diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 077f37819d4ef71ac8febaf41ca494311fc56306..2ec0850e07cb82f8d5fe1df3838d2f61046444a0 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -11,13 +11,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## En demandant à la lib maths" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ + "## En demandant à la lib maths\n", + "\n", "Mon ordinateur m’indique que $\\pi$ vaut *approximativement*" ] }, @@ -55,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -64,7 +59,7 @@ "3.128911138923655" ] }, - "execution_count": 3, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -72,9 +67,9 @@ "source": [ "import numpy as np \n", "np.random.seed(seed=42)\n", - "N=10000\n", - "x=np.random.uniform(size=N, low=0, high=1)\n", - "theta=np.random.uniform(size=N, low=0, high=pi/2)\n", + "N = 10000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)" ] }, @@ -82,14 +77,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Avec un argument \"fréquentiel\" de surface" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\\sim U(0, 1)$ et $Y\\sim U(0, 1)$ alors $P[X^2+Y^2\\le 1]=\\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" + "## Avec un argument \"fréquentiel\" de surface\n", + "\n", + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\\sim U(0, 1)$ et $Y\\sim U(0, 1)$ alors $P[X^2+Y^2\\leq 1]=\\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" ] }, { @@ -114,12 +104,12 @@ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "np.random.seed(seed=42)\n", - "N=1000\n", - "x=np.random.uniform(size=N, low=0, high=1)\n", - "y=np.random.uniform(size=N, low=0, high=1)\n", - "accept=(x*x+y*y)<=1\n", - "reject=np.logical_not(accept)\n", - "fig, ax=plt.subplots(1)\n", + "N = 1000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "y = np.random.uniform(size=N, low=0, high=1)\n", + "accept = (x*x+y*y)<=1\n", + "reject = np.logical_not(accept)\n", + "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.set_aspect('equal')"