k1m5ldPm7pFd8SF34WGoiJ9MQNgZt6v+fuHJ1klizhfTy90iv+ACrs5UGexY7xv+Io8mX0REc0/tJPNAaksTeMd8iveJ9kqs3YOuoJS/16u7XRx9vR6hukYQghpQkBD8U27CPgzodW3g0SvU2WNy3aZOZ6ujpVEdPx95WRnzdTmIa9xPXuA+nstBoz6TRnkVzSDKtIYm4TKe/oZqcDiJa8omr301izSYSarYQ3NlAp9lOUeJ5HEm7luqoaUMyGZ/LZKUg+VLag+PIqPiA8YV/pTDlEjqtEcSHBxMaZOZodQuzMmTBHDF0JCH4GWtnM2FtpbzddQ3jw9q8Hc6waglJpiUkmcKkC4lozieqOY/I5iNEN+cBRsfbTksYDmsEacc+Qivjzz+osx6bow57Wykm90C4FlsCpaOWUpxwDuVxi3ANQTXUqVTEzsdhCWNM6T9Ytu27fDLnGbosoWTE2imsaRmWGETgkoTgZ6KaDqHQfOCazbfCWr0djldoZaYhPIeG8BwArJ1N2NvLsbeVE9TZQHBnI0GdjZh0F2iNIyiS2siJFCZdQH34WOoiJtAUmu61ablrIyejlZns4jdZvOMHfDrrCdJjQjlQ3khLRxf2YPm3FUND/rL8TEzTISpVHKWmZFJsed4OZ0TotIZTbw2nPnxs97aRPlleXcQENk95hAV7/oNFu37CkbT/BqC4rpXxiacftyDEQMiKaX7E7OwgouUoH7pmMS6sDZP0UPRpR1OvYPv4B0g79hGXV/8Jk4Li2sAs9YnhISUEPxLZnIdJO/m7Yx7j4gKr/cBfHcq8hYiWQqYUvMAd9jDW1p7r7ZCEH5MSgh+JbjpEm8nOdj024BqU/ZZSbJv4IBWx83iw6yli6nbjkonuxBCRhOAnlMtJVNNhcs1TMCvICvXP8QeBSJusrJv+OE3WWH5j/h2Ntce8HZLwU1Jl5CfC2oqxuDp4V88i296O1SSfIs/E01XdvOnkGHePupIFJc9yXu73qc2+9qu9oMy9DJSbfceZXxcBT0oIfiKqOQ8XJv7RNp3xAdrd1N/ZIkfxmOtr5DgOkFSzwdvhCD8kCcFPRDbncyw4g0bsjJX2A7+kFGwPWcRHzCHt2MeEtxR6OyThZyQh+AFj4FUFu8yTAMixS0LwV9lh7fyg/du0WaPJLnkLS5eMXhaDRxKCH4hsyQfgw87pJAV3EG5xeTkiMVRy7G00E8o7MV/H4mwlu+TvoOX3LQaHJAQ/ENmUh8MSxgdtOYwNk95F/izb3o5Cs9kxhoKki4hsySe5er23wxJ+QhKCr9MuIlvyqQjJobHLKtVFfi7U7CLV1sHhlhCqomZQHTmZ1Mq10p4gBoUkBB9nbyvD6mxjl2kiAGMlIfi9nLB2DreE4EJxNOkSOoKM9gQczd4OTfg4SQg+Lqr5CBr4yDmVEJOTtJAOb4ckhthYexstTjMVHUG4zMEcTr0Gi7MVcl+R9gQxIJIQfFxEy1FabEnktsSTbW+XCe0CwPFqwcMtNsBYca0o4Xyo3A/5a70YmfB1khB8mMnlIKythLrQ0RS2Bcv4gwCRbHMQanbyRXNI97ZjMbMhcRocXAN1Bd4LTvg0SQg+LLy1GJN2sd88Ho2SBuUAYVKQbW/jcMuXCQGlYNoNYIuCHS9Bh7QniL6ThODDIpqP4lImNjjHAcZNQgSGHHs7RW3BtDt71BFaQ2HWHdDRZCQFl9N7AQqfJAnBh0W0HKU5JJUDrVEkBDtkQFoAybG3oVHktYZw11pwAAAgAElEQVSc+EJUGky5DmoOG9VHQvSBzHbqo8xdbdjbyymNX8qRChvjw2VCu0ByvDSY12Jj8sm/+7R5UF8M+Z9ARBKkzvVChP207YXBPZ/M8NonUkLwURGtBSigJDibmk4r2bL+QUAJt7hIDHaQ1xJy6h0mXQmxObDrNag+PLzBCZ8lCcFHRbQU4FRWdrjGANJ+EIiy7W3ktdg45QJqJovx6dgeD9ueg6aKYY9P+B5JCD4qsuUoTfZ0vmgNw4wmM1QGpAWabHs7dZ1WajpPU/NrDYW53wKzFTavgNr84Q1Q+BxJCD7I0tVMSEc1jaGZ5LWEkBHaTpCskBZwcrrbEU5TbQQQGgvzvgPOLnjxMhmjIM5IEoIPimgpAqAhNIMjLTbG2KX9IBBlhHRgUS7y3COWTysiGeZ/x5jr6MXLoOqL4QlQ+BxJCD4ovLUQp8nKYZVBm8ssDcoBymoyqgoPn6mEcFxkKty6Crra4Llz4ejnQx+g8DnS7dQHRbQU0hySRl6bHZAG5UCWY2/j4+oonJ7UGCZPh29+BC9fB3+5Ci74H6ONQfVzAqzB7iIqvE5KCD7G0tVKaEcljfZ08lpCCDE5SbY5vB2W8JJsezsdLhPFbcGeHRCdAd/4ALKWwbsPwF+vgcbyoQxR+BBJCD4mvNVoP2gKzSDP3X4gM5wGruzumU89qDY6LiQKbn4DLnkcCjfAE7Phk/+B9oYhilL4Co+qjJRSFwK/A8zAs1rrR096XblfvxhoBW7XWu9wv/Y8cClQqbWe3OOYGOA1IBMoAK7XWtcN8Hr8XnhLIS5loTY4lcI2G5cm1Ho7JOFFCUGdhFu63A3LfSgpKgVzvglZZ8NHj8Cn/wubn4ap18PUGyBlludVSVpDZyu01bm/aqGtAVydxvoMZivYIiEkBmKyIDi8X9cqhl6vCUEpZQaeBM4DSoCtSqnVWuv9PXa7CMhxf80DVrgfAV4EngD+fNKpHwQ+0lo/qpR60P38J/2/lMAQ0VpIc0gKR9vtOLUiO1TaDwKZUpAd2u7uetqPqsPYMXD9S1CWC+t/C9tfgi3PGN1Vk2dAwiRjcFtItHHjdzqMG359MRRvdt/8643tPZnMYA42AuxyGMnhuPBkSJkBGYuMsRJixPCkhDAXyNNa5wMopV4FrgB6JoQrgD9rrTWwSSkVpZRK0lqXa60/U0plnuK8VwDL3N+/BKxFEsKZtTcQ2l5BafwSjrgnNcuWLqcBL9veRm6jnaZORbi1n+NRkqfDdS8a1UYH1kDRBijdaSy44+r66v6hcWANgbAkiJ9gfPoPif7yK8j+ZQnjeAmipcqYdK/yABx8Gw5/CJlnwdgLwBzU38sXg8iThJACFPd4XsKXn/7PtE8KcKbWqgStdTmA1rpcKTXKg1gCW9EmFNBkzyCv0ka0tZOYoFP8s4qAkm1vR6PYXWthUUJn7weciS0SZtxsfIFxM+9oNKqCUGCxgS3CSAae9jJSykgQQXaIzoTs86ChBI58Akc+gordMP1m4zXhVZ40Kp+qIvHkjyGe7NMvSqm7lFLblFLbqqqqBuOUvqtgHS5lojkklbyWECkdCODLhuXcWuvgn1wpI0lEZxo9lMITjGQwUJGpMPMWmH+PUQJZ/zsokLER3uZJQigB0no8TwXK+rHPyY4ppZIA3I+Vp9pJa/2M1nq21np2fHy8B+H6scL1tISk0OgKpqIjSMYfCADCLC6SgjvYORQJYajF5cCSHxttFXvfhMMfcOrZ+sRw8CQhbAVylFKjlVJBwI3A6pP2WQ3cqgzzgYbj1UFnsBq4zf39bcCqPsQdeDqaoCyXxtCM7rlrZISyOC7b3k5urcU376XWEGOlt9Q5cOgdWdjHi3pNCFrrLuBe4H3gAPC61nqfUupupdTd7t3eAfKBPOBPwHePH6+U+huwERinlCpRSn3D/dKjwHlKqcMYPZhO6MoqTlK8BbSTJnsGR1ptKDRZUmUk3HLsbVR3mClr89GhRSYzTLsJ0hca7QqFG7wdUUDyaByC1vodjJt+z21P9fheA/ec5tibTrO9BjjH40gDXeF6UGaaQtLIqwgh2eYg1CxLZgrD8fak3ForKb46FboyweRrjK6se1ca3V3jcrwdVUDx0Y8TAahgPSTPwGkKIq/FJu0H4gQZIcYU6Lk1PtiO0JPJDDNvM5LB9hegVQZeDidJCL7A0Qql2yFjIVUOK41dFulhJE5gMcHkqC521PrBfJXWEJjzLXA5YdffjNHOYlhIQvAFpduMkZ6ZZ3HEPfe9jFAWJ5sV28meOisdTm9HMgjscTDpKmMgm0zVPWwkIfiCgvVG/Wr6fPJabViVi/QQH60nFkNmVpwDh0uxt94PSgkAafNg1ESj11HzMW9HExAkIfiCwvWQOAVskeS1hDA6tB2L/ObESWbFGqOUt1f7eDvCcUrB1BuNyfF2vy7jE4aB3FZGuq4OKNkKGWfR5XSRL0tmitOIt2ky7F1s9/WG5Z5sETD+Eqg9AuW53o7G70lCGOlKt0NXO2Qu4otjzTi0SRqUxWnNiu1ke43Vvz5Mpy+AiBTYv+qrs6qKQSUJYaQrWA8oSF/ArpJ6QBqUxenNjO2kusNMUYvZ26EMHmWCSVdDez3kfeTtaPyaJISRrnCdMc9LaAy5RfWEmZ0kBA9wRkvht2bHudsR/KnaCIx1G5JnwJGPZWW3ISQJYSRzdhpTVmQsAmBXST3Z9rZ+r4ku/F9OhJNwi4tt/pYQAMZdAtoJeR96OxK/5Sf90/xU2U5jYZHMRTR3dPHFsSauSpT2A3F6ZgXTYztP3dPI0/ULRip7nNEVtWgDjFluLMQjBpWUEEaygnXGY8YidpfU49LGJGZCnMmc2E6+aDTT4PDDomTO+cbj4Q+8G4efkoQwkhWuh7hxYI9jZ5HRoCwJQfRmXnwnGsUWfxmP0FNItDEjavFmaKn2djR+RxLCSOXsgqJNkGm0H+wsqiMr3k6YReZ1EWc2LaaTIJNmU5WfrlOcfa7R8+jIx96OxO9IQhipKnaBoxkyFqG1ZmdRPTPSpM5U9M5mNrqfbq7ywxICGEt6ps6Bki3Q3ujtaPyKJISRqmC98Zh5FsW1bdS0OJiRHuXdmITPmBfXyf56C42dftiOAJC13JgNteAzb0fiVyQhjFSF6yFmDIQnsqOoDoCZ6VJCEJ6ZF+/AhWKbP7YjAITFQ9JUo+NFp/S8GyySEEYilxMKN57QfhAaZGZsQpiXAxO+Ymbs8XYEP00IAGPOMaZ1KZLlNgeLJISR6Nhe6GiAjLMA2Flcz9TUSCxm+XUJz9jMMD2mk83+2rAMEJUOsTlw9DPjQ5QYMLnDjETd7QeLaO90sr+sUaqLRJ/Ni+tkb72FJn9tRwAYvdiY4+jYPm9H4hckIYxEheshKgMiU9lT2kCXSzNDEoLoowWjHDi18t/eRgCjJhljEwpkVbXBIAlhpHG5jISQ6a4ucjcoSw8j0VezYjsJMWs+P+bH1UYmszHXV81haKrwdjQ+TxLCSFN1ANrquie021lUT3pMKHFhwV4OTPiaYDPMj3fwmT8nBID0+WCySClhEEhCGGl6tB+AkRCkdCD6a0mCg6PNFopb/PhfPSgMkmcaKwt2ytQuA+HHfyU+6uinEJkOURmU1bdR0djOjDRJCKJ/liQaK4z5fSkhc7GxmlrJFm9H4tMkIYwkLqdR7M1aAkp1T2g3M0MalEX/ZIU5SQl18lmFnyeEqDSjI0bBOtAy31d/SUIYScp3GatBjV4GGA3KwRYT4xMjvBuX8FlKGdVGGyqD6PT3+2TmYmipguovvB2Jz5KEMJIc/dR4HL0EMAakTUmJJMgivybRf0sSHDR1mcit9ePupwBJ0432BGlc7je504wk+Z9C/AQIT8DR5WJPaYM0KIsBWzjKgUVpPir382ojswUyFsKx/dBa4+1ofJIkhJGiq8NY/yBrKQD7yxtxdLlkhLIYsMggzYL4Tt4vDUZrb0czxNIXGvVkx3vriT6RhDBSFG+BrjYYbSSEHYXHB6RJQhADd35KB0ebLRxuNHs7lKEVEgUJk40V1Zxd3o7G50hCGCmOfmasAuUef7C1oJbU6BASI21eDkz4gwuSO1Bo3i8LgAGOGYugs8VYZEr0iSSEkeLop8bgGlskWmu2HK1l7ugYb0cl/MSoEBczYrp4rzQAEkJcDoTGGVPAiD6RhDAStNUZoyzHnA3AkaoWaloczM2UhCAGz4Up7eyrt/r3qGUwStoZC6E2HyoPeDsan+Lnfxk+Iv9TYzBN9rmAUV0ESAlBDKoLUoxRy+8HQikhda4x8d22F7wdiU+RhDASHPkIgiMhZTYAW47WEhcWxOg4u5cDE/4kI8zJxKhOVhcHQLtUcBgkToddr4KjxdvR+AxJCN6mNeR9ZHQ3NVsAutsPlPLjhU2EV1yT0c7uOiuHGvy8txEY1UYdDbD3LW9H4jM8SghKqQuVUoeUUnlKqQdP8bpSSv3e/fpupdTM3o5VSj2slCpVSuW6vy4enEvyMVUHobG0u7qopK6V0vo25kj7gRgCV6a3Y1GaNwpCvB3K0IvJgvjxsO15b0fiM3pNCEopM/AkcBEwEbhJKTXxpN0uAnLcX3cBKzw89jda6+nur3cGejE+Ke9D4zH7HEDaD8TQig3WnJPUwT+KbP4/t5FSMPtOKNsBZTu9HY1P8KSEMBfI01rna60dwKvAFSftcwXwZ23YBEQppZI8PDaw5X1ofIqJTAVgy9E6woMtMqGdGDLXZbZT3WHiE3+fARVg6g1gCZHGZQ95khBSgOIez0vc2zzZp7dj73VXMT2vlAq8IbmOFijc0F1dBLDhSDVzR8dgNkn7gRgayxIdxAU7ef1oAFQbhUTBlGtgz0pjJmFxRp4khFPdmU6eEeV0+5zp2BXAGGA6UA48fso3V+oupdQ2pdS2qqoqD8L1IUc/Mxb1cFcXldS1UljTyqLsOC8HJvyZxQTXZ7bzcXkQBc0B0Lg8+05j5PLu170dyYjnSUIoAdJ6PE8Fyjzc57THaq2Paa2dWmsX8CeM6qWv0Fo/o7WerbWeHR8f70G4PuTQOxAU3r1+8oY8Y4ZGSQhiqN2e3YbFBM98EertUIZe8kxImmZUG/n97H4D40lC2ArkKKVGK6WCgBuB1Sftsxq41d3baD7QoLUuP9Ox7jaG464C9g7wWnyLywWH3oOcc8FiDBRal1dNXFgwYxPCvByc8HejQlxck9HOygIble1+3vv8eONy5T5jEklxWr3+JWitu4B7gfeBA8DrWut9Sqm7lVJ3u3d7B8gH8jA+7X/3TMe6j/mVUmqPUmo3cDbww8G7LB9Qug1aKmHcJQBordlwpJpF2bEy/kAMi2+Pa6XLBS8cDoC2hMnXGqVx6YJ6RhZPdnJ3CX3npG1P9fheA/d4eqx7+y19itTfHHoHTBajhAAcOtZEdbNDqovEsMkMc3JRagd/PRLCXWNbiQ724+qU4DCYdiPs+DNc+EsIlW7dp+LnZcUR7OA7xkjKEKNz1XppPxBe8P0JLbQ6FY/tC4BpUmbfAc4OyH3F25GMWJIQvKHmCFQf6q4uAlifV83oODspUQFQfBcjxrhIJ7eNaeOV/BB213pUYeC7EiZB2nzY+qzRhie+QhKCNxxy16CNN2br6Ohysjm/hkXZsV4MSgSq+ya1EGdz8bOd4bj8uNYIgHl3Qd1RyPuXtyMZkSQheMP+VZA4BaLSAWMyuxaHk7PHjfJyYCIQRVg1/z61mV11Vv/vhjrhcghPgk0rvB3JiOTnZcQRqK7AWAzn3Ie7N310oJJgi4mFY6T9QHjHFWkd/KusnV/tsTMhsouliY5+n2vz0doBxTJvKOfxMlthzjfg4/8HlQdh1Pihey8fJCWE4bbv78bjpKsBo7vpxwcrWZQdR0hQAIwaFSOSUvDr2Y2MjXTyvc0R/j2CedYdYA6GLU97O5IRR0oIw23vm5A6B6IzAGO5zKLaVu5akuXlwESgC7XAMwvqufzjGK5fG8ULZzUwKapr2OMYaAkDeill2ONgynXG4jnLfyZdUHuQEsJwqvoCKvbA5Gu6N3188BgAZ4+X9gPhfelhLl5bWodFwfVro/iwzE9nRJ3/HehslYFqJ5GEMJz2vQUomHhl96aPDlQyPjFcupuKEWNcpJO/L68jI8zJNzdE8c31keQ3DawKSWtoc5qodViocViodVhodyrvTS2UOBnGnAObn4LOdi8FMfJIldFw0dqoLso8CyKMaZwaWjvZVljH3UulukiMLAkhLt46u44XDofy5MFQlr8fy6xYBxemdDApqovMMCfhVo3VpGnrUlR3mKhqN1HdYWLbsWhqHFaqHRZqOq3UOCw0dlpwnmLyY7PSjApykGxzkBXazqTwVrLt7VhNw5ApzroPXroMdv3NGLQmJCEMm9LtUP0FzP9u96b391fgdGnOm5joxcCEODWbGb4zvpVrM9t47WgIb5cE84vd4R4cGUmQchEX1ElsUBfTIlqItnZhN7uwmV2YlEZraHWaae4yU9FhpbQ9mB0NYbxRrrCbncyLbmJJTAPjw9oYsqm9MhdD8gzY+ATMvBVMftyQ7iFJCMNl+4tgDT2h/WDN7nLSYkKYlhrpvbiE6EW8TXPvhFbundDKsTYTR5rMHG0209ql6HQpbGZNnM1FXLCLeJuLwmM1hJldfb6RN3eZONAcypa6cNbXRvBxdRRjQtu4IrGGOVHNDPqaUUrBoh/AG7fDwbdh4uWD/Aa+RxLCcOhogr1vweSrwWYsjVnb4mB9XjV3LcmS2U3FoBiM3jmeMAPZCrD22NhlfNW2QHg/7yphFhdzopqZE9XMN5wVfF4byT+PxfB/+alk29u4Pe0YOfZBru+fcDnEZMFnv4YJlzF0xRHfII3Kw2HPSmPFppm3d296b69RXXTp1KTTHydEgLKZNefF1/PbSfl8N7OM6g4r/3Ewk2cKE2hzDuJty2SGJQ9Axe4vp5QJYJIQhsOOl2DUREid3b1pze4ysuLsTEyK8GJgQoxsJgVLYxv57eR8Lk2o4ePqKB7Yn8mBpkHslTfleogZA2t/GfArqklCGGrlu6FsJ8y8rbs4WtnUzqb8Gi6dlizVRUJ4IMTs4pbUKh4eV4RZwSNfpLOqImZw7t9mCyz9sTFG6OCaQTih75KEMNS2PA2WEJh6ffem1blluDRcJtVFQvTJ+LA2Hp1QwLzoJl4pHcXj+Sm0OwfhQ9Xka92lhEfB5Rz4+XyUJISh1FgOu16DGV/vHh6vteaVLUXMSI8iJ8GTLnxCiJ5CzC5+MLqMW1OPsa0+jEe+SKe+c4BdRs0WOPshOLbXmNIiQElCGEqbV4B2woIvVxfdcrSW/KoWvjY33YuBCeHblIJLEur40ZhSituC+dnBDMrarb0feCaTr4GUWfDxf4OjZXAC9TGSEIZKewNse8GYpiJmdPfmV7YUEW6zcOnUZC8GJ4R/mB3VzH+OK6LdZeLnBzM41DyAxmal4IL/gaZy2PDE4AXpQyQhDJXtL0JHIyz6fvem2hYH7+6p4JqZqTLVtRCDJNvezn+PLyTM4uK/v0hja31Y/0+WPh8mXgHrf2tU+QYYSQhDoaPZ+IQxeokxNN5t5fZiHE4XN0l1kRCDKjG4k0fGF5IR2sH/HUnh74XB/T/ZuQ8bDcvvPThY4fkMSQhDYcMfoKUSlv+8e1NHl5Pn1xUwb3QM4xKlMVmIwRZhcfIfOcVMDG/lh1sj+cuRflYfxWTB0gdg/z/g0LuDG+QIJwlhsDVVwIbfG20HaXO6N6/cXkJFYzvfW57jxeCE8G8hZhc/yS7h3KQOfrYznD+uzevfiRb+wBhM+vb90N44uEGOYJIQBtsn/wPOTjj3P7s3dTpdrFh7hOlpUSzKjvVicEL4vyCTZsWCBq5Ia+dX7x3if987iO7rCDZLEFz+B2gsgw8fHpI4RyJJCIOpYg/s/AvM+aZR7HT7x85SSura+P452TIyWYhhYDXBb+Y2cvO8dFasPcLPV+3D5epjUkidbXQZ3/acMRtqAJCEMFi6HPCP70BonDEM3q2908nvPz7MxKQIzh4ny2QKMVxMCv7flZP59tIs/rKpkPvf2EWX09W3k5zzc0iaDv/4LtQXD02gI4gkhMHy+eNGCeGy356waPdTnx6huLaN/7hkgpQOhBhmSil+etEEHrhgHH/fWcp3Xt5Be2cfpqawBMN1Lxi9jt78hvHBz49JQhgMZbnw+WMw9QYYf0n35qKaVv649giXTUtmYXacFwMUIrDdc3Y2/3X5JP61/xjfeGkrLR1dnh8ckwWX/w6KN8Oa+/x6RlRJCAPVWmusuBQaBxc+2r1Za83D/9yH1aT494sneC8+IQQAty3M5PHrprEpv5brn95IRUMfFtuZfA0s+ynkvgyf/u/QBellkhAGossBr90CjaVww19OqCr66+YiPj5YyQ/PG0tipM2LQQohjrtmVirP3jabguoWrnhyHXtLGzw/eOlPYPrNxroJ254fuiC9SBJCf2kN79wPhevg8icgbW73S7uK6/nvf+5n2bh47lw0+gwnEUIMt7PHjWLldxZiVoprVmzgjW0eNhYrBZf+FnLOhzU/hI1PDm2gXiAJoT9cTuMPYsefYfGPYNoN3S/VNHfw3Zd3EB8ezG+un45p0FcGF0IM1ISkCFZ/7yxmZUTzwMrdPPjmblodHrQrWILghpeNtZjffwg+8a9V1iQh9JWzE966C7a/AGf9Gyz/j+6Xapo7uPnZzVQ3d/DHm2cSbQ/yYqBCiDOJCwvmz3fO5bvLxvDatmIu+f06dhbV9X6gJQiufcGoPvr0UXj1ZmirH/qAh4EkhL6oK4QXLoa9K40JsM79z+5lMauaOvjanzZTUNPC87fPYVpalFdDFUL0zmI28eMLx/O3b83H0eXimhUb+M9Ve2lo6zzzgWYLXPGk0ZHk8PvwzFIo3DA8QQ8hSQiecLmMVZSeWgxVB+Ha5+GsH3a/vDm/hkv/8DmFtS08f9scFkkXUyF8yvysWN69bzG3zM/gL5sKWf7YWl5cf/TMYxaUgvnfgTveNe4RL1xkDGBrrhq+wAeZJITeFKyDZ8+Bv38b4sfC3Z8bXdCA5o4ufv3+QW760yZCgyysvHuhjDcQwkdF2Kz81xWT+ef3ziJ7VBgP/3M/Zz+2lmc/z6eh9QwlhrS5cM8m40Pi7tfgd1PhvYeMeZB8jPJk0iel1IXA7wAz8KzW+tGTXlfu1y8GWoHbtdY7znSsUioGeA3IBAqA67XWZ6zAmz17tt62bVsfLq+f2hth31vGimfluRCRYrQVTL0BTGbqWx2s3F7CirVHqGlxcPXMFB65YjJhwZYhD23zG48P+XsI4evmjXZ3AZ99R7+O11qz8UgNv/3oMFuO1mKzmrh4ShKXTk3irOx4giyn+SxdfdiYtWD360YJIvs8o9NJzvkQZO/n1QycUmq71np2r/v1lhCUUmbgC+A8oATYCtyktd7fY5+Lge9hJIR5wO+01vPOdKxS6ldArdb6UaXUg0C01vonZ4plyBJCRxOU74KSbZD3IRRtBFeXMf3t7Dthxtcpb4X1eTV8crCSf+0/hsPpYkFWLA9eNH5Y2wskIQjRu4EmhJ72lzXyl00FrNldTlN7F2HBFuaNjmHBmFimpUUxMSkC+8kfBusKYOtzsOcNY0lOc5CxGlume9GspGlgj+tugxxqg5kQFgAPa60vcD//KYDW+pc99nkaWKu1/pv7+SFgGcan/1Mee3wfrXW5UirJffy4M8XS74RwbJ9R999WB611xmNbLTSUGL+4hhLA+Dk0ReRQGLOIPeGL2aPGUlTbxqFjTVQ1dQAQaw/ismnJXDsrlckpkX2PZYAkIQjRu8FMCMc5ulysy6viwwOVbDxSw9HqFsC4pyeE20iNDiElOoTU6BASImyE2yzYrYrk+u0kHPuc8NLPsNUe7D6fy2rHFJUGkakQmQYRyRAUZpQkguzG95YgQBlvkjj1hMGvfeFpQvCkjiMF6DlyowSjFNDbPim9HJugtS4HcCeFoZsKdNvzsPXZL58HhUFINIQnQsYiiM2m3D6OS1c2U9MeCZXGzz8m9BjJUSEsHRvPhKQIFmTFMj4xXMYWCBGAgiwmlo9PYPn4BAAqG9vZW9bA3tJGimpbKalrZUdRHW/vLqfrhKm2zRifj5cRTiuTTUeZqAoZb6nnuligoRjKdkJrzZkDuPlNyDl3aC7OzZOEcKq738nFitPt48mxZ35zpe4C7nI/bXaXLPoqDqj+8mkjUAbsAz467UEFwA5gTT/e0AtOuka/5O/X6O/XB8N+jXcO31t96YzXuLe/Z/2v8/p7JECGJzt5khBKgLQez1Mx7qae7BN0hmOPKaWSelQZVZ7qzbXWzwDPeBDnaSmltnlSXPJlco2+z9+vD+QaRzpPup1uBXKUUqOVUkHAjcDqk/ZZDdyqDPOBBnd10JmOXQ3c5v7+NmDVAK9FCCHEAPRaQtBadyml7gXex6gMe15rvU8pdbf79aeAdzB6GOVhdDu940zHuk/9KPC6UuobQBFw3aBemRBCiD7xqOO81vodjJt+z21P9fheA/d4eqx7ew1wTl+CHYABVTn5CLlG3+fv1wdyjSOaRwPThBBC+D+ZukIIIQQQAAlBKXWhUuqQUirPPSLa5yml0pRSnyilDiil9imlfuDeHqOU+pdS6rD7MdrbsQ6EUsqslNqplFrjfu5v1xellFqplDro/l0u8KdrVEr90P33uVcp9TellM3Xr08p9bxSqlIptbfHttNek1Lqp+57zyGl1AXeidpzfp0Q3FNnPAlcBEwEblJKTfRuVIOiC7hfaz0BmA/c476uB4GPtNY5GAMsfD0B/gA40OO5v13f74D3tNbjgWkY1+oX16iUSgG+D8zWWk/G6FRyI75/fS8CF5607ZTX5P6fvBGY5D7mj+570ojl1wkBmAvkaa3ztdYO4FXgCtnL69EAAAPNSURBVC/HNGBa6/LjkwdqrZswbiQpGNf2knu3l4ArvRPhwCmlUoFLgB5DzP3q+iKAJcBzAFprh9a6Hj+6RoxOKyFKKQsQijEGyaevT2v9GVB70ubTXdMVwKta6w6t9VGMXphzGcH8PSGcbkoNv6GUygRmAJs5aToQYOimAxl6vwV+DLh6bPOn68sCqoAX3NVizyql7PjJNWqtS4HHMLqUl2OMTfoAP7m+k5zumnzu/uPvCWHAU2eMZEqpMOBN4D6tdaO34xksSqlLgUqt9XZvxzKELMBMYIXWegbQgu9Vn5yWux79CmA0kAzYlVL/v727eakijsI4/n0qE6JFJdGmyBZRkEHkJrVFaJtaRC93oeCu/olwFdGiTZsgaNOiF1pUFiFBBEXQJimooDcjjHJhFEHQTui0+P0UIfRe0xxneD4wqHe4cA73Mof5jfNMf7FVLbrSHX+qPhAaid0oJUlNpGFwLSIG88tfcwwIs8WBlEAXcEjSJ9IyX7ekq1SnP0jfzbGIeJr/vkkaEFXpcT8wGhHfImICGAQ6qU5/083UU+mOP1UfCI3EbpSOJJHWnt9GxLlpuyoRBxIRJyNiY0S0kj6zhxHRT0X6A4iIceCLpMnI9x7gDdXp8TOwR9Kq/H3tIV3rqkp/083U012gV1KzpC3AVmC4gPoaFxGV3kiRGiPAR2Cg6HoWqKe9pFPPV8CLvB0EWkj/5fAh/1xXdK0L0Os+YCj/Xqn+gF3As/w53gHWVqlH4BTwjhTweQVoLnt/wHXSNZEJ0hnA8dl6Agbysec9cKDo+uttvlPZzMyA6i8ZmZlZgzwQzMwM8EAwM7PMA8HMzAAPBDMzyzwQzBok6YikkLS96FrM/gcPBLPG9QFPSDfLmVWOB4JZA3JuVBfpRqTe/NoySRdy5v+QpHuSanlfu6THkp5Luj8ZbWC2lHkgmDXmMOnZBSPAD0m7gaNAK7ATOAF0wFTO1HmgFhHtwCXgTBFFm83FiqILMCuJPlIkN6TAvT6gCbgREb+BcUmP8v5tQBvwIMX4sJwUd2C2pHkgmNUhqQXoBtokBekAH8Dtmd4CvI6IjkUq0WxBeMnIrL4acDkiNkdEa0RsAkaB78CxfC1hAymID1KQ2XpJU0tIknYUUbjZXHggmNXXx99nA7dID34ZI6V5XiQ9te5npMe11oCzkl6S0mg7F69cs3/jtFOzeZC0OiJ+5WWlYaAr0rMOzErH1xDM5mdI0hpgJXDaw8DKzGcIZmYG+BqCmZllHghmZgZ4IJiZWeaBYGZmgAeCmZllHghmZgbAH5yiADBOnC6yAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Visualisation du nombre de femmes vivantes et décédées par tranche d'âge\n",
+ "\n",
+ "sns.distplot(data[data.Smoker == 'Yes']['Age'], label='Smoker', kde=True)\n",
+ "sns.distplot(data[data.Smoker == 'No']['Age'], label='Non smoker')\n",
+ "plt.legend()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Ainsi 2 conclusions peuvent être tirées sur ce biais d'étude:\n",
+ "- Ce biais arrive notamment à cause de la **non homogénéité de l'échantillon**. On voit bien ci-dessus que toutes les tranches d'âge ne sont pas représentées de la même manière si les femmes sont fumeuses ou non fumeuses. Il faut cependant faire attention à étudier des *tranches d'âge régulières et adaptés à l'étude*.\n",
+ "- De plus, dans la 1ère partie l'âge des participantes avait été mis de côté au profit d'une moyenne sur l'ensemble. Cette **mise à l'écart de ce paramètre** a induit une mauvaise interprétation.\n",
"\n"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Décès et régression logistique\n",
+ "\n",
+ "En dernière partie une régression logistique est réalisée afin de supprimer le biais induit par des tranches d'âges arbitraires et non régulières.\n",
+ "\n",
+ "Tout d'abord une nouvelle colonne est créée avec :\n",
+ "- Si la femme est décédée: 1\n",
+ "- Si la femme est vivante: 0\n"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 263,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Exemple :\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
Smoker
\n",
+ "
Status
\n",
+ "
Age
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
Yes
\n",
+ "
0
\n",
+ "
21.0
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
Yes
\n",
+ "
0
\n",
+ "
19.3
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
No
\n",
+ "
1
\n",
+ "
57.5
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
No
\n",
+ "
0
\n",
+ "
47.1
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
Yes
\n",
+ "
0
\n",
+ "
81.4
\n",
+ "
\n",
+ "
\n",
+ "
5
\n",
+ "
No
\n",
+ "
0
\n",
+ "
36.8
\n",
+ "
\n",
+ "
\n",
+ "
6
\n",
+ "
No
\n",
+ "
0
\n",
+ "
23.8
\n",
+ "
\n",
+ "
\n",
+ "
7
\n",
+ "
Yes
\n",
+ "
1
\n",
+ "
57.5
\n",
+ "
\n",
+ "
\n",
+ "
8
\n",
+ "
Yes
\n",
+ "
0
\n",
+ "
24.8
\n",
+ "
\n",
+ "
\n",
+ "
9
\n",
+ "
Yes
\n",
+ "
0
\n",
+ "
49.5
\n",
+ "
\n",
+ "
\n",
+ "
10
\n",
+ "
Yes
\n",
+ "
0
\n",
+ "
30.0
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Smoker Status Age\n",
+ "0 Yes 0 21.0\n",
+ "1 Yes 0 19.3\n",
+ "2 No 1 57.5\n",
+ "3 No 0 47.1\n",
+ "4 Yes 0 81.4\n",
+ "5 No 0 36.8\n",
+ "6 No 0 23.8\n",
+ "7 Yes 1 57.5\n",
+ "8 Yes 0 24.8\n",
+ "9 Yes 0 49.5\n",
+ "10 Yes 0 30.0"
+ ]
+ },
+ "execution_count": 263,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data_reg = data.replace('Alive', 0).replace('Dead', 1)\n",
+ "\n",
+ "print ('Exemple :')\n",
+ "data_reg.loc[0:10, ]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "On réalise pour chacun des groupes *'Smoker'* et *'Non smoker'* une régresion logistique pour visualiser la corrélation entre l'âge et le décès (et donc la probabilité de décès en fonction de l'âge)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 264,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Optimization terminated successfully.\n",
+ " Current function value: 0.412727\n",
+ " Iterations 7\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "
Logit Regression Results
\n",
+ "
\n",
+ "
Dep. Variable:
Status
No. Observations:
582
\n",
+ "
\n",
+ "
\n",
+ "
Model:
Logit
Df Residuals:
580
\n",
+ "
\n",
+ "
\n",
+ "
Method:
MLE
Df Model:
1
\n",
+ "
\n",
+ "
\n",
+ "
Date:
Fri, 31 Jul 2020
Pseudo R-squ.:
0.2492
\n",
+ "
\n",
+ "
\n",
+ "
Time:
15:23:47
Log-Likelihood:
-240.21
\n",
+ "
\n",
+ "
\n",
+ "
converged:
True
LL-Null:
-319.94
\n",
+ "
\n",
+ "
\n",
+ "
LLR p-value:
1.477e-36
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
coef
std err
z
P>|z|
[0.025
0.975]
\n",
+ "
\n",
+ "
\n",
+ "
Intercept
-5.5081
0.466
-11.814
0.000
-6.422
-4.594
\n",
+ "
\n",
+ "
\n",
+ "
Age
0.0890
0.009
10.203
0.000
0.072
0.106
\n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "\n",
+ "\"\"\"\n",
+ " Logit Regression Results \n",
+ "==============================================================================\n",
+ "Dep. Variable: Status No. Observations: 582\n",
+ "Model: Logit Df Residuals: 580\n",
+ "Method: MLE Df Model: 1\n",
+ "Date: Fri, 31 Jul 2020 Pseudo R-squ.: 0.2492\n",
+ "Time: 15:23:47 Log-Likelihood: -240.21\n",
+ "converged: True LL-Null: -319.94\n",
+ " LLR p-value: 1.477e-36\n",
+ "==============================================================================\n",
+ " coef std err z P>|z| [0.025 0.975]\n",
+ "------------------------------------------------------------------------------\n",
+ "Intercept -5.5081 0.466 -11.814 0.000 -6.422 -4.594\n",
+ "Age 0.0890 0.009 10.203 0.000 0.072 0.106\n",
+ "==============================================================================\n",
+ "\"\"\""
+ ]
+ },
+ "execution_count": 264,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Pour les Fumeuses\n",
+ "data_reg_smoker = data_reg[data_reg.Smoker == 'Yes']\n",
+ "model = logit('Status ~ Age', data=data_reg_smoker)\n",
+ "result_smoker = model.fit() #algorithme de Newton-Raphson par défaut\n",
+ "logit_smoker = result_smoker.predict(data_reg_smoker) # predictions\n",
+ "result_smoker.summary()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pour les fumeuses on voit que l'âge est un paramètre statistiquement important (P < 0.05), avec un coefficient de pente de 0.089 (avec une erreur de 10%), compris pour un CI de 2.5% entre 0.106 et 0.072."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 265,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Optimization terminated successfully.\n",
+ " Current function value: 0.354560\n",
+ " Iterations 7\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "
Logit Regression Results
\n",
+ "
\n",
+ "
Dep. Variable:
Status
No. Observations:
732
\n",
+ "
\n",
+ "
\n",
+ "
Model:
Logit
Df Residuals:
730
\n",
+ "
\n",
+ "
\n",
+ "
Method:
MLE
Df Model:
1
\n",
+ "
\n",
+ "
\n",
+ "
Date:
Fri, 31 Jul 2020
Pseudo R-squ.:
0.4304
\n",
+ "
\n",
+ "
\n",
+ "
Time:
15:23:49
Log-Likelihood:
-259.54
\n",
+ "
\n",
+ "
\n",
+ "
converged:
True
LL-Null:
-455.62
\n",
+ "
\n",
+ "
\n",
+ "
LLR p-value:
2.808e-87
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
coef
std err
z
P>|z|
[0.025
0.975]
\n",
+ "
\n",
+ "
\n",
+ "
Intercept
-6.7955
0.479
-14.174
0.000
-7.735
-5.856
\n",
+ "
\n",
+ "
\n",
+ "
Age
0.1073
0.008
13.742
0.000
0.092
0.123
\n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "\n",
+ "\"\"\"\n",
+ " Logit Regression Results \n",
+ "==============================================================================\n",
+ "Dep. Variable: Status No. Observations: 732\n",
+ "Model: Logit Df Residuals: 730\n",
+ "Method: MLE Df Model: 1\n",
+ "Date: Fri, 31 Jul 2020 Pseudo R-squ.: 0.4304\n",
+ "Time: 15:23:49 Log-Likelihood: -259.54\n",
+ "converged: True LL-Null: -455.62\n",
+ " LLR p-value: 2.808e-87\n",
+ "==============================================================================\n",
+ " coef std err z P>|z| [0.025 0.975]\n",
+ "------------------------------------------------------------------------------\n",
+ "Intercept -6.7955 0.479 -14.174 0.000 -7.735 -5.856\n",
+ "Age 0.1073 0.008 13.742 0.000 0.092 0.123\n",
+ "==============================================================================\n",
+ "\"\"\""
+ ]
+ },
+ "execution_count": 265,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Pour les non Fumeuses\n",
+ "\n",
+ "data_reg_nosmoker = data_reg[data_reg.Smoker == 'No']\n",
+ "model = logit('Status ~ Age', data=data_reg_nosmoker)\n",
+ "result_nosmoker = model.fit()\n",
+ "logit_nosmoker = result_nosmoker.predict(data_reg_nosmoker) \n",
+ "result_nosmoker.summary()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pour les non-fumeuses on voit que l'âge est un paramètre statistiquement important (P < 0.05), avec un coefficient de pente de 0.1073 (avec une erreur de moins de 10%, suffisamment faible pour comparer avec les résultats des fumeuses), compris pour un CI de 2.5% entre 0.123 et 0.092. Ce coefficient est plus élevé que pour les femmes fumeuses, avec cependant un coefficient d'interception plus important.\n",
+ "\n",
+ "Afin de mieux visualiser cette variation en fonction de l'âge, les fonctions logistiques sont tracées. Seaborn utilisant le package statsmodel pour la fonction lmplot, il est possible de l'utiliser pour visualiser de manière simple les deux courbes sur un même graphe avec les intervales de confiance pour chacune des courbes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 268,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 268,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAFgCAYAAACcxo+vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XeYlOW5+PHv877Td3e201EggnQs2CGxpOiJMdWWE2M0tuToiScnxfSTGE8Sc5JfEk1iTU9MUZN4rMdoFBFRQQUERBEQEBa2z05/y/P7451t7LSFXWF378917cXOW59hZ+aep92P0lojhBBCHCjjYBdACCHE6CABRQghxJCQgCKEEGJISEARQggxJCSgCCGEGBISUIQQQgwJCShCCCGGhAQUIYQQQ0ICihBCiCHhO9gFGKwzzzxTP/zwwwe7GEIIUS51sAvwVhlxNZSWlpaDXQQhhBB5jLiAIoQQ4tAkAUUIIcSQkIAihBBiSEhAEUIIMSQkoAghhBgSElCEEEIMCQkoQgghhoQEFCGEEENCAooQQoghIQFFCCHEkJCAIoQQYkgMW0BRSv1CKbVXKfVygf1KKfUTpdRmpdRapdQxw1UWIYQQw284sw3/CrgZ+E2B/WcBM3M/JwA/z/178Lz6KKz4MXS8ATWHw8mfgVnv6nfIE6/s5dZlW9jRnmRqbYQr3z6DU2ePK32taUth21MFr73m8b9grryJOms3WbOC+ooAVXY7OBkw/DBuTs85+coA8L2HX2FLSwKA6fURrjtrDgDffWgjW1uTnKJf5Arzfiaxl526kVuds3nSPQqAdxgvcaV5P1ONZt7U47i/8iO885yP9Zw/pe1pLuV/maqa2aEbaTbreY/5EiE3ieWrYIWxmEprL5P1XlwN1XQS0llcFAkdZJduoFKlGac6ANjGRL5rXcATufsDGApqwz7CQT+VAROlFHMTz/J5+3bG6T09KVttDF5nCjerf6V14qk9z//WZVtoaHqSj7l/Zwp7scxK6isD+OwEr1v1/FK/j8aqEP/q/I1gfAc7dCOP1lzAnnGn8NgrzSSyDhUBk8uWTOcdxhoiy67ncL0TH86AdLE2BgpQaBw0Wpv4Vf/j0phsdSdRodJMVK34cFGAzv24Pddw+32zc7v/P/ps0wrSFVOIzDgFNv4NbWdyOwa+9DR90tvmfrEwyBIibDiYbqb3YMMPoRqcZCtGz517r2Nj4IN++3SfX3ruNdh8uvuWO8/5GnC0wgAMdO8xeZ5zzzV07yGFytXnMO8egAmoQv+Xfa6hqg+H9/5gwOeC8CitC/11huDiSk0D7tdaz8+z71bgCa31XbnHm4BTtda7i11z8eLFetWqVUNf2FcfhYc+B0YA/GGwUuBm4az/6XnxPPHKXr5+33r8piLsN0lZDpaj+dY58/oHlX2vlWyB+B6IjIPKxgHXXvP4X2h46itY+PDjME43o9DeG8kwvVd0uAH8AdYs+CrXrGroV4ZYyiJjOSQtFyP34nc1hP3eB1bSclmqXuS/zF+RxUeKAGGyBLD5uv0JAL7l690XIUtA2XxHfZLl+igW2y/wX+Yve/ZPopV61YWFAuVHYeFD00EVGddgvOoEet+0Cu9DUuF9QLkYGGjadSVfsK/sCWrdwj6wXMVS9RI/8t9ElGT/v5UGF0UrUf7bdzXL1dEoYAkv8h/W7WS1DxObKUYrALtpwFU+oiRxtEunW4FlhKgwshhulq9kP8FT+ij8psLVcIp+kRv9t1JHF0YuCBTS78O7wH5KHDMofS80mLeuKvxwwGUKFLrvB3FZ9+57Qr+TyyvjoJ5fOWUppNzn0v1rsBo+fOdggoqkr38LTAZ29Hm8M7ft4FjxYy8ABCLeB3gg4j1e8eOeQ25dtgW/qYgEfCjl/es3Fbcu21L8WulOQEE2lvfa5sqbsPBhGWFqdWfum6sLaDB9vecaAcyVNw0oQ1faJp51MA2FaRjej1Ikso63XSkuN+7PBYQgoEgRJIuPK837udLsvy9JkCx+LnL+TiLrDNhfoxJovG91tvZeRBqo0gkaVNc+nyHee6n7hWaicXMf01UqxZXm/QP+FCkbTKW40ryfSp3yNuo+P3jfWCtJcaH9N+IZm660zQXW38jiJ61CNKoYjlY42qBOd2IZYSI6SYVOkSKIoyGjQqRdX08ZDGXgMwyuMO+nkhSqRDDpfo6l9g/Lp8lgP2zLPV4X+H24rpXv+D5/5yEzlM8l29Xvc0H0OpgBJd/7LO+fVyl1hVJqlVJqVXNz8/CUpuMNrzbRlz8MHdt7Hu5oTxL2m/0OCftNdrbv8w1632s5WVCm92+ea9dZu7FUyNuMhc41hfT8dyjlnesPU2ftHlAG23Vx9T5Vc+XVUrq3T1XNpAj0Oy9FgCmqmSl59qVz+1wNU9TefvtN3Nw3c6983f+auD378tGonmNdFCYOU1T+v6dS3n2NIu94Hy6T2IvjamzX+z2dK2cAGzcXEgLYufLZXvOVgu6aeTL3PPtW1KeoZsw8zVxilDjQYKXdfp8LotfBDCg7gal9Hk8BduU7UGt9m9Z6sdZ6cWNj4/CUpuZwrymqLysFNYf1PJxaGyFlOf0OSVkOU2ojxa9lBkA73r95rt3mn4hfp73N+FE9H8q5jzStvXOtFG3+iQPK4DMMDEW/D0WtvT6J7u07dCNhsv3OC5Nlp25kZ559odw+Q8FOPa7fficX8HRP2FM9252eYDiQQvepsWgcTHbq/H9Prb37Fqsj2BjsYhymofAZ3u+hXDmz+DDQGGiyua5CBx82JlqDykXfSO559g3GO3UjDuaQf0kWh4gD/aagjH6fC6LXwQwo9wEfz432OhHoLNV/MqxO/ozXr5FNep9m2aT3+OTP9Bxy5dtnYDmaZNZGa+9fy9E9ncIFrxWqBjQEonmv7Zx4DX5s/G6KdlWNgZvrQVHg2L3nulmcE68ZUIaqkI/KgInjahzX9X60piJgetu15nb3bALYhMkAmjAZAtjc6pzNrU7/fREyBLD4rfl+KgLmgP0dugKF15npU739I12qghZd1a/vtLdG4nFQuV4UTZcOc6tz9oA/RdgHjtbc6pxNXOVqeop+7Ucuijhh7vJ9gMqgj6qQjz/6P0AAi5BO06yjmEpjKpc2VY3fTZFUERIqTJgMpoKgThMy7J4yuNrFdl1uc84mTjgXjoorZ/+wBKbBfiiWe7wq8PtwXSvf8cPRTjiUzyVQ1e9zQfQatk55pdRdwKlAA7AH+AbgB9Ba36K8r4g3A2cCSeASrXXJ3vZh65SHPiOztnvfQIqM8trZnmRKWaO8ctfqGeWV/9rFR3kFYNzsAaO8+pYBRs8or0jQT0UZo7x+qv6VloKjvJqxzIphHeUF3TWt/R/l5V1DRnmN8lFeY6b1dFhHeQ2HYQ0oQghxIFzX+xLoZMHOev9WTx4zAWU456EIIcTo5Tpgp8HOeD9OJtdEPXZJQBFCiHLYWbBTYKW9f/MED9t1ydouWUdjOS6W7TKp4SCU9SCRgCKEEPk4FlhJb0SmlfSas/rQaLK2S8Z2yTouGcvBHWFdCENNAooQQoA3AtNKeqMwrcSAGohGk7Fc0rZLxnbI2rnJxwUoK0mwaTXMXDTMBT90SEARQoxdWkM2DtmE97NPDaO75pGyHTJW8QACYMZ3E965nPCbzxDc+xLKteH0q4fxCRxaJKAIIcaW7ppIJu4Fk32CSNpySFoOGcvB3qeZKx9fbAeRNx4nvGMZgfbX+t9KmWNnzDASUIQQY4VjQToGmZg3QquPtOWQzDqkLLusfhAz2Uxk66NE3nhsQBBxgtWkJp9CevKJpCcsZsqQPolDmwQUIcTolol7CVr3Sa2UdRwSGYdktrwgouwM4R1PUrHlYYJNq3uyQADY4UZSh59KcurbyTbMB8MscqXRSwKKEGL0cV3IdHqBpE/nuqs1iaxNImNjOaWbswB8nduofO0+Ilsfwcx29Wx3gtUkDz+d5OHvJNs4z8vx1YfWmg3NWabOHJqnNBJIQBFCjB6u4wWRdEe/Yb5ZxyGedkhkc7nxyrhO6M0VVG26h9CeF3o2a2WSmrKExIwzSU86AYyBH6HbOiwe3Zzk0S1Jdnc5bDtlKJ7YyCABRQgx8rkupNq9QNKn+SqZtenK2GRtp8jJvZSdpuL1B6l65U/44r25aq2qySTe9j4SM87EDdcNOK8r4/KP15M8tDnBxmbrwJ/PCCUBRQgxcmntBZJUe08g0WjiGZt42i5rlBaAynZRteleKjfdjZnp7NmemnQC8VkfJj3p+LxNWmv3ZLnvlQRPbEuS7ROzJlaavPNtEd45Y5+lLUY5CShCiJEpHYNka8+ILVdrb/XSjFX2jHWV7aLqlbupeuUvGFYcAG34Scw4k64552NHB657ksy6PLI5yb0b42zr6O2fCfsUp00Pc9bMChZOCGAo1bP+z1ghAUUIMbLYGUg0ezm18NbO6UrbxNMWuszVZ5SdpnLT3UQ3/AEj6wUS1xcmPuuDdM0+FzdcP+CcXV02d6+P8+CrCRJW733mNPo558hKTp8RJuL3ajFa+XCC1biBqgN9tiOKBBQhxMigNSTbevpJXO01bcVS5QcSXIeKLQ8RXfsLfKkWb5MvQteRHyY+5zzcYPWAUzY0Z/njui6e3JbCzd0maCre9bYIH5xTwayG3pVYtRHECdWgA5UH/HRHIgkoQohDn5WG+B5vciLQlbGIpcpv2gIINr1AzeqbCHS8DnhNW11HfoiueR8bEEi01qzeneG3L3Xxwu7eBcnGVZh8aG4l7zuygmiwt0/F9YVxg7Vof/hAnuWIJwFFCHHo6q6VpNoBb0Z7ezJbdmc7gJnYQ83qm4nseLJnW2L6e+hcdBlOxfh9bqd57s0Mv3whxvrmbM/2mfV+LlxQxWnTw/iM3n4R1xfGDdWifWM7kHSTgCKEODTZWYg3gZ3Fcl06Uxap7CAWsHJtKjfdQ/XaX2DY3iz5TMM8Ohb/O9n6OQMOX70rzZ0vxFi3pzeQLBof4KKjohw/OYjqsxawa4Zww3USSPYhAUUIcehJxyDRjNYuXWmbzpRFWRMSc/xtm6hbeWNPni0nVEfHMZ8mOe1d/ReJBza1ZLn1+U6e39XbtHXMxCCXHhNl0YRgv2O1EcQJ16H9Y2s4cLkkoAghDh1aeyO40jEytte8VW6KFAAci+jLvyG6/nco7aBRJGa+n46jLkfvM+Kqqcvm1lWd/GNLb46vheMDXHZslKMnhvoXS/lwQrXoYPSAnt5oJwFFCHFocCzo2o22M3SmbLrS2dLn9OFvf526FdcT6NgCgBU9nLaTriPbMK/fcUnL5Q9ru7hrXVfPZMQZtT6uOq6aE6eE+jVtaRRusAY3VDNgYqMYSAKKEOLgyyYgvoesZdEaH1ynO9qlctPd1Lx4K8q10Mqga84FdC68BMzeJiutNY9tSXHzcx20Jr3rN0QMLj+2mvccEcE0+jeFub4wTrgBzACiPBJQhBAHV6oDEi10pS06BtlXYqTbqVtxA+HdzwFgVU6m7ZSvkW2Y2++4re0WP3qmo2cIcMCECxdU8dGFVT2TEbtpZeKEG8bsXJIDIQFFCHHwJFpwku20JjJkrPISOHYL7F1L/fL/6pmgGJ/xL3Qs/vd+HeYZW/PbNTF+t6YLJxen3n54iGtOqGFC1cCPP9df6dVKxuh6JgdKAooQ4q2nNcT3kEl00hrP4ujBNHFpqjb+keqXbkNpB9cXoe2Ez5Oadka/w17aneH7T7ezvdMbajy5yuTak2o4cerAob5eraQRHag4oKc11klAEUK8tbSGrt3EYp10pgbX8a7sFHXPfJfI9n8CkK15G61Lv4UdndpzTMpyuWVVJ/duSABgKvjowiouPipK0DcwWaPrr8AJNw55rcQ0FDWRsdX/IgFFCPHWcV3czjdpj8VIDmaSImDGm2hY9pWeuSWJGWfRftxn0b7ejve1ezJ8Z1k7O2Petec0+PnC0lqOqBv4wa5RXl/JEA8FVkpRHfZTE/ZjGJJtWAghhp7rYnXsoLUjNri5JUBg7zoaln0FM9OBViYdx15NfNaHeiYpWo7mFy/G+P2aLjTgN+DSY6JcsKCqX6qUbtoIYleMG/IRXJVBH3UVAXzm2BxiLAFFCDH8XId0205aOzoHldARIPzGP6lfcQPKzeIEorQu/SaZCcf27N/eaXH9E2280uIljpxZ7+erb69jRp0/f1ECUa/jXQ1d7SHoN6mvCBDyj+3OfAkoQojh5TokWrbT1tnFYIYEd3e+17z4cwCsqqk0n3YjTtXknkMefi3BD1Z0kLa9paw+urCKTx4TxW/mqZVg4EQaBsyYPxCmoaitCBAN5Q9eY40EFCHE8HFdOvdsIxaPD+487VKz+maqNt0NQKZxIS3vuKEnzXzadvl/Kzp48LUkAI0Rk6++o5ZjJoXyX84IYFeMH9ImrqqQn7qKwIAJkWOZBBQhxPDQmrambSQSgwwmrk3dyu9RsfURAJKHnUbryV/umfW+vcPiq4+1sjW3/O4ph4X40tJaqkP5m5tcX8RLUz9EqVP8pkFjVXDMN2/lIwFFCDHktOvSuvsNUsmuwZ3oZGhY/l+Edz4NQNesD9Kx+DM9wWDZthQ3LGsjaWlMBVcdV8358yv75d/qd7lgLW647kCeSg+lFLURP9Vhf8H7jXUSUIQQQ8p1Nc1NO8gmY4M6T9lpGp78MqGmVQB0zr+Y2MJLQSkcV/PLF2P8+iUvQDVEDK4/vZ7544N5r6VROJFxQ5Y+JeQ3aagMEvCNzdFb5ZKAIoQYMq6r2bvnTaxEx6DOU3aKhie+RGjPCwC0H/NvxOecD0Ay6/LNJ9pYsSMNeIteffP0euoj+ZuctDJxKsYPyeJXhvI63avD0uleDgkoQogh4biapr17cOOtgzrPCybXEdrzIgDti68lfuSHANjdZXPdoy1saff6Sz40t4JrTqjJO7cEujvfJ4B54AEgHPBqJf4xOqdkf0hAEUIcMMfV7G5uRXftGdR5ys70CyZtx/0niVnvB2Ddngxf+kcrnWkXU8FnT67hnNmFm7BcM4RTMeGAU6hIrWT/SUARQhwQ19U0tXXixnYzqK5qx6L+qa/1BpPj/5PETC+Y/HNrkm8/2UbWgeqgwfVn1HP0xPz9JZBbu6RiwgGP5Ar5TRqrpFayvySgCCH2m9aaPZ0JnM5dKAaRTsW1qV9xPeFdKwFoP/YaEjPfj9aaP70c56fPdQIwJerjf97TwORo4Y8q11+JExl3QDPfu0dwjbVkjkNNAooQYr/t7cqQ7diF4Vrln6Q1tc/+D5HtTwDQsehy4rPPxdWam5/t5C/rvXkr88cF+O676gvOL4FcGpVI44E8BZlXMoQkoAgh9ktLPEOqYw+mnRrUedVrbqdyy4MAxOZ9jK75F2G7mu8sa+f/Xvdmvp86LcxX31GXN918NydYgxuu3/8ngJfMsaEyOOayAg8XCShCiEHrSGbp6uzAlxnc8ODKTfcQXf87AOJHvI/ORZeTtl2+9lgbK3d6w4I/OKeCz5xYUzSliROqxQ3t/4RFpRT1lZKDa6hJQBFCDEo8Y9MWS+BLNQ/qvPAb/6Rm1U8ASE05hfbj/oOEpfnC/7Wwdo+30NalR0f5xNFVRWeiO6E63FDtfpffbxqMiwYJ+qSJa6hJQBFClC1tOTTH0pjJvShd/hrwgeaXvRT0aDIN82k95RvELIPPPdzMxlza+f84qYYPzS0+s90JN/QkiNwf0sQ1vCSgCCHKYjkue2JpVKoNw0mXfZ4Z303Dk19GuVmsqim0nPod2iw/n324mc1tFoaC65bWctbM4uu5H0gwUUpRFwlQHZEmruE0rIOtlVJnKqU2KaU2K6Wuy7O/Win1v0qpNUqp9UqpS4azPEKI/eO6mqbONG4miZlpL/s8lY3T+MR1mJkOnECUllO/R6tbyWce9IKJqeAbp9YNazDxGQYTq0MSTN4CwxZQlFIm8FPgLGAucKFSau4+h/0bsEFrvQg4FfiBUkoGggtxiNnTlcaybczk3vJPch3ql38Tf+dWtOGj9e3fptk/iWsfamZrh43PgG+fUc/pMyJFL+OE6vc7mIT8JpNqQjIk+C0ynDWU44HNWustWuss8Efg/fsco4Eq5fXAVQJtgD2MZRJCDFJLPEMq62AmW1C6/Ldn9ZrbCO9+FoC2Ez5PU3QB1z7UzJb23mCy5PDiCRy9Dvia/Sp3ddjPxOrQmF3f/WAYzj6UycCOPo93Aifsc8zNwH3ALqAKOF9rPYjptkKI4RRLW8RSFiqbwLDKX9sksu0fRDfcBUDX7PNomvwePvtgbzC5/vR6TjmsRDAJ1u7XaC6lFA2VAapkSPBbbjhDd75hFPsuKP0e4CVgEnAUcLNSKjrgQkpdoZRapZRa1dw8uKGKQoj9k7YcWuNZcB3MQQwR9re9Su3K73nXmLCYXfOu4HOP9PaZfOv0Mmomger9WhjLNBQTq0MSTA6S4QwoO4GpfR5PwauJ9HUJcK/2bAa2ArP3vZDW+jat9WKt9eLGxgNLsyCEKM3OjejSWmOmmsseImxkYjQs+yqGk8GunMSbJ36dLz7WwcZmbzTX106tY2mJYOL6q3AjDYMus980mFQTlv6Sg2g4A8rzwEyl1PRcR/sFeM1bfW0HzgBQSo0HjgS2DGOZhBAlaK3Z05XBcTUq24VhJco80aVuxQ34Ek24Zoimpd/mK8ttXmryJi1+YUktZ5TogHd9kf3KzRXym0yuCUuW4INs2PpQtNa2Uupq4BHABH6htV6vlLoqt/8W4HrgV0qpdXhNZF/UWrcMV5mEEKW1JrJkLAdcGzNZ/tuxav3vCe96BoC24z/Lt9bWsXKnl5vr2pNqeO+s4kODvfVMxg86a3Bl0EdjVVDWeT8EDOvERq31g8CD+2y7pc/vu4B3D2cZhBDli2dsYilv5rqZbC47JX2waTXVa+8EoOuIc/je3hP5v9e9rMGXHhPlwyVmwGsjsF/rmUTDfhoqC6+TIt5aUj8UQgCQtV1aujIAXlOXnSzrPCPVRv3T16O0S7buSH4e+ERPCvoPzangE0dVFT1fK9NbtneQKy3WVQQkmBxiJKAIIdBas7crjau119SVKnNdeO1S98wNmOk2XH8l9069jp+94KVlOX16mM+cVFO0KUqjvJrJINeAb6gKymJYhyDJ5SWEoC2RJWt7zVtmqqXsUV1VG/5IePfzAKyadS1ffd6rMRwzMchX3lGHUaJfw4mMQ/tCZZdTKUVjVZDKoHx0HYrkryLEGJfM2nTm+k1UNl72qK5Aywaq19wOwK6p7+WStfOwXc30Gh/fPqOegFkimITq0IHifSt9KaUYHw0SCcjH1qFK/jJCjGG249Kc6zdBu5ip8kZ1KStJ/dPfQmmHVNXhnP/m+SQsTUPE4PvvaaAqWLw13fVXDWoWvKEUE6olJ9ehTvpQhBjDWuJZHNdLYGGk28tu6qpZ/RN88V24hp/P2tewI+kj7Ffc+O4GxlcW/57qmqFBzTWRYDJySEARYozqTFkks7lkj04WI9NZ1nnhHU9R+bo3G+CPFRfxUPskDAX/dWodM+uLd5Rrw58bHlzenBHTkGAykkiTlxBjUNZ2aUtkex6bqRbUgFR7AxmpVmqfvRGA1yOL+Erz6QBcfXw1J5dI9qhR2BXjyx4e3B1MZKnekUNqKEKMMd1DhLX2AojKJjDsVDknUrfye5iZTjJmJf/adhkag/fPruAj80p3rjuRcWCWN2/EUIrxUQkmI40EFCHGmPak1TNEGK0x0+XNOanY8iDhXSsB+GLmUpqo55iJQa4tMdcEwAnWlD2iS/pMRi4JKEKMIWnLoSPZ29RlZDpRrlXyPDOxh5rVNwPwqDqJv9knMqnK5Fun1+EzigcT1wzhhspLRS/BZGSTgCLEGOG6uneIMIB2MTIdpU/Umtpnv49hJehQ1XwhdTFhv+I772ygOlT8g18rs+yEj0qCyYgnnfJCjBEtiQyW05vs0Uh3lDVMuOL1Bwjvfg7wmrraiXLD2+uYUVc6XYoTGQ9G6Y8ZpRQTohJMRjqpoQgxBiQyNvF0n/XgXbus2omZ3NvT1PV352QecY/jE0dX8fZpxUd0gbeEr/aXPq47mIQDEkxGOgkoQoxyrqu9pXz7MNPtpYcJa03tcz/EsJO06CjfsC7mxCkhLjl6wCrdA+9phspawrc7nYoEk9FBAooQo1xbMovt9lnXxMmisl0lzwu/8TjhN1cA8A3rE1RU1fD1U0snfOzpNylBKcW4KsnNNZrIX1KIUSxtOT0LZnUz020laydGppPaVT8G4FHnGB4zTuSWd5bO0QW5+SZl9Js0VgWpkKzBo4rUUIQYpbTWtMQz/bYpO1VWNuGa1TdjZjro0mG+Zl3Cf55cy9vK6YQP1qD9xdeNB289E0lBP/pIQBFilOpM9ZnAmGOk2kqeF2xaTcXWRwD4rn0hxx95GGfOLL4ePJQ/36S+Ikg0NLgFtcTIIF8RhBiFLMelPdm/qUtl4xhOuviJToboyh8AsMqdxfPV7+FnJ9aUvJ/G8DIIl+hfqYkEqI5IMBmtpIYixCjUEs/05OoCcilWStdOql7+PaHETixtcgOf5PozGgn6Sk9KdML1YBbPNFwV8lNXIcv2jmYSUIQYZbrSFqls/wmL5aRY8cW2U7n+dwDc6fwLH1qyiEnR0o0Yri+CDhYfSlwR9NFYVV5iSDFySUARYhRxXN0vLT1QXooVrfEv/x982manbmDb2z7GqdNLd65rZXqjuooI+U3GSTAZEySgCDGKtMYzPSswdisrxcrmf9DQ/hIAPw9dxmUnTijrfk64sej6Jn7TYHw0VDIbsRgdJKAIMUrEMzbxjN1/YzkpVrIJKlb9FIBH3eP4l3e9q6x+EzcQRQcKj/7qXiDLLJGNWIweElCEGAVsx6V1nzknAGaq9CTGvU/eQZ3bRkoHaD763zisuvQoLG34vY74AlRugSy/KR8xY4n8tYUYBZrzNHXhZDGs4ilWmt54jYV7/gbAw9GPsGTe9LLu5w0RLvzxMa4qKJmDxyAJKEKMcLE8o7qAksOEM5aLb8UP8SuHHUxgzrs+UVZfhxOsRfsKZxGur5CUKmOVBBQhRjDH1bTvO6oLwMk7uhECAAAgAElEQVSUTLHyzJMPcrS7HoCmo66hIhwqeT9tBHFDtQX3V4Z8MnFxDJOAIsQI1pbIDmzqwus7KeaF7R2c3nQnAJsqT2DCvKUl76VR2BWFZ8OH/CaNlTI8eCyTgCLECJW2HLrSAycrKjuNYScLnteZdtjz1K+ZrFqx8BE59TNl3c8N1YCZP2D4DBkeLCSgCDEi5csk3M0o0neiteYXy17l4/o+APYecS5UTyl9PyOIG8zf1GUoxfjqoAwPFhJQhBiJYil7QCZhAGWlMOxUwfMe2Zzk9KZfEFIWCX89+piLS96rVFNXY1WQoE9GdAkJKEKMOLbj0p7M0xFP8drJnrjNsmdWcrb5LACpxVeVtXaJGyzc1FUbCciILtFDAooQI0xbMourB3bEF0tP72rNd55s5fPqNwAkaueQmv7ukvfSRqDgqK6KoI9ayR4s+pCAIsQIkrYc4ml74I4S6env3RBn2t7HWGhsBSB+3DUl1y4BcCINeY8L+AwZ0SUGkLqqECNE0Y74bKxgevrtHRa/en4Pj/j/BEDi8DPINs4veT83EM07gdE0vLQqhnTCi31IDUWIEaJQRzzaxUi35z3HdjU3LGvnUnU/E1Q7rhGg86grS95LK1/BXF3jqiRHl8hPXhVCjABFO+IznQXT0/9pXRdtzbu5wrwfgPic83EqS6emd8L1eXN11VUECAdkRJfITwKKECNAWyJ/R7y3eFZn3nO2tFnc+UKMz/n/QlhlcUJ1xOb9a8l7ub4wOlA5YHtF0EdNRDrhRWESUIQ4xKWyzsB1TnKMTP7Fs2xX899PtTFTb+ND5lMAdC68tOQwYY3CCTcM2O43pRNelCad8kIcwop1xOM6GOn8tZM/rO1iU0uW3/l/j4HGqp5G4m3/UvJ+XnqV/rUQQ0knvCiP1FCEOIR1piwsJ09HPLm+Ewbu29Jm8csXY5xqrGGJ6WUT7jj6U2AU//6oDX/e9CoNVUECPvmoEKXJq0SIQ5TtuHQk8w8FxnXy9p3YruY7T7Xhui5fD94FQHr8MaQnnVjyfk544JyTaNhPpcyEF2WSgCLEIapgRzyFayd/XNfFKy0W55pPMkPvQKPoOObTJScxuv6KAf0rQb9JvcyEF4MgAUWIQ1DaKtwRX6h2sq3D4hcvxAiR4cuhewBITnsXVt2sovfK1xFvGorxVUFJRy8GZVgDilLqTKXUJqXUZqXUdQWOOVUp9ZJSar1S6snhLI8QI0HRjnjAyA6snTiu5ntPtWO58JnII1Q7bWjDT+eiT5a8nxuqHdC/0lgVxCeTF8UgDVvjqFLKBH4KvAvYCTyvlLpPa72hzzE1wM+AM7XW25VS44arPEKMFLF0gRnxkJsVP7B2cu+GOC/vzVJDF5cpb62T+KwP4lROLHovbQS8bMJ91EQCRALSbyIGbzi/ghwPbNZab9FaZ4E/Au/f55iPAvdqrbcDaK33DmN5hDjkua6mo8CMeMjfd7IrZnPb6hgAP2x8AL+TxPVXEpt/Ucn77dsRH/Kb1Em/idhPwxlQJgM7+jzemdvW1yygVin1hFJqtVLq4/kupJS6Qim1Sim1qrm5eZiKK8TBF0tbedeIB/LOitdac+PT7aRtzYJwC6cmHvKuM+9fcYPVRe/l+ivR/t7kj6ahGFclkxfF/hvOgJKvN2/fd4oPOBZ4L/Ae4GtKqQE9iFrr27TWi7XWixsbG4e+pEIcAhxXFx4mTP6cXQ++lmT1Lq+/5SeNf8dwLexwI/EjP1L0XhpjQPJH6TcRB2o4G0p3AlP7PJ4C7MpzTIvWOgEklFLLgEXAq8NYLiEOSZ0pq+Aw4Xy1k5akw83PdgDw8al7mbb3cQBiCy9B+4rXNNxQTb+OeOk3EUNhOL+OPA/MVEpNV0oFgAuA+/Y55u/AUqWUTykVAU4ANg5jmYQ4JNmOS2eqWO1kYM6uHz3TQTyriQYNPmf+CYXGih5GYsaZRe+1b0e89JuIoTJsX0m01rZS6mrgEcAEfqG1Xq+Uuiq3/xat9Ual1MPAWsAF7tBavzxcZRLiUNWetNCFaid5cnYt25biyW0pAL49dwfRjc8A0Lno8pIpVrzU9F6LtPSbiKE0rHVcrfWDwIP7bLtln8ffB74/nOUQ4lCWtV260iX6TvqM7OrKuPzwGW9BreMmBXh3i7dOfKZ+Dqmpby96L9cX6TcjflxVSPpNxJCRV5IQB1mhhbOAvLPib3m+k9akS9inuOGITYSa1wF4KzEWmdm+74z42ogsliWGlgQUIQ6itOWQKJRihVzfSZ/ayZqmDPdtSgDwyWMqmfbqLwBITTyOzIRjit7LDdaA6QcgHDCplX4TMcQkoAhxELUmitVO7H61k6yj+f5yr6lrdoOfiyueJdDxOgCdi64oeh+tfN7ILsBnGIyrCh1gyYUYSAKKEAdJImOTsfKvBQ/dfSe9HfW/XRPjjU4bU8F1J1dRs+6XACQPOxWr/sii93JCtT1rxI+LBjFlsSwxDCSgCHGQtA2idrK13eJ3a7oAuGBBFQvbH8UffxOtDDoXFk8AqY0gOhgFvH6TkF/6TcTwkIAixEEQSxdeiRHASHf01E5crfn+0+3YLkyuMrl0QYDql38FQGLGmdjVhxe9lxOuA6TfRAw/CShCvMW01nQkCg8TxrUxsrGeh/+7KcG6PV5t5nNLaqnf8jfMVCva8BNbcEnRe7m+MNofwTQUjZUy30QMLwkoQrzFYikb2y1cOzHT7T21k5akwy3Pe01fZx4R4bhGh6r1vwcgPvP9OBXji96rO1+XzDcRb4VBv8KUUrVKqYXDURghRjvX1XSkivSdONl+tZObVnrpVaqDBv92QjVVG/+EmY3h+sIl09O7/iowg9TIfBPxFikroOTSy0eVUnXAGuCXSqkfDm/RhBh9OlJF0tMDZrqt5/cV21M8vtVLr3L1CdXU0UXVxj8B0HXkR7yVFgvwJjHWEfSb1Eb8Q1R6IYort4ZSrbWOAR8Cfqm1PhZ45/AVS4jRx3E1sSIJIJWdwrC8SYtJy+WHK7xMwsdMDPKeIyJUbfg9hp3CDVTSNfeCovdygzUYpp9xsi68eAuVm8vLp5SaCJwHfGUYyyPEqNWRzBZOTw8Yqd7ayS9fiLEn4RAw4XOn1OBLtVD56l8BiM35KDpQVfA6Wpm4oRrGVwXxS7/JIWP16tXjfD7fHcB8Rn7/tQu8bNv2Zccee2zPSrvlBpRv4WUNXq61fl4pNQN4bRgKKcSoZDsusXThFCsqm8Bw0gC82pLlL+vjAFx8VJSp1X6iz/0Gw8nihGqJz/5w0Xu5oVqikSAVQVnf5FDi8/numDBhwpzGxsZ2wzAKf7MYAVzXVc3NzXObmpruAM7p3l7WK05r/RfgL30ebwGKv6qFED06UkXS0+ON7AKvWez7T7fjaJhW4+PCBVWYXbuo2Hw/ALF5F6F94YLX0YYfX6SGeplvciiaPxqCCYBhGLqxsbGzqalpft/tZQUUpdQvGbh8L1rrS4eofEKMWpbj0lW0dhJHud4yvn/dGOeVFq+f5fOn1OI3FdUv/wqlHezIOOIzzyl4HQAdrmdcNCz9JocmYzQEk26559Kv6a7cdrz7gQdyP48BUSA+pKUTYpTqKLZ4Fr21k70Jm9tWe0OG33dkBQsnBPF1biOy9f8AiC34BJiFax6uGaK+vp6Ab6Q3z49dX/ziFyccccQR82bNmjV39uzZcx9//PGKA7ne/fffX3XaaacdMVTlK6XcJq97+j5WSt0F/GNYSiTEKFJq8SyV7UK53ryUHz/TQcrS1IYMPnVcNQDVa3+J0i5W5eSSS/tGasZRKf0mI9Y//vGPikceeaRm3bp1G8LhsN69e7cvk8kctKqmZVn4/YMbcr6/X2VmAoft57lCjBlFF88CzLQ3NPipN1Ise8PrlP/3E2uoChr4214jsv2fAMQWXlJ0aV8zVElDbU3B/eLQ9+abb/rr6urscDisASZOnGhPmzbNmjx58oKrr7568lFHHTV7/vz5c5YvXx5ZsmTJzKlTp86/8cYbGwFc1+XKK6+cMnPmzHmzZs2ae/vttw+YpPTkk09G5syZM3fDhg2BWCxmnHvuudPmz58/Z86cOXN/97vf1QD85Cc/qT/rrLNmnH766UcsXbp01mCfQ7l9KF3070NpAr442JsJMZaUWjyru3aSzLr86BkvsBw3OcgZM7xO9+q1dwJgVU8nefgZha+DonHcJOk3GeE+8IEPxL7zne9MmjZt2vwlS5bELrzwwrb3vve9cYCpU6dmX3rppVc++clPTr300kunPfvss6+kUilj/vz5877whS80/+Y3v6lZt25deOPGjet3797tO/744+e8+93v7umWePTRRyuuvfbaw+67777NM2fOzF599dWTTzvttNhf/vKXbS0tLebixYvnnHPOOTGAF154oXLt2rXrx48fX3hthQLKbfIqPOhdCJFX6dqJ13dy5wsx9ubmnPznybUopQi0rCf85goAOhd9EozCqVNq6+rxBwuP/BIjQ3V1tfvyyy9vePjhh6see+yxqosvvvhtX//613cCnHfeeR0ACxYsSCYSCaO2ttatra11g8Gg29LSYj711FNV5513XpvP52Pq1Kn2CSecEF++fHmkurra3bx5c+jTn/70tEcfffTVadOmWQBPPPFE9JFHHqn5yU9+MgEgk8mozZs3BwCWLl0a259gAuXXUB7TWp9RapsQwpPKOqSyhd+TXu3EYlNLlrs39M45mRz13pLVL90OQLbuSFJTlha8TiTop6KmeIJIMXL4fD7OPvvsrrPPPrtr4cKFqd/+9rf1AKFQSAMYhkEgEOhpLTIMA8uyVLFBH+PGjbMymYyxcuXKyLRp0zrBy3h99913b160aFGm77HLly+viEQihTOXllC0D0UpFcrl72rIJYWsy/1MAybt702FGO1aE5mi+810R8+cE1fD9NycE4Bg02pCe14AoHPRZVCgKctnGNTWjQNTOuJHgzVr1gTXrVvXs8bAiy++GJ4yZUrxam7OO97xjq677767zrZtdu3a5Xvuuecqly5dmgCIRqPOQw899No3vvGNyffff38VwGmnnRb7wQ9+MN7NZb1++umnh6SKW+qVeCVwLV7wWA10v7JjwE+HogBCjDZdaYusXfhLnjfvJMu9G+Jsys05+dwSb84JWlO95g4AMo0LSU88vtBVqKsKY0Tqhrr44iCJxWLmv//7vx8Wi8VM0zT1tGnTMr/+9a/fWLx4cXWpcy+66KKOFStWVM6ZM2eeUkp/85vf3HnYYYfZa9euBWDq1Kn2/fffv/mss86aGYlEtn33u9/ddcUVVxw2e/bsuVprNWXKlMw///nPzQf6HIpWlXoOUuoarfVNB3qzobB48WK9atWqg10MIfLSWrOzPVV0NUZfbCd7YwkuuncPKUtzzpEVfH6JNygn9OYzND7hjXfZ+86fkBl/VN5rVIcDROsnQLhwxmFxyFAAa9as2bZo0aKWg12YobRmzZqGRYsWTet+XG6n/E1KqfnAXCDUZ/tvhryEQoxgsZRdNJgoK4lyM/x4Ze+ck6tyc07Qbk/tJD1hccFgEvSbRCvCEJJhwuLQUm6n/DeAU/ECyoPAWcByQAKKEDklF88CjHQ7y7aleCo35+Sa3JwTgPD2Jwm0ezlXOxddlv98paiLBCBSX7BvRYiDpdyJjR8BzgCatNaXAIsAWaBaiD5KLZ6l7BTpVJIfr+ydc/LO3JwTXKdn3klyyhKyDXPzXqM2EsAXCEFQRvKLQ0+5ASWltXYBWykVBfYCM4avWEKMLFnbpbPI4lkARrqDO/LMOQGIbPs//LHtaBSxhZ/Me35FwE8k4INIw5CXX4ihUO54w1VKqRrgdrzRXnHguWErlRAjTFsiWzQBJE6G15o6uCc35+SSo3vnnOBYVK/9JQDJw8/Aqn3bgNN9hkFthR/8YQhEhrz8QgyFcjvlP5379Ral1MNAVGu9dviKJcTIkczaJLOFU6wA6GQ731vuzTmZUevjggW9TVYVrz+AL9GEVqaXs2sARX1lAIWCCqmdiENXWU1eSqnHun/XWm/TWq/tu02IsUprTWu8xNwzx+Lel5p4rTU35+SUWnyG19Sl7AzVL/8agMSMM7GjUwecXhPxEzBNr9/EJ12XYvBc1+XYY4898s9//nO0e9sdd9xRu3Tp0plDeZ+iNRSlVAiIkJspT+/ExigyU14IOlNW0WHCAM0te7nzBW+dk/fPrmDB+N6gUPnqvZipVrTh99Y72UfI76Mq6PdGdEXqh7TsYuwwDINbbrnljfPPP/9tZ5999gbbttX1118/+cEHHxzSpdwHO1O+WxcyU16Mcbbj0pEs3hGv7Sw/fnInaVtTFza4ss+kZ2UlqFr/ewDiM9+PU9E/J5ehFHXdS/mGayXFyhjzwNpd0duf2jphd2cqOLE6nLl86fSm9y6cFNvf6x133HHpd7/73Z1f+9rXJiQSCfO8885rnTdvXuamm26qv+2228ZZlqUWL14c//Wvf73ddV3OPffc6Rs2bAhrrdXFF1/c/NWvfnVvqXuUeoWuAP4MfCQ3ufFivLXktwF/2N8nJsRo0JbI4pbINLF8w3ZW7PDmnFx7Uu+cE4CqjX/GzMZwzRCxeR8bcG5tJICplBdIZEb8mPLA2l3R6x/YeJjfULoq6LNb4xn/9Q9sPAzYfiBB5cYbb9y1cOHCuYFAwF2zZs3G559/PvT3v/+95oUXXtjo9/u58MILD7/99tvrZs2alWlra/O9+uqrGwBaWloKp7vuo1Qfyq1AJhdM3g58B/g10Anctr9PSoiRLpV1iBdZ6wQgnkjy4+W7AThpaohTp/Xm3zPSHVRt/JN33OxzccP9c3L1DBEGb5iwTGIcU25/ausEv6F0yG+6SilCftP1G0rf/tTWCQdy3Wg06n7gAx9oO++881rD4bB+6KGHomvXrq1YsGDB3NmzZ8995plnql5//fXg3Llz01u2bAldcsklU++5555oXV1dWensS9VQTK11W+7384HbcssB36OUeulAnpgQI5XWmpZ48WzCAHcse422lEvYp/jsSTX9FsCq2vB7DDuJG6gkNueCfuf5DIOaSG7pVX8YgpVDWn5x6NvdmQpWBX39vrEEfYa7uzN1wKMyDMPAMLy6hNaaCy+8sOXHP/7xrn2PW79+/fp77rmn+qabbhp399131951111vlLx2if2mUqo76JwBPN5nnzToijGpVL4ugHXbm7lvgzcj/rJjo0yo6n27mMm9VG36q3etORei95n1XlcRwOgOPtIRPyZNrA5nMrbb7/M5Y7vGxOpw6W8yg3DWWWd1/f3vf6/bvXu3D6Cpqcl87bXXArt27fK5rsull17a/q1vfWvXunXrypr8VCoo3AU8qZRqAVLAUwBKqSPwmr2EGFNsxy25EmPWdvnBo14m8NkNfj48t38NI7ru1yg3ixOqIz77I/32VQb9BH255upgJfhDiLHn8qXTm65/YONhWI4R9BluxnYNy9Xq8qXTm4byPscff3zquuuu23XaaafNcl0Xv9+vf/azn71hmiaXX375NK01SiluuOGGneVcr2hA0VrfkJtvMhH4P907FdgArjmwpyLEyNOWLN0R/8eVW9jekcVU8IUltZhGb1OXL7aDitcfBCA2/yK0r7dfpV9TlwwTHtNyHe/bh3KUV7cf/vCH/Zq3rrrqqrarrrqqbd/jNm7cuGGw1y7ZbKW1Xpln26uDvZEQI13acoini3fEb2tN8Lvn3wTg/PmVzKwP9NtfvfZOlHawKyYQP+KcfvvqKnKz4QGCUTD9Q1d4MeK8d+Gk2FAEkLdSuckhhRjzSnXEu1rzg4c3YrswucrkkmOi/fb7214l8obXDdm58NJ+AaMqFOht6lIKZCVGMQJJQBGiDLESy/oC3PfSLtY3JQBvSd+Qr//bq3rN7QBY1dNJTntXz3a/aVAd7tNYEK4Fo6xh/0IcUiSgCFGC42raE8U74vfG0tz+1BYA/mVmhMWT+nemB/e8RHjXswB0LLqsT8BQ/Zu6ZBKjGMEkoAhRQmsiU3ThLK01P3rsNVKWS23I4N9OqNn3AKpfvAWATMN80lOW9OyqDucSP3aTlRjFCCYBRYgiyumIf/yVZlZu8QbJfOakGqLB/m+r8M6nCLZ6A2Y6jr6yJ2AEfCbRUJ+Od7+sxChGtmENKEqpM5VSm5RSm5VS1xU57jillKOU+kihY4R4q5UzI74zaXHzP705J0sOC3H69HD/A1yb6pe8LEWpSSeRHbcIAEWfxI/dKhqHpuBCFKCUOvbyyy+f0v3461//+vjPfvazQ5Y5ftgCilLKxMtIfBYwF7hQKTVgoezccd8DHhmusgixP2Ipu2RH/E+f2ExnyqIyoPot6dutYsvDPUv7dh51Rc/2mgo/fqPP2y8UlbVOxLALBAL6wQcfrO2eGT/UhrOGcjywWWu9RWudBf4IvD/PcdcA9+CtUy/EIcEqY0b8yi2t/GOj97L99PE1NFT0H5ml7DTR7qV9p72rZ2nfkN9HZaBPU5dSEJZhwmIf6/8a5fYzZvGD2Qu4/YxZrP9rtPRJxZmmqT/+8Y83//d///f4ffe9+uqrgZNOOmnWrFmz5p500kmzXnvttUC+axQznAFlMrCjz+OduW09lFKTgQ8CtxS7kFLqCqXUKqXUqubm5iEvqBD7ao0XnxEfz9j8v0e9tYmOmRjk7FkDUx1VbrobX6oZbfjpXPRJYJ81TrqFamStE9Hf+r9GefjLh5Fo9hOM2iSa/Tz85cOGIqh8/vOf33vvvffWtba29vsGdNVVVx320Y9+tPXVV1/dcP7557d+6lOfGrh8aAnDGVDyDVXZ9x36I+CLWuuiqZG11rdprRdrrRc3Nko7sxhe8UzpNeJvW7aF5niGoKn4wpKBTV1GuoNo9+JZsz6IUzkR8GbDm32PVQrC+4wKE2LFzRMw/Rp/2EUp8IddTL9mxc0HlL4eoK6uzj333HNbv/vd747ru/3FF1+suOKKK9oAPvWpT7WtXr160GmuhzOg7AT6RrgpwL4pkhcDf1RKbQM+AvxMKfWBYSyTEEW5rqatxBrxL7zRzv1rvXVOrlgcZXJ0YO0iuv63GFYC119JbP5FgJf4Mezf51iZxCjyib0ZxBfq34HnC7nE3hySjrYvfelLe/7whz80JBKJIY0BwxlQngdmKqWmK6UCwAXAfX0P0FpP11pP01pPA+4GPq21/tswlkmIotqSWWy3cEd8Kuvwg0e9VHbzxwUGZBIGMOO7qHw1l55+3sdwg9UEfGZv4sduhimTGEV+0ckZ7HT/z2c7bRCdPCTp68ePH++8733va//DH/7Q0L3t6KOPTtxxxx21ALfeemvd4sWL44O97rAFFK21DVyNN3prI/BnrfV6pdRVSqmrhuu+QuyvtOUQSxVfI/6O5VvZ3ZnGbyquW9o/k3C36pfuQLk2dqSR+JEfxlCK+r6z4btF6mQSo8jv5KubcCyFlTLQGqyUgWMpTr56yNLXf+UrX2nq6OjoqTL//Oc/3/7b3/62YdasWXPvuuuu+p/97Gc7ip2fz7D2BGqtHwQe3Gdb3g54rfUnhrMsQhSjtaa5q/iXvzU7Ovjri14m4UuOjnJ4zcBswIGWDVS88Q8AOhddhvYFqa8I4DP2+e7mC0CoemgKL0afeR+MAdtZcfMEYm8GiU7OcPLVTbnt+y2ZTL7Y/fvUqVPtVCrV8/jII4/Mrly58oAyycvQEiGAjqRVdBXGlOVw4yObAJgzLsSFC/L0V2pN9Qs/AyBbO5PktHcTDQUG9puAt068EMXM+2DsQAPIW01Sr4gxL2u7dJRo6rp92Zaepq4vLanGl6epK7xzOaHmtQB0HPNpgsEA1eE8a5oEKiBQ1oqqQowoElDEmNcSz6CLzDl5cXs7f3vJG6B46TG1TK/NEyRcm+oXfw5AatKJ2BOPo74iz4AcpaBCaididJKAIsa0zqRF2io8DSqZtfn+I16z8uzxES6YH857XOVrf8fftROtDDqO/hT1lfvMN+kWqpaVGMcu13XdUTMKI/dc+rUTS0ARY5bluLSVSK/y8ye20BTzmrq+vKQmb1OXynT1pFhJvO29hCcc2bv6Yl+GIcOEx7aXm5ubq0dDUHFdVzU3N1cDL/fdLp3yYsxq7ire1PXs1lYeWOdNYLz8hHFMr8n//av65V9jZmO4vgjJoy+nMVzgbRWqkUmMY5ht25c1NTXd0dTUNJ+R/2XeBV62bfuyvhsloIgxqTNVvKkrlrL4n1xT18LJVZw/O/9bxRfbQeWme7xz5l9ETcPEgfNNQCYxCo499ti9wDkHuxzDaaRHSSEGzXLckkv6/uTxzbQmsoT9Jl9eWodRYAJizYs/Q2kHu2ICvmM+SsAs8JaSlRjFGCABRYw5zV2ZopmEH39lL4+/kktLf8pEJlfkr8kEm1YT3vk0AKnjrqYyUiCXni/grXcixCgnAUWMKR3JbNGmruauDD/6h5eW/sTptZwzo0CtwrWpWX0TANlxC6mc957CN43U73d5hRhJJKCIMSNjO7QnC09gdLXmew+/QjxjUx3284Wl9Rgqf02m8rX7CHRsQaMw3v6fKFXgreQPexMZhRgDJKCIMaE7V1exUV1/e/FNXtjeAcDnTjuMRn8673FGppPo2jsBcGafg2/C/MI3lkmMYgyRgCLGhLZEtuj68FtbEty6bAsAZ80bzzsmFW4Wq15zJ2a2Cx2oxHfy1YVvGqySdeLFmCIBRYx6acuhs0iurqzt8u0HNmI5monVIa45oRql86/Y6G/fTMVmb1kfdfyVXgr6fJSSvhMx5khAEaOa65ZOS3/bsi1sbUlgKPjqe6ZTpZL5D9Samud/hNIuunY6LDi38EXDtbJOvBhzJKCIUa0lkSmalv7Zra3cm1vj5OKTDmdBNFXw2Mi2R3uyCaulnyuck8v0ySRGMSZJQBGjVjxjE0/nbyA39JUAACAASURBVLoCr1/lxoe9NU4WTI5y0YJIwaYulY1Tk1vrhLedAYedWPjGkQaZxCjGJAkoYlSyHJeWIk1drtZ858GNtCctKoM+vvzu6fjtroLHV6+9EzPd5g0DXvqfhW/sD0OwwARHIUY5CShi1NFasyeWLjob/o/P7WB19xDhd81ksq9wMPG3b6by1b96D467HCrH5z9QKaho3O9yCzHSSUARo05riSHC63d18ountwLwvkUTOfUwH8otkNtLu9Q+90OUdqF2Oiz6aOEbh6q9NCtCjFESUMSoksjYxIoMEY6lLL79wEZcDdMbKvi3JVMwM+0Fj694/QGCLbklH97xhcId8YYJ4QJDiIUYIySgiFHDctyiQ4S11nzv4U3siWUI+gy+9t7ZRLKtBY83Um3UvHiL9+DI98KU4wvfPFLvLaAlxBgm7wAxKmit2Vsii/CfV+3kmS1eALn2nTOZUZEt3NQF1L/0U4xsFwSrYcl/FL65PyTZhIVAAooYJVoTWTJFsgi//GYn/7+9O4+Ss67zPf7+Pk8tXVW9pzudPZAQshD2yCoQ1gFEcFCP4nJ1jjOIemfwjrKoiLI4ouPMEVHGcRy5MqPDRVFAFAFZBEGUgGxJCAkhK0l6X2qvep7f/eNXvSTpqq6E7lR1+vs6p053rf2tTnd/8tv/4ym7tcr5R8zg/MWNJbu6ojufp2bjI/bKqVcWX1eiA/FKDdFAUZNefIxxk95klpseGB43+YezFuImO4o+XvJpmp77F3tl1rGwtMQhezUNul+XUgUaKGpSy+S9kuMmnm+4+ddr6YhnqAk6fOWiZcTyPSW7ulpW/1+c/m3gBGHlF4svUnQcHYhXagQNFDVpeb5hV1/pLenvePrNoS3pr/6rxcyv83Gy/UUfH+l5nfDqu+yVd3wCmhcULyDaogPxSo2gvw1qUhpcvJj3i683eXpDJz/981YA3nf8bFYe1lS6q8v3aP7TN+yak+aFcNzHixcQCOtAvFJ70EBRk1JnvPRRvlu7k9zy4GuA3afr8nceiptsRygeQK3r78LpWg/iwNnXF19zAlA7fb9rV+pgpYGiJp2+VI6BdPFB+EQmz5fvW00i69EcC3H9RcsI5XpxvNFPYASoi28m/II9hZGjL4O2Eqcw6kC8UqPSQFGTSjKbpys+xqaPD77Glu4kAUe44eJltITyuJneos8J4NPw9M3g56FhLpz4qeIFOE7xQ7WUmuI0UNSkkc37tPeXPizrv/64mWfesIsXrzx7EUe0RXGT7SWeIbSu+wnSuQ4QOOerdsfgYmKtdpsVpdReNFDUpJD3fHb2ld5B+MnXO/jxHzcDcPHRs3jXkTMIJHaVHDdpTm4k8MKP7JVjPgwzjyleRDBiz4lXSo1KA0VVPd837BxjRtfruwb4+tAgfAOfOXMhTqoL8Yu3aGKuIfbkTeB70DgfTirR1SWiA/FKjUEDRVU1Ywy7BtIlt6Pvime47t5XyeR9ZjbUcOPFRxDykrjZvqLPCQVcml7+D+jaYGd1nXMDBGqKFxJpKj3rSymlgaKqW8dAhlS2+PTgTM7jy/etpjOeJRpyufk9y2kIU3K9iSsOLT0vIi/+t71hxSdgxpHFiwiE9Ix4pcqggaKqVsdAhnim+JnwgzO6Xts5gADXvWsph06LllxvIggtoTTuozfYG9qOsIFSSmy6nhGvVBk0UFRV6k5kS641AfjBkxt5cn0nAJ8+cyEnLZiGm+ossd5EaImFCD31TUi02y6uc28u3ZUVabTb0yulxqSBoqpObzJLb7L45o0A9734Fnev2gbAXx87m/ceNwcn01dyn67mWIiaDQ/A+oftDad9DhrnFf8ibsAenKWUKosGiqoqfakc3YnSYfLMG53c9th6AE5eMI1Pr1yI5FI4qeKnLzZEQsTiW+DJb9obFp4Ny/66dDHa1aXUPtFAUVWjP50ruQoe7EFZNxbONjm8rZbrLlqKa/K4yV0Io69RiYYC1Ac8+O21kM9A3Uw487rSYVFTD6Ho23k7Sk05GiiqKsQzeTpLnGsCsLkrwXX3vko27zOrsYavX3okkYAQSOxEzOgzwUIBl+ZYCJ76V+h+A8SF8/6p9E7BbsBuTa+U2icaKKri4pk87f3FN24EaO9Pc809r9CfztMUDfKN9x5FUzSEm9hZ9LAsVxymxULIugdh9T32xpM+BTOPKl1QbZuec6LUftDfGlVRiUy+5ImLYAfpr/r5y7QPZIgEXb5+6ZHMbozgJDtx8qlRnyMILXUhAj0b4fGv2RvnnQLHfax0QZHG0nt5KaWK0kBRFZPM5mkfKH3iYjyT55p7XmFrT4qgK9z0niM4vK0OJ91bYiW80FIbJuSl4MGrIZ+24ybn3mRXxRcTCOmsLqXehgkNFBE5X0TWicgGEbl2lPs/LCIvFy7PiMjRE1mPqh6JTJ5d/aXDJJ3z+NIvX2V9exxH4PqLlnHcvCYkG8dNF5/R1RwLURNw4NEboXezPRv+/G/a1kcxIlA7Q2d1KfU2TFigiIgLfA+4AFgGXCYiy/Z42JvAGcaYo4CbgB9MVD2qeiQyY7dMsnmfL9/7Kq9st62Qq89fwqmHtSC5VMnt6JtiIWKhADx/B7zxqL3x9Kugbc8fvT1Ep9kWilJqv01kC+UEYIMxZqMxJgvcBVwy8gHGmGeMMT2Fq88CcyawHlUF4mWGyfX3r+b5LfZQrCvPPozzlrWBl7GD8EWmBzfFQtSGgvDmk/Ds7fbGpRfDEZeWLioULd16UUqVZSIDZTawdcT1bYXbivkE8OBod4jI5SKySkRWdXQU3/RPVbeBdI72/nTJMMl5Pjc+sIY/v9kNwKdXLuSSY2aDlyMQ31l0j66hMOl+Ex6+DjDQdiSs/ELpbizHtbO6lFJv20QGymi/xaP+JRGRM7GBcs1o9xtjfmCMWWGMWdHa2jqOJaoDpS+VG3M2Vzbv89X71wyduHj56Qt43/FzwPcIJHYgZvSNIhsjhTBJ9cKv/xFyCXuy4oX/DO4Y3Vi1bXoCo1LjJDCBr70NmDvi+hzgrT0fJCJHAT8ELjDGFB9pVZNWXzJHV2LsMLn+/tVDLZNPvPMQPviOuWB8AvEdiD/6RpG14SB1NUHwsvDgVdC3xYbIhd+yoVJKpFFXwys1jiayhfIcsEhEDhWREPBB4P6RDxCRecAvgI8aY16fwFpUhXQnsmOGSTrn8aV7Xx0Kk8tPX8CHT5wPxuDGdxQ9dTEaCtAUDYEx8NjN8NYL9o5zboC25aUL0ynCSo27CWuhGGPyIvK/gYcAF/iRMWa1iFxRuP/7wPXANOB2sf3ceWPMiomqSR1YnfEM/anSW9DHM3m+9MtXeGW73SX40ysX2m4uY3ATO4tuRR8OFrZUAVj1Q1j3a/v5SZ+BReeVLkynCCs1IaTUAGk1WrFihVm1alWly1AlGGPGPBwLoCeZ5Zp7XmFDexyws7kuOcbO23AT7Ti5gVGfVxMM0FIbQhBYcz88Vjgsa+nFcNb1YwdF3QwI1+7bm1Jq/02Z/7lM5BiKmoI837CzP00mV/zYXoBd/Wmu/vnLbO1J4Qhcc/4Szl1mZ1u5yY6iYRINBWiOFcLkzSfh8ZvtHXNOgJVfHDtMIk0aJkpNEA0UNW4yeY/2/gw5b/SpvYM2dsS59hev0BnPEnSF6y9axqmH2d193WRH0UOyoqEA02Jhe2XHS/DQtWA8aF1SmNFV4uRFsHt0xXTcRKmJooGixsXg9vP+GF2oL27t5cv3vkoi6xELudx4yREcO68JwG72WCRMYqHg8JhJ53p44LP2bJOGOfDu70BojFaHG7BdXUqpCaOBot4WYwxdieyYg+8Aj65t55sPvUbOM0yrDXHLpUeysNUGQamWSW04aGdzAfS8Cfd9GjL9EGmGi7879mwtEaibpetNlJpgGihqv+U9n/aBDOkxxkuMMdz5x838+I+bAZjfHOWW9x5JW32Nnc2VbMfJxUd9bl1NiMZIoSurbxvc+ylIdUO4AS65HRrmjvq8ISJ2p2Hdp0upCaeBovZLMmvPMfH80l1c2bzPtx5ex+/W2g0dj5nbyA0XL7OLEY3BTe7CySVGfe5uYdK/w4ZJogNCMbjke9CyaOxCYy26eFGpA0QDRe0TYwzdiSx9ZXRxdcYzfOX+1azdYWdsXbh8Blees4ig64Dx7TqTIgdk1deEaNitZXIFDOywA+vvvg2mLx272EgT1DSU/d6UUm+PBooqWzbv0z6QJpsvPYsLYM1b/Xzl/tV0JbII8HenHcoH3jEXEQHfK7losSESor6mECa9W+HeT0J8lw2Ti74DM8s4NqemXmd0KXWAaaCosvSlcnQnsiV3Cgbbgvn1Kzu57bH15DxDLOzypQuXctKCwh93P1/Ym2v0c+AbIyHbHQbQvdEOwCc6IBiDi28rL0zCtVA7fV/enlJqHGigqJLynk9HPEMqW3rgHeyeXN/+3XoeXrMLgLlNEW56z3LmNRfGMLyM3YK+2K7B0RB14UKY7HwFfnUlZPrslOCLvwszjhy74FBUt6NXqkI0UFRRA+kcXfHsmGtLALZ0J7nxV2vY2GkH2E9b1MJVf7WY2rD9EZNcqnA41hjnmQBseRYe/DzkUoWpwbfZxYtjCUbsjC7do0upitBAUXvJeT6dZbZKjDE8tHoX33lsPemcjyPwycI5JoUNP5HsAG6yo8hJi0Lz4LG9AOt+A4/eAH7ehsMlt0PjvLGLDtZomChVYRooaogxhr5Ujp5kbsyxErBnw3/7d+t59DU7Jbi1Nsx171rKkXOGZ1Y5qW7cTE+RVxBaakNEggG7Bf2q/4Q//Zu9q3mh7eYqZywkEC4sXJzI0xiUUmPRQFGAHf/oGBh7H65BL23t5ZbfvsaufntWyamHTeOq8xZTPzjV1/i4iV04+eSoz3dEaKkNEw644OXgiX+CtYXjcua8Ay74ZwjXjV1IIAz1szVMlKoCGihTXN7z6U5miadLbzU/KJv3+dHTb/KzVdswQCjgcMXpC7jkmFlDXVx4GQKJ9qIzuQKOQ0tdmKDjQLILHrwadrxo71xyEZx53dgbPYKGiVJVRgNlihrs3upN5soadAe7tuSfH1rH5m7b6ji8rZYvXLCE+dNiQ4+RTD9uqrPIeAmEAi4ttWFcEWhfC7/5nF1jAnDiFbDib8sbBwnWaDeXUlVGA2UKimfy9CSyZXdvpXMedzy9iZ8/b1sljsCHT5zHR0+aT8At/EE3fuEck9H35AKIhYM0RYPDB2P9/hbwMhCMwrk3woIzy3sD4Vo7NVgH4JWqKhooU0gq69GVyJS10n3Qsxu7+M6jG9jZb1e1L2yNcdVfLebwtuHxDcmn7Cwuv9h2LEJTLGinBedS8PtvwGu/snc1zIEL/xWmLSyvoEij3Z9LKVV1NFCmgHTOoyeZLWsa8KCOgQzfe3wDT67vBCDoCh85cT6XnTB3RKvE4KR7SszisuMl02pDhFzXrnz/7bXQ/Ya9c8FKOPur5Q2+gw2SSGPZ70EpdWBpoBzE9idIsnmfnz2/lZ88u4V0oSVz7LxGrjx70fCKdwZbJZ1FB95hxHG9Bnj5/8HTt9ouLseFU66Eoz9UXreViD0cKxQb+7FKqYrRQDkIpbIeval9CxJjDH/Y0MX3f/8GO/ps91ZTNMgnz1jIuUunD8/gMj5uqqvoYVhgpwQ3RguLFRMd8NhNsPlpe2f9bDj3Zph5VHmFuQE7+K7nmShV9TRQDiL70yIBWLujn3974g1efcuGhOsIlx47m4+ePH9o6xQAycbtDC5T/PUjoQCNkSABEXjtAXjqW5Cx29ez+F1wxtVjH9c7KBSF2hk6k0upSUID5SCQznn0JnMks+WtJRm0uSvBHc9s4snXO4duO/HQZj51xkLmTRtxKJWXxU11Fj27BGyrpCFaGHgf2AFP3AKb/2DvrGmAM66FReeVX1ykSbefV2qS0UCZxPY3SHb0pbjzj5t5ZM0uBg9cPKy1livOWMBx85uGH+h7OOkenGx/0XUlALFQkMZoEMfPwwt3wp//HfKFs04Wng1nXDP2ue+DHMdOCdbxEqUmHQ2UScYYQyLr0ZfKkRnjLPc9be9J8ZM/beHhNTuHgmRWYw0fP+UQzloyHWfEOImT6cPJ9JXs3goFXBojQbt9yvbn7XTgwRlc0Wlw+tVw2DnlFxissV1crv5YKjUZ6W/uJJH3fAbSeQbSefJ++etIAN5oj3PXc1t5fF37UJC01ob56MnzOf+Itt2nAWf6cDK9JYNkt+6t/u129tYbj9o7xYEj3w8nfqr86cAitosr0qSLFZWaxDRQqpgxhmTWYyCd3+duLWMML2zp5e5VW3lu0/A6kbb6MB8+cR7nLZtBKDC8yt3J9I8ZJCDU1QSprwngpPvgD3fY6cCDCxpnHAWnXQVty8ov1A3aLq5gzT69P6VU9dFAqULpnEc8kyeRyeP55e2zNfK5v1vbzi9e2MamruGdfudPi/KBFXM5Z+n04RaJ7+Fk+3Ay/WMEiV1T0hAJEsinYdWP4S93QtYepkVtG5z893D4+eW3MESgphGizdoqUeogoYFSJbJ5fyhEyt1ja6Qt3Ul+9dJbPLR6F/HMcGvmqDkNfGDFXE5c0Dw8RuJlbYtkjMF2gJpggIZIgJCXghd+Ai/+N6T77J2hWjjuY3D0Zfa0xHKFohBrLW9HYaXUpKGBUkGeb4hn8sQz+X0eYAfI5DyeXN/Jg6/u5MWtvUO3B13hrCXTufTY2SwauedWLmnHSIqcUTJSKODSUBOkJt8Pq+6Gl++CTGExoxuGoz4Ax3/cTgkuVyBkB+t1BpdSByUNlAPM8w2JrG2J7OsCRADfGFZv7+eRtbt4fF07iczwa8yor+Gio2ZywZEzaIoWVpb7Hk52wLZGim7eOCwcdKkPB6lJbIdnfmp3BfbsIVoEauyA+7EfLX8aMNhZW5FmqKnfl7eqlJpkNFAOgJznk8x4JLJ50vvREjHGsLEzwRPrOnh0bfvQzr8AAUc49bAWLlg+gxWHNA11a0kuZUMklxizWwuEaMilNuQQ3v4svHw3bHlm+O5wHSx/v+3aijaXX7jj2plbNQ06TqLUFKCBMgGMMaRzPslsnmTW268xEWMMb3QkeGp9B79/vZMt3bt3Ux3eVsu5y9o4Z0kbDdHCWISXxcnGcbIDiBl7VpgrDrFwgFiuk8CaB2DNfXaV+6C6mXDMh2Dpe+y4R7kcpxAkjRokSk0hGijjJJP3SGd9UjmPdM4r+xTEkfKezyvb+/jjxi6e3tA1tEnjoFmNNZy5eDrnLJ0+fEqil8NJ9yK5BI6XHuVV9xYOusScPNGtTyDrfgNbnwUzIvTmnmjHSOa/07YyyuW4dnt5DRKlpiQNlP00GCDpvA2QfZ3eO6hjIMOqTd38eVMPqzZ1k9hjXGV2Y4TTFrWwcnEri6bX2l1/vSxOuscOspcZIq44RAOG2vbnCLzxKGx8HHIjWj2RJljyblj2Hmiav29vIhCyIRKu0yBRagrTQCmD7xsyeZ90ziOd98jk/P1qgYA9fvelrb38ZUsvL2zp2W2tyKDFbXWcvLCZdx7WwqEtMUQEyaeQdA9OLlHyDJKRHBEiZKlrX0Vw85Pw5u8hO+KIXicAh7zT7gJ8yGn7No1XxM7WqmnYtynDSqmDlgbKHowxZD2fTN4nk7Mhsj9jIIN6klle3d7Py9t6eXlbH290xNmzMRMLuxw/r4l3HNLMSQuamVYbBj9vWyDJdhsmYyw8HOSKQzT9FrEdfyK47VnY9hx4IwNIYPbxsOhcWHjOvp+A6AYgXG+DZF+6w5RSB70pHSjG2JZH1rPhkfV8snkfs5+tj7zns7Ezwdod/azdMcDqt/rZ3rv3lu+uIyybWcex85o4fl4Ty2bV4+Ij+RROvh/pT5fdCgEhnB8g1vEiNTufw93+HPRt2/0hjguzV9gjdxecte9nsjuOXcQYrtPWiFKqqCkTKDnPJ1cIjGzetkDyvtnv8MjmfTZ1JdjQHuf1XXFe3zXAGx1xct7erxd0hSUz6jhqTiNHzWlg+awGIq6HeBmcfBqJbys/QIwhnO4g2r2GcPtLBHb+BeneuPfjIk0w7xSYfwrMP7X8jRoHDYZIKAbBqI6NKKXGdFAFijGGnGeGw8Pz7fX8/o95+Mawsy/Npq4EmzqTbOxM8GZngi3dyaID8S21IZbOrGfZzHqWz65nUUuUsOQQL43kM0hqa9ldWJJNEO1bT6T7NUJda3DaVyOJjr0f6IZg5jEw5x12ltb0pXbn330RCNvwCMV0s0al1D6blIGSydtZVbm8Iefb8MgXgmR/xdN5tvem2NaTYmtPkq3dSbZ2288z+eKv2xQNsqitjsPbajl8eh2Lp4eZHhHEz9rw8HqRZGfR5w8xPm58JzX9b1LTt5Fg7wYCXa8j/dtHf3wwAm3LYdZx9jJjuV3JXi4RG0LBiL0EInrUrlLqbZl0gZLzfLb3FD+Ktphs3qd9IM3OvjS7+jPs7E+zoy/Njr4Ub/Wm6UuV3pYk6ArzmqMc2hLj0GkxFraEWdQcZlrEIF4O/Bzi9SPGQImtsiSfJjCwneDAVkLxbYT6txDo24TTuwnJF5sCLNB0CLQdYS8zjoJph9lZWuVyAzZwAuHCxxrtxlJKjatJFyh7djIZYzdY7Epk6Ypn6Ypn6Ixn6Yhn6Ixn6Biwl57k2PtYAdTVBJjbFGFuU5S5jWHmN4U4pDHAzDqXoMnZ/bD8PEIOiMOeGeDlcFMdBBLtuImdBAuXQPwt3IHtOMlRuqtGcsPQfChMWwSti6F1CbQssuMZ5RCxQRMI2xbIYIjojCyl1ASbdIGysy/NF3/5Cj3JHD2JLD3J7KgD4cU4Aq11YdrqwsxqCDGrPsTM2gBzGgLMqXOoD4H4ucIYh89QYmTyuOkenHQ3bqoHN92Fk+rCTXURSHUSSHbgJjuRVFcZe2dhxyoa50HjfGheULgcCg3zyvvj7zjgBG1ouMHCJWw/astDKVUBky5Q+lI5nt3YPep9jtgxjWmxIK2xIK2xAC0xlxmxANNrHdqiDq01ecL5ASQbx8kNDO195XQO4Gzvw8kM4GT7cDN9OOk+3Eyv3fI9O7DvxUZboH6W3ROrYQ7Uz7EfG+baqbul/vA7rm1pOAEbEo5bCJCg/ajjHUqpKjOhgSIi5wO3Ai7wQ2PMLXvcL4X7L8SOPHzcGPNCqdecHspw/aHraAxkaQxkaXAz1EuaWidDlAyul7LrOXJJZCCF0520CwRzCbx0PyH27Sjd0ZQ9YSzRaS87Xt7nr+EDGhkHXrup5+r8FZxZu42PZn663/8GBvAo7xfMB6RwGZXY13Ma5sOxH4ZNT5HqeJM3ctO4w7yb1roaPuP9F3UDG8HP26/uBKBlsZ24sf63kIlDuBZO+gysvKZoLU+81s6uB27kgvgviJIiSYQHay9lyXFncPSWH0PvZgZMhIG+HpqNPVp6uzOL+Glf5uiz3r/3C77+CPzuK9C9wb6JlkWw9GLY9BT0brYt9FOuhMPPHX78M7fa+0J2K59UvHe39/rJwAM0xTdAegD8rH2/bhhqZ4AYaJzPxtrjcNbez0xvGwJkGhZQ966v7f112tfaLYi8nJ0V2bIIzv7q6PXsWavai+zvOowxX1jEBV4HzgW2Ac8Blxlj1ox4zIXA32MD5UTgVmPMiaVed8Us16y6vMzxhDJM0NtXk1gWhyB+8T/wlSIgCOmaNjZlotSQoZ4kAZMhStoujh31eYXWrfEAA6dfPWqoPPFaO+t/dj1/492NZ8DDwcXHFZ8EEQJ1MxE/RyixDdf45HDwcXAx9Eotb53+L7uHyuuPwH2fhlS3rcGY4RpiM6C2FXIpGwoXfMs+58HPgxOyf+D7t+Ibw3bTiicu9SQxxieHy3R6cEbrWo61kfaEYHoXBsHDBQwOBr+mifCl3x/+OrksJHYVagIkYFM9Mg0u+d7u9QQju9e6b6FSdT9KE2UiWygnABuMMRsBROQu4BJgzYjHXALcaWyqPSsijSIy0xizY++XGyR2/CEYsQPOI6e9hqIQjNl1FLtd6tjw0PdYIDumzr+s2m8h9n/6+cQz+Jk+RGLkJELU6yRIdoyfa2P7gwmAl4dnvzdqoPz7kxv5gXc/ngEfF8F+DBiPWkmxOe0wM9+BGIMBXAweDh4+MZPCffY2GBkoz9wKmYFCoBXaermcrSfbDzLd/s5mC48F+8c7FIWuDSAued9nGn1sd2YT9ToxgI8UH6dMduITKtxvMNj96Xx8THpg96+T7Ryxy7Z9t0jQnky6Zz2we63aShnVRAbKbGDriOvbsK2QsR4zG9gtUETkcuBygHnz5sGXNu9zMaGHbtUwUZObAQQCJofj2J9mlzwOpvQ0kJHNcHFt99cotvYkiZAiWwiToacAgiGb93FNbuiP+eBHgxDAozm3x/8DezfbLrjRJpmM3F8uGIHeLfYN1jQN3y8OHkKQ3NB7HfM/+8YjUHj8yEcaHBzyu38dr9BdNvQgY7u9/Pze9exVqxrNRHbTj/Yvv+fPfTmPwRjzA2PMCmPMitbW1v0qZptpLWfulVLVq/Dbkpfg0M4PHoFCR1eJP7QjJ38Yz46ljGJuU5QUEdw9WmiDrYJQwMGTIKbwtQY/CoY8Lt3Bmbu/YON8O5YzWr+yGxr+PJcanvGYSw3fbwwuhlyhleERII9LttT/g8UlL8GhuoduxscnsPvXcUPs9n0TsS0WJ7B3PXvWqkY1kYGyDZg74voc4K39eMy4+Kl7CQkTGvuBasrLjt47XyUEJ9yAMYagnyIpURJExhjxEfCN7e7C2IH5UXzy9AXc5V6MK+DgYTD2owhxIrTV+JhoK0YEATwEwcfFkJAI3kl/v/sLnnKl3UPOeOD74Hm2BSAOhOpt0GSTdlzilCvtxc/a26KttrUhPl00DL3XJDUMEB0Ks71EW+z3B8HgIPgIHg4+UlO3+9cJ1Y/YnsgATiFw6/euoQ1tWAAAB6VJREFUZ89a1agmMlCeAxaJyKEiEgI+CNy/x2PuB/6XWCcBfaXHT/bfd796LV9wPke7v4+bJFZINffiH8zaTT2X5z7PneEPva1/AwNlzyf0GaVZPpKAEZCG+bDyC9TMWMT8aJZ4sIWvBT7D7c1fJNWwCHGCDP2P2wnA9CPgyA/YFomfs2MARQbkAVYumc6i99/IPbUfIiM1hMQjIzXcU/sRNp3+HWLTZhENCqmGReyQ6fi4gLDFmbP3gDzYcYZLbrezzQTbApi+FM64FloWQroX6tqGB7kPP9d+Xtdmvysti3GmL6UlFhh6r//RfBXh6YfjRFvACQ+/XzcMDfMhWEPNjEVsXv4PbHPnF759QrrhMDsgP/LrtCyESLMdk3UKU/Nbl9gB+T3r2bNWNaoJm+UFQ7O4vo2dNvwjY8zXROQKAGPM9wvThr8LnI+dNvw3xphVpV5zxYoVZtWqkg9RSqlqMmWGbyc0UCaCBopSapKZMoGia+eUUkqNCw0UpZRS40IDRSml1LjQQFFKKTUuNFCUUkqNCw0UpZRS40IDRSml1LjQQFFKKTUuNFCUUkqNCw0UpZRS40IDRSml1LiYdHt5iUgHsO8nbJWvBeicwNffX1pX+aqxJqjOuqqxJji46uo0xpw/EcVUm0kXKBNNRFYZY1ZUuo49aV3lq8aaoDrrqsaaQOuarLTLSyml1LjQQFFKKTUuNFD29oNKF1CE1lW+aqwJqrOuaqwJtK5JScdQlFJKjQttoSillBoXGihKKaXGxZQOFBGZKyKPi8haEVktIlcWbm8WkUdEZH3hY9MBrKlGRP4sIi8Varqh0jXtUZ8rIn8RkQeqpS4R2SQir4jIiyKyqhrqEpFGEfm5iLxW+Pk6uQpqWlz4Hg1e+kXks1VQ1/8p/Ky/KiL/U/gdqIafqysLNa0Wkc8Wbqt4XdVsSgcKkAc+Z4xZCpwEfEZElgHXAo8aYxYBjxauHygZ4CxjzNHAMcD5InJShWsa6Upg7Yjr1VLXmcaYY0asEah0XbcCvzXGLAGOxn7PKlqTMWZd4Xt0DHA8kAR+Wcm6RGQ28A/ACmPMcsAFPljJmgp1LQf+DjgB++93kYgsqnRdVc8Yo5fCBbgPOBdYB8ws3DYTWFeheqLAC8CJ1VATMAf7S3QW8EDhtmqoaxPQssdtFasLqAfepDDppRpqGqXG84CnK10XMBvYCjQDAeCBQm0V/V4B7wd+OOL6l4GrK11XtV+megtliIgcAhwL/AloM8bsACh8nH6Aa3FF5EWgHXjEGFPxmgq+jf2l8kfcVg11GeBhEXleRC6vgroWAB3AHYXuwR+KSKzCNe3pg8D/FD6vWF3GmO3At4AtwA6gzxjzcCVrKngVOF1EpolIFLgQmFsFdVU1DRRARGqBe4DPGmP6K12PMcYztltiDnBCofldUSJyEdBujHm+0rWM4lRjzHHABdhuy9MrXE8AOA74N2PMsUCCKuoaEZEQcDHwsyqopQm4BDgUmAXEROQjla0KjDFrgW8AjwC/BV7CdpGrEqZ8oIhIEBsmPzHG/KJw8y4RmVm4fya2pXDAGWN6gSeA86ugplOBi0VkE3AXcJaI/HcV1IUx5q3Cx3bsmMAJFa5rG7Ct0LIE+Dk2YCr+vSq4AHjBGLOrcL2SdZ0DvGmM6TDG5IBfAKdUuCYAjDH/aYw5zhhzOtANrK+GuqrZlA4UERHgP4G1xph/HXHX/cDHCp9/DDu2cqBqahWRxsLnEewv3GuVrAnAGPMFY8wcY8wh2O6Sx4wxH6l0XSISE5G6wc+x/e+vVrIuY8xOYKuILC7cdDawppI17eEyhru7oLJ1bQFOEpFo4ffxbOwEhop/r0RkeuHjPOBS7Pes4nVVsym9Ul5E3gk8BbzC8LjAF7HjKHcD87A/8O83xnQfoJqOAn6Mne3iAHcbY24UkWmVqmmUGlcCnzfGXFTpukRkAbZVArar6afGmK9VQV3HAD8EQsBG4G8o/HtWqqZCXVHsIPgCY0xf4bZKf69uAD6A7VL6C/C3QG0layrU9RQwDcgB/2iMebTS36tqN6UDRSml1PiZ0l1eSimlxo8GilJKqXGhgaKUUmpcaKAopZQaFxooSimlxoUGipoyROSvRcSIyJJK16LUwUgDRU0llwF/wC7MVEqNMw0UNSUU9ms7FfgEhUAREUdEbi+cd/GAiPxGRN5XuO94Efl9YcPJhwa321BKFaeBoqaK92DPJ3kd6BaR47DbaRwCHIldnX0yDO3vdhvwPmPM8cCPgK9VomilJpNApQtQ6gC5DLv9PtjNLS8DgsDPjDE+sFNEHi/cvxhYDjxit5fCxW6trpQqQQNFHfQK+y+dBSwXEYMNCMPwHmB7PQVYbYw5+QCVqNRBQbu81FTwPuBOY8x8Y8whxpi52BMVO4H3FsZS2oCVhcevA1pFZKgLTESOqEThSk0mGihqKriMvVsj92APdNqG3e7+37G7TPcZY7LYEPqGiLwEvIg9o0MpVYLuNqymNBGpNcbEC91if8ae/riz0nUpNRnpGIqa6h4oHGgWAm7SMFFq/2kLRSml1LjQMRSllFLjQgNFKaXUuNBAUUopNS40UJRSSo0LDRSllFLj4v8DjM2JUStjdH4AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.lmplot('Age', 'Status', data=data_reg, logistic=True, ci=97.5, hue='Smoker')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A partir des données précédentes il est possible de voir : \n",
+ "- Pour des âges entre 35 et 60 ans, il y a plus de probabilité de décès pour les fumeuses que les non-fumeuses\n",
+ "- Pour des âges plus élevés les courbes se rejoignent et les intervalles de confiance se recoupent, ne permettant pas de conclure sur des probabilités plus fortes de décès dans l'un ou l'autre des cas.\n",
+ "- Le coefficient de régression des non-fumeuses est plus élevé avec une interception négative plus grande notamment parce que la probabilité de décès augmente fortement au-delà de 60 ans, comparativement à celle des non-fumeuses qui augmente de manière plus constante.\n",
+ "\n",
+ "**Ainsi ces régressions nous montre que l'effet du tabagisme est important pour une certaine tranche d'âge mais qu'au delà d'autres causes de décès entrent en jeu alignant le nombre de mort de manière identique entre les deux status.**\n"
+ ]
}
],
"metadata": {