{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sujet 6 : Autour du Paradoxe de Simpson"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Contexte de l'étude"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cette étude porte sur le [Paradoxe de Simpson](https://fr.wikipedia.org/wiki/Paradoxe_de_Simpson) (Simpson 1951, Undy 1903). Ce paradoxe est un paradoxe statistique \"dans lequel un phénomène observé de plusieurs groupes semble s'inverser lorsque les groupes sont combinés. Ce résultat qui semble impossible au premier abord est lié à des éléments qui ne sont pas pris en compte (comme la présence de variables non indépendantes ou de différences d'effectifs entre les groupes, etc.) est souvent rencontré dans la réalité, en particulier dans les sciences sociales et les statistiques médicales\" (Wikipédia). \n",
"\n",
"Pour représenter ce paradoxe, on utilisera les données d'un sondage des années 1970 d'une ville du nord-est de l'Angleterre sur un sixième des électeurs, complété par une seconde étude 20 ans plus tard (Vanderpump et al. 1995) sur les mêmes personnes. Le sondage initial avait été réalisé afin d'expliciter les travaux sur les maladies thyroïdiennes et cardiaques (Tunbridge et al. 1977). Le second sondage avait pour objectif de savoir si les individus étaient envore en vie, notamment au vu de leur tabagisme.\n",
"\n",
"Pour ce MOOC : \"Nous nous restreindrons aux femmes et parmi celles-ci aux 1314 qui ont été catégorisées comme \"fumant\n",
"actuellement\" ou \"n'ayant jamais fumé\". Il y avait relativement peu de femmes dans le sondage initial ayant fumé et ayant arrêté depuis (162) et très peu pour lesquelles l'information n'était pas disponible (18). La survie à 20 ans a été déterminée pour l'ensemble des femmes du premier sondage\" (MOOC Recherche Reproductible)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Importation des librairies python"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import urllib.request\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import statsmodels.api as sm\n",
"from statsmodels.formula.api import logit\n",
"%matplotlib inline\n",
"\n",
"# Supprime l'affichage des UserWarnings avec toutes les dépréciations de fonctions\n",
"import warnings \n",
"warnings.simplefilter('ignore')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Traitement des données\n",
"\n",
"Les donnés sont disponibles sur le GitLab du MOOC Reproductibilité. Par soucis d'accessibilité et pour éviter toute disparition ou de modification de lien vers les données, on enregistrera les données récupérées de manière locale. Elles seront uniquement téléchargées si la copie locale n'existe pas.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"data_url = 'https://gitlab.inria.fr/learninglab/mooc-rr/mooc-rr-ressources/-/raw/master/module3/Practical_session/Subject6_smoking.csv?inline=false'\n",
"data_file = 'simpson_paradox.csv'\n",
"\n",
"if not os.path.exists(data_file):\n",
" urllib.request.urlretrieve(data_url, data_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Chaque ligne des données représente une personne avec comme information:\n",
"- Si la personne fume (Yes/No)\n",
"- Si elle est vivante ou morte au moment de la 2ème étude (Alive/Dead)\n",
"- Son âge au 1er sondage (arrondi à la 1ère décimale)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Smoker
\n",
"
Status
\n",
"
Age
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Yes
\n",
"
Alive
\n",
"
21.0
\n",
"
\n",
"
\n",
"
1
\n",
"
Yes
\n",
"
Alive
\n",
"
19.3
\n",
"
\n",
"
\n",
"
2
\n",
"
No
\n",
"
Dead
\n",
"
57.5
\n",
"
\n",
"
\n",
"
3
\n",
"
No
\n",
"
Alive
\n",
"
47.1
\n",
"
\n",
"
\n",
"
4
\n",
"
Yes
\n",
"
Alive
\n",
"
81.4
\n",
"
\n",
"
\n",
"
5
\n",
"
No
\n",
"
Alive
\n",
"
36.8
\n",
"
\n",
"
\n",
"
6
\n",
"
No
\n",
"
Alive
\n",
"
23.8
\n",
"
\n",
"
\n",
"
7
\n",
"
Yes
\n",
"
Dead
\n",
"
57.5
\n",
"
\n",
"
\n",
"
8
\n",
"
Yes
\n",
"
Alive
\n",
"
24.8
\n",
"
\n",
"
\n",
"
9
\n",
"
Yes
\n",
"
Alive
\n",
"
49.5
\n",
"
\n",
"
\n",
"
10
\n",
"
Yes
\n",
"
Alive
\n",
"
30.0
\n",
"
\n",
"
\n",
"
11
\n",
"
No
\n",
"
Dead
\n",
"
66.0
\n",
"
\n",
"
\n",
"
12
\n",
"
Yes
\n",
"
Alive
\n",
"
49.2
\n",
"
\n",
"
\n",
"
13
\n",
"
No
\n",
"
Alive
\n",
"
58.4
\n",
"
\n",
"
\n",
"
14
\n",
"
No
\n",
"
Dead
\n",
"
60.6
\n",
"
\n",
"
\n",
"
15
\n",
"
No
\n",
"
Alive
\n",
"
25.1
\n",
"
\n",
"
\n",
"
16
\n",
"
No
\n",
"
Alive
\n",
"
43.5
\n",
"
\n",
"
\n",
"
17
\n",
"
No
\n",
"
Alive
\n",
"
27.1
\n",
"
\n",
"
\n",
"
18
\n",
"
No
\n",
"
Alive
\n",
"
58.3
\n",
"
\n",
"
\n",
"
19
\n",
"
Yes
\n",
"
Alive
\n",
"
65.7
\n",
"
\n",
"
\n",
"
20
\n",
"
No
\n",
"
Dead
\n",
"
73.2
\n",
"
\n",
"
\n",
"
21
\n",
"
Yes
\n",
"
Alive
\n",
"
38.3
\n",
"
\n",
"
\n",
"
22
\n",
"
No
\n",
"
Alive
\n",
"
33.4
\n",
"
\n",
"
\n",
"
23
\n",
"
Yes
\n",
"
Dead
\n",
"
62.3
\n",
"
\n",
"
\n",
"
24
\n",
"
No
\n",
"
Alive
\n",
"
18.0
\n",
"
\n",
"
\n",
"
25
\n",
"
No
\n",
"
Alive
\n",
"
56.2
\n",
"
\n",
"
\n",
"
26
\n",
"
Yes
\n",
"
Alive
\n",
"
59.2
\n",
"
\n",
"
\n",
"
27
\n",
"
No
\n",
"
Alive
\n",
"
25.8
\n",
"
\n",
"
\n",
"
28
\n",
"
No
\n",
"
Dead
\n",
"
36.9
\n",
"
\n",
"
\n",
"
29
\n",
"
No
\n",
"
Alive
\n",
"
20.2
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
1284
\n",
"
Yes
\n",
"
Dead
\n",
"
36.0
\n",
"
\n",
"
\n",
"
1285
\n",
"
Yes
\n",
"
Alive
\n",
"
48.3
\n",
"
\n",
"
\n",
"
1286
\n",
"
No
\n",
"
Alive
\n",
"
63.1
\n",
"
\n",
"
\n",
"
1287
\n",
"
No
\n",
"
Alive
\n",
"
60.8
\n",
"
\n",
"
\n",
"
1288
\n",
"
Yes
\n",
"
Dead
\n",
"
39.3
\n",
"
\n",
"
\n",
"
1289
\n",
"
No
\n",
"
Alive
\n",
"
36.7
\n",
"
\n",
"
\n",
"
1290
\n",
"
No
\n",
"
Alive
\n",
"
63.8
\n",
"
\n",
"
\n",
"
1291
\n",
"
No
\n",
"
Dead
\n",
"
71.3
\n",
"
\n",
"
\n",
"
1292
\n",
"
No
\n",
"
Alive
\n",
"
57.7
\n",
"
\n",
"
\n",
"
1293
\n",
"
No
\n",
"
Alive
\n",
"
63.2
\n",
"
\n",
"
\n",
"
1294
\n",
"
No
\n",
"
Alive
\n",
"
46.6
\n",
"
\n",
"
\n",
"
1295
\n",
"
Yes
\n",
"
Dead
\n",
"
82.4
\n",
"
\n",
"
\n",
"
1296
\n",
"
Yes
\n",
"
Alive
\n",
"
38.3
\n",
"
\n",
"
\n",
"
1297
\n",
"
Yes
\n",
"
Alive
\n",
"
32.7
\n",
"
\n",
"
\n",
"
1298
\n",
"
No
\n",
"
Alive
\n",
"
39.7
\n",
"
\n",
"
\n",
"
1299
\n",
"
Yes
\n",
"
Dead
\n",
"
60.0
\n",
"
\n",
"
\n",
"
1300
\n",
"
No
\n",
"
Dead
\n",
"
71.0
\n",
"
\n",
"
\n",
"
1301
\n",
"
No
\n",
"
Alive
\n",
"
20.5
\n",
"
\n",
"
\n",
"
1302
\n",
"
No
\n",
"
Alive
\n",
"
44.4
\n",
"
\n",
"
\n",
"
1303
\n",
"
Yes
\n",
"
Alive
\n",
"
31.2
\n",
"
\n",
"
\n",
"
1304
\n",
"
Yes
\n",
"
Alive
\n",
"
47.8
\n",
"
\n",
"
\n",
"
1305
\n",
"
Yes
\n",
"
Alive
\n",
"
60.9
\n",
"
\n",
"
\n",
"
1306
\n",
"
No
\n",
"
Dead
\n",
"
61.4
\n",
"
\n",
"
\n",
"
1307
\n",
"
Yes
\n",
"
Alive
\n",
"
43.0
\n",
"
\n",
"
\n",
"
1308
\n",
"
No
\n",
"
Alive
\n",
"
42.1
\n",
"
\n",
"
\n",
"
1309
\n",
"
Yes
\n",
"
Alive
\n",
"
35.9
\n",
"
\n",
"
\n",
"
1310
\n",
"
No
\n",
"
Alive
\n",
"
22.3
\n",
"
\n",
"
\n",
"
1311
\n",
"
Yes
\n",
"
Dead
\n",
"
62.1
\n",
"
\n",
"
\n",
"
1312
\n",
"
No
\n",
"
Dead
\n",
"
88.6
\n",
"
\n",
"
\n",
"
1313
\n",
"
No
\n",
"
Alive
\n",
"
39.1
\n",
"
\n",
" \n",
"
\n",
"
1314 rows × 3 columns
\n",
"
"
],
"text/plain": [
" Smoker Status Age\n",
"0 Yes Alive 21.0\n",
"1 Yes Alive 19.3\n",
"2 No Dead 57.5\n",
"3 No Alive 47.1\n",
"4 Yes Alive 81.4\n",
"5 No Alive 36.8\n",
"6 No Alive 23.8\n",
"7 Yes Dead 57.5\n",
"8 Yes Alive 24.8\n",
"9 Yes Alive 49.5\n",
"10 Yes Alive 30.0\n",
"11 No Dead 66.0\n",
"12 Yes Alive 49.2\n",
"13 No Alive 58.4\n",
"14 No Dead 60.6\n",
"15 No Alive 25.1\n",
"16 No Alive 43.5\n",
"17 No Alive 27.1\n",
"18 No Alive 58.3\n",
"19 Yes Alive 65.7\n",
"20 No Dead 73.2\n",
"21 Yes Alive 38.3\n",
"22 No Alive 33.4\n",
"23 Yes Dead 62.3\n",
"24 No Alive 18.0\n",
"25 No Alive 56.2\n",
"26 Yes Alive 59.2\n",
"27 No Alive 25.8\n",
"28 No Dead 36.9\n",
"29 No Alive 20.2\n",
"... ... ... ...\n",
"1284 Yes Dead 36.0\n",
"1285 Yes Alive 48.3\n",
"1286 No Alive 63.1\n",
"1287 No Alive 60.8\n",
"1288 Yes Dead 39.3\n",
"1289 No Alive 36.7\n",
"1290 No Alive 63.8\n",
"1291 No Dead 71.3\n",
"1292 No Alive 57.7\n",
"1293 No Alive 63.2\n",
"1294 No Alive 46.6\n",
"1295 Yes Dead 82.4\n",
"1296 Yes Alive 38.3\n",
"1297 Yes Alive 32.7\n",
"1298 No Alive 39.7\n",
"1299 Yes Dead 60.0\n",
"1300 No Dead 71.0\n",
"1301 No Alive 20.5\n",
"1302 No Alive 44.4\n",
"1303 Yes Alive 31.2\n",
"1304 Yes Alive 47.8\n",
"1305 Yes Alive 60.9\n",
"1306 No Dead 61.4\n",
"1307 Yes Alive 43.0\n",
"1308 No Alive 42.1\n",
"1309 Yes Alive 35.9\n",
"1310 No Alive 22.3\n",
"1311 Yes Dead 62.1\n",
"1312 No Dead 88.6\n",
"1313 No Alive 39.1\n",
"\n",
"[1314 rows x 3 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_csv(data_url)\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On vérifir que toutes nos lignes sont bien remplies et que les âges sont cohérents"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Smoker
\n",
"
Status
\n",
"
Age
\n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [Smoker, Status, Age]\n",
"Index: []"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
" data[data.isnull().any(axis=1)]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ages minimaux et maximaux: [18.0, 89.9]\n"
]
}
],
"source": [
"print('Ages minimaux et maximaux: ' + str([data.Age.min(), data.Age.max()]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Etudes\n",
"\n",
"### Décès en fonction des habitudes de tabagisme\n",
"\n",
"Le tableau suivant récapitule le nombre de femmes mortes ou vivantes selon sa relation au tabac."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x = np.arange(2) # the label locations\n",
"width = 0.35 # the width of the bars\n",
"\n",
"fig, ax = plt.subplots()\n",
"ax.bar(x - width/2, data_death['Alive'], width, label='Alive')\n",
"ax.bar(x + width/2, data_death['Dead'], width, label='Dead')\n",
"ax2 = ax.twinx()\n",
"ax2.plot(x, data_death['Mortality'], color='r', marker='o', label='Mortality')\n",
"\n",
"ax.set_ylabel('Number of women')\n",
"ax2.set_ylabel('Mortality rate')\n",
"ax2.set_ylim(0,1)\n",
"ax.set_xticks(x)\n",
"ax.set_xticklabels(['Non Smoker', 'Smoker'])\n",
"ax.legend()\n",
"ax2.legend(bbox_to_anchor=(0.8, 1))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A partir de ces graphiques et résultats il serait logique de conclure que les non fumeuses ont une mortalité plus importante (31%) par rapport aux fumeuses (24%) et que donc fumer aide à vivre longtemps. Même en regardant les intervales de confiance sur la condition (morte **1** ou vivante **0**) de la personne suivant son statut de fumeur nous indique que les fumeurs ont plus de chance de survie."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE+VJREFUeJzt3X+MXWd95/H3h/G62XWT0uIpYeO4CcVq1moTatxQSJYStURxu7sGsiJhUUMJyGstJmK1qRupWihFZQX9sQs01OulpqRSCEWtJbd140AQZFGI8Lib2nGEWeMGMjFubEJJQrNxTL77xz2j3Ewmnmccn7kT5v2SRvec58ed71jWfOacc89zUlVIkjSbF4y6AEnS84OBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpyZJRF3A6LV++vM4777xRlyFJzxt79uw5VlXjLWN/oALjvPPOY2JiYtRlSNLzRpJvtI71lJQkqYmBIUlqYmBIkpr0GhhJrkhyIMnBJDfM0L8+yd4kdyeZSHLpUN99SfZN9fVZpyRpdr1d9E4yBtwIvA6YBHYn2VFV9w4Nux3YUVWV5ELgz4ALhvovq6pjfdUoSWrX5xHGxcDBqjpUVceBW4D1wwOq6tF66glOywCf5iRJC1SfgXEOcP/Q/mTX9jRJ3pDkq8BfA9cOdRVwW5I9STb0WKckqUGfgZEZ2p5xBFFV26vqAuD1wPuHui6pqjXAOuCdSV4z4zdJNnTXPyaOHj16OuqWJM2gz8CYBM4d2l8BHH62wVV1B/CTSZZ3+4e71weB7QxOcc00b2tVra2qtePjTTcrSnoe27x5M9dccw2bN28edSmLTp+BsRtYleT8JEuBq4EdwwOSvCxJuu01wFLg20mWJTmza18GXA7c02Otkp4njhw5wgMPPMCRI0dGXcqi09unpKrqRJJNwC5gDNhWVfuTbOz6twBXAtckeQJ4DLiq+8TUi4HtXZYsAW6uqlv7qlWSNLte15Kqqp3AzmltW4a2Pwh8cIZ5h4CL+qxNkjQ33uktSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqUmvD1CSdPp887d/ZtQlLAgnHvoxYAknHvqG/ybAyvfsm7fv5RGGJKmJgSFJamJgSJKaGBiSpCa9BkaSK5IcSHIwyQ0z9K9PsjfJ3UkmklzaOleSNL96C4wkY8CNwDpgNfDmJKunDbsduKiqXg5cC3x8DnMlSfOozyOMi4GDVXWoqo4DtwDrhwdU1aNVVd3uMqBa50qS5lefgXEOcP/Q/mTX9jRJ3pDkq8BfMzjKaJ4rSZo/fQZGZmirZzRUba+qC4DXA++fy1yAJBu66x8TR48ePeViJUkn12dgTALnDu2vAA4/2+CqugP4ySTL5zK3qrZW1dqqWjs+Pv7cq5YkzajPwNgNrEpyfpKlwNXAjuEBSV6WJN32GmAp8O2WuZKk+dXbWlJVdSLJJmAXMAZsq6r9STZ2/VuAK4FrkjwBPAZc1V0En3FuX7VKkmbX6+KDVbUT2DmtbcvQ9geBD7bOlSSNjnd6S5KaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqUmv92FI0um2/IwngRPdq+aTgSHpeeX6C/9x1CUsWp6SkiQ1MTAkSU08JaVn2Lx5M0eOHOHss8/mQx/60KjLkbRAGBh6hiNHjvDAAw+MugxJC4ynpCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNek1MJJckeRAkoNJbpih/y1J9nZfdya5aKjvviT7ktydZKLPOiVJs+vtTu8kY8CNwOuASWB3kh1Vde/QsL8HfqGqvpNkHbAVeOVQ/2VVdayvGiVJ7fo8wrgYOFhVh6rqOHALsH54QFXdWVXf6XbvAlb0WI8k6TnoMzDOAe4f2p/s2p7N24G/Gdov4LYke5Js6KE+SdIc9Ln4YGZoqxkHJpcxCIxLh5ovqarDSX4c+GySr1bVHTPM3QBsAFi5cuVzr1qSNKM+jzAmgXOH9lcAh6cPSnIh8HFgfVV9e6q9qg53rw8C2xmc4nqGqtpaVWurau34+PhpLF+SNKzPwNgNrEpyfpKlwNXAjuEBSVYCfwH8alV9bah9WZIzp7aBy4F7eqxVkjSL3k5JVdWJJJuAXcAYsK2q9ifZ2PVvAd4DvAj4WBKAE1W1FngxsL1rWwLcXFW39lWrJGl2vT5Aqap2AjuntW0Z2n4H8I4Z5h0CLpreLkkaHe/0liQ18RGtQ17x6zeNuoQF4cxjjzAGfPPYI/6bAHt+95pRlyAtCB5hSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqcmcAyPJjya5sHHsFUkOJDmY5IYZ+t+SZG/3dWeSi1rnSpLmV1NgJPlCkrOS/Bjwd8AnkvzBLHPGgBuBdcBq4M1JVk8b9vfAL1TVhcD7ga1zmCtJmketRxg/UlUPA28EPlFVrwB+aZY5FwMHq+pQVR0HbgHWDw+oqjur6jvd7l3Aita56s+TS5fx/R86iyeXLht1KZIWkCWt45K8BHgT8JuNc84B7h/anwReeZLxbwf+Zq5zk2wANgCsXLmysTSdzPdWXT7qEiQtQK1HGL8N7GLwV//uJC8F/u8sczJDW804MLmMQWD8xlznVtXWqlpbVWvHx8dnKUmSdKqajjCq6jPAZ4b2DwFXzjJtEjh3aH8FcHj6oO4C+seBdVX17bnMlSTNn6bASPIJZvgLv6quPcm03cCqJOcDDwBXA/9h2vuuBP4C+NWq+tpc5kqS5lfrNYy/Gto+A3gDs/zFX1UnkmxicCprDNhWVfuTbOz6twDvAV4EfCwJwInu9NKMc+fwc0mSTrPWU1J/Pryf5FPA5xrm7QR2TmvbMrT9DuAdrXMlSaNzqnd6rwL8SJIkLSKt1zAe4enXMI7w1CeaJEmLQOspqTP7LkSStLC1Lg1ye0ubJOkH10mPMJKcAfwLYHmSH+WpG+rOAv5lz7VJkhaQ2U5J/Ufg3QzCYQ9PBcbDDBYHlCQtEicNjKr6MPDhJO+qqo/OU02SpAWo9aL3R5P8NIOlxs8Yar+pr8IkSQtL68dq3wu8lkFg7GTwnIovAQaGJC0SrTfu/XvgF4EjVfU24CLgh3qrSpK04LQGxmNV9SRwIslZwIPAS/srS5K00LQuPjiR5IXA/2LwaalHga/0VpUkacFpvej9n7rNLUluBc6qqr39lSVJWmjmfKd3Vd1XVXu901uSFhfv9JYkNZnrnd5THsE7vSVpUZntlNSdwKuB66vqpcD7gHuALwI391ybJGkBmS0w/ifweHen92uA/wZ8EvgusLXv4iRJC8dsp6TGquqhbvsqYGv3uNY/T3J3v6VJkhaS2Y4wxpJMhcovAp8f6mu9h0OS9ANgtl/6nwK+mOQY8BjwvwGSvIzBaSlJ0iJx0iOMqvod4L8AfwJcWlVTz/V+AfCu2d48yRVJDiQ5mOSGGfovSPLlJI8nuX5a331J9iW5O8lE6w8kSerHrKeVququGdq+Ntu8JGMMPnr7OmAS2J1kR1XdOzTsIeA64PXP8jaXVdWx2b6XJKl/rYsPnoqLgYNVdaiqjgO3AOuHB1TVg1W1G3iixzokSadBn4FxDnD/0P5k19aqgNuS7Emy4dkGJdmQZCLJxNGjR0+xVEnSbPoMjMzQVjO0PZtLqmoNg4c1vbO7D+SZb1i1tarWVtXa8fHxU6lTktSgz8CYBM4d2l8BHG6dXFWHu9cHge0MTnFJkkakz8DYDaxKcn6SpcDVwI6WiUmWJTlzahu4nMGSJJKkEent5ruqOpFkE7ALGAO2VdX+JBu7/i1JzgYmGKx++2SSdzN4bvhyYHuSqRpvrqpb+6pVkjS7Xu/WrqqdwM5pbVuGto8wOFU13cMMnhsuSVog+jwlJUn6AWJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKkJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqUmvgZHkiiQHkhxMcsMM/Rck+XKSx5NcP5e5kqT51VtgJBkDbgTWAauBNydZPW3YQ8B1wO+dwlxJ0jzq8wjjYuBgVR2qquPALcD64QFV9WBV7QaemOtcSdL86jMwzgHuH9qf7Nr6nitJ6kGfgZEZ2up0z02yIclEkomjR482FydJmps+A2MSOHdofwVw+HTPraqtVbW2qtaOj4+fUqGSpNn1GRi7gVVJzk+yFLga2DEPcyVJPVjS1xtX1Ykkm4BdwBiwrar2J9nY9W9JcjYwAZwFPJnk3cDqqnp4prl91SpJml1vgQFQVTuBndPatgxtH2FwuqlpriRpdLzTW5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktSk18BIckWSA0kOJrlhhv4k+UjXvzfJmqG++5LsS3J3kok+65QkzW5JX2+cZAy4EXgdMAnsTrKjqu4dGrYOWNV9vRL4o+51ymVVdayvGiVJ7fo8wrgYOFhVh6rqOHALsH7amPXATTVwF/DCJC/psSZJ0inqMzDOAe4f2p/s2lrHFHBbkj1JNvRWpSSpSW+npIDM0FZzGHNJVR1O8uPAZ5N8tarueMY3GYTJBoCVK1c+l3olSSfR5xHGJHDu0P4K4HDrmKqaen0Q2M7gFNczVNXWqlpbVWvHx8dPU+mSpOn6DIzdwKok5ydZClwN7Jg2ZgdwTfdpqZ8HvltV30qyLMmZAEmWAZcD9/RYqyRpFr2dkqqqE0k2AbuAMWBbVe1PsrHr3wLsBH4ZOAj8E/C2bvqLge1Jpmq8uapu7atWSdLs+ryGQVXtZBAKw21bhrYLeOcM8w4BF/VZmyRpbrzTW5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktSk18BIckWSA0kOJrlhhv4k+UjXvzfJmta5kqT51VtgJBkDbgTWAauBNydZPW3YOmBV97UB+KM5zJUkzaM+jzAuBg5W1aGqOg7cAqyfNmY9cFMN3AW8MMlLGudKkuZRn4FxDnD/0P5k19YypmWuJGkeLenxvTNDWzWOaZk7eINkA4PTWQCPJjnQXKFOZjlwbNRFLAT5vbeOugQ9k/8/p7x3pl+Xc/ITrQP7DIxJ4Nyh/RXA4cYxSxvmAlBVW4Gtz7VYPV2SiapaO+o6pJn4/3M0+jwltRtYleT8JEuBq4Ed08bsAK7pPi3188B3q+pbjXMlSfOotyOMqjqRZBOwCxgDtlXV/iQbu/4twE7gl4GDwD8BbzvZ3L5qlSTNLlUzXhrQIpdkQ3e6T1pw/P85GgaGJKmJS4NIkpoYGItU90GDLyVZN9T2piS3jrIuaViSSvL7Q/vXJ/mtEZa0qBkYi1QNzkVuBP4gyRlJlgG/A7xztJVJT/M48MYky0ddiAyMRa2q7gH+EvgN4L0Mlmn5epK3JvlKkruTfCzJC5IsSfKnSfYluSfJdaOtXovECQb3Wf3n6R1JfiLJ7d3CpbcnWTn/5S0ufd64p+eH9wF/CxwH1ib5aeANwKu7jzdvZXAfzNeB5VX1MwBJXjiqgrXo3AjsTfKhae1/yOCPnE8muRb4CPD6ea9uETEwFrmq+l6STwOPVtXjSX4J+DlgIgnAP2ewrtcu4KeSfJjB/TO3japmLS5V9XCSm4DrgMeGul4FvLHb/lNgeqDoNDMwBPBk9wWDdby2VdV/nT4oyYUMlpy/DriSp9bwkvr2PxgcCX/iJGO8R6BnXsPQdJ8D3jR1kTHJi5KsTDLO4L6dzzC43rHmZG8inU5V9RDwZ8Dbh5rvZHC6FOAtwJfmu67FxiMMPU1V7UvyPuBzSV4APMHg01TfB/44g/NUxeBCuTSffh/YNLR/HbAtya8DR+mWFlJ/vNNbktTEU1KSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoY0iyS/mWR/t2bR3Ule+Rzf77VJ/up01SfNF+/DkE4iyauAfwOs6ZZOWQ4sHWE9S6rqxKi+vxY3jzCkk3sJcKyqHgeoqmNVdTjJfUk+kOTLSSaSrEmyK8nXp55b3z1z5He71X33Jblq+psn+bkk/yfJS5MsS7Itye6ubX035teSfCbJX+IaXhohjzCkk7sNeE+SrzFYNuXTVfXFru/+qnpVkv8O/AlwCXAGsB/YwmBhvJcDFwHLgd1J7ph64ySvBj4KrK+qbyb5APD5qrq2Ww34K0k+1w1/FXBht0SGNBIGhnQSVfVoklcA/xq4DPh0khu67h3d6z7gh6vqEeCRJP+v+4V/KfCpqvo+8A9JvshgJeCHgX/F4DkPl1fV4e59Lgf+XZLru/0zgKlnPHzWsNCoGRjSLLpf+F8AvpBkH/DWruvx7vXJoe2p/SUMVv59Nt9iEAg/C0wFRoArq+rA8MDuIvv3nsOPIJ0WXsOQTiLJTyVZNdT0cuAbjdPvAK5KMtat9vsa4Ctd3z8CvwJ8IMlru7ZdwLu6BR5J8rPPtX7pdDIwpJP7YeCTSe5NshdYDfxW49ztwF7g74DPA5ur6shUZ1X9A/BvgRu7o4j3A/+MwdPl7un2pQXD1WolSU08wpAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1OT/A93m54EwE3MoAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(x='Smoker', y='Status', ci=95, data=data.replace('Alive', 0).replace('Dead', 1))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais il est de connaissance publique que \"fumer tue\". **Alors comment les données nous trompent-elles ?** Nous avons regardé les données de manière globale sans rentrer dans les détails. Si l'on regarde l'âge des femmes suivant leur statut de fumeur un paradoxe commence à apparaître:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADzVJREFUeJzt3XuQXnV9x/H3x0QHB+0IZgmpiGk7kcp4AV0viG1VhMF6CUK9TS/bykzGGS1qq2naTr116jixWnuhtmmlLtRacFqGyFgxRhFtrbAoEigi4igK2WSBosC0aMi3fzwn7RoTdlM5z9nk937NZM5zznP7wmT2nXPO85xNVSFJatdDhh5AkjQsQyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktS45UMPsBgrVqyo1atXDz2GJB1Urr766turamKhxx0UIVi9ejUzMzNDjyFJB5Uk31rM4zw0JEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1LiD4gtlkg5969evZ3Z2lqOPPpqNGzcOPU5TDIGkJWF2dpZbb7116DGa1GsIknwTuBu4H9hVVZNJjgQuBFYD3wReUVX/2ecckqT9G8c5gudV1QlVNdmtbwC2VtUaYGu3LkkayBAni9cC093taeCMAWaQJHX6DkEBn0xydZJ13baVVbUdoFse1fMMkqQH0PfJ4pOr6rYkRwFbknx1sU/swrEO4Nhjj+1rPklqXq8hqKrbuuXOJBcDzwB2JFlVVduTrAJ27ue5m4BNAJOTk9XnnNKQbnnnk4YeYUnYdeeRwHJ23fkt/58Ax75129jeq7dDQ0kOT/LIPbeB04DrgM3AVPewKeCSvmaQJC2szz2ClcDFSfa8zz9U1SeSXAVclORs4Bbg5T3OIElaQG8hqKpvAE/Zx/Y7gFP6el9J0oHxWkOS1DhDIEmNMwSS1DgvOidpSVhx2G5gV7fUOBkCSUvCm59819AjNMtDQ5LUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOL9H0Jj169czOzvL0UcfzcaNG4ceR9ISYAgaMzs7y6233jr0GJKWEA8NSVLjDIEkNc4QSFLjDIEkNa6Zk8VPe8v5Q4+wJDzy9rtZBtxy+93+PwGufs+vDT2CNDj3CCSpcYZAkhpnCCSpcYZAkhpnCCSpcc18akgjux92+A8tJckQNObeNacNPYKkJcZDQ5LUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY3rPQRJliX5cpJLu/Ujk2xJclO3PKLvGSRJ+zeOPYI3ADfMW98AbK2qNcDWbl2SNJBeQ5DkGOBFwN/O27wWmO5uTwNn9DmDJOmB9b1H8H5gPbB73raVVbUdoFseta8nJlmXZCbJzNzcXM9jSlK7egtBkhcDO6vq6v/P86tqU1VNVtXkxMTEgzydJGmPPq81dDLw0iS/CBwG/ESSvwd2JFlVVduTrAJ29jiDJGkBve0RVNXvVtUxVbUaeBXw6ar6FWAzMNU9bAq4pK8ZJEkLG+J7BO8GTk1yE3Bqty5JGshYLkNdVZcDl3e37wBOGcf7SpIW5jeLJalxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxhkCSGmcIJKlxvYUgyWFJrkzylSTXJ3lHt/3IJFuS3NQtj+hrBknSwvrcI7gPeH5VPQU4ATg9ybOADcDWqloDbO3WJUkD6S0ENXJPt/rQ7k8Ba4Hpbvs0cEZfM0iSFtbrOYIky5JcA+wEtlTVF4GVVbUdoFse1ecMkqQH1msIqur+qjoBOAZ4RpInLva5SdYlmUkyMzc319+QktS4sXxqqKruAi4HTgd2JFkF0C137uc5m6pqsqomJyYmxjGmJDWpz08NTSR5VHf74cALgK8Cm4Gp7mFTwCV9zSBJWtjyHl97FTCdZBmj4FxUVZcm+QJwUZKzgVuAl/c4gyRpAb2FoKquBU7cx/Y7gFP6el9J0oFZ8NBQkpVJPpjkX7r147t/zUuSDgGLOUfwIeAy4Ce79a8Bb+xrIEnSeC0mBCuq6iJgN0BV7QLu73UqSdLYLCYE9yZ5NKNvBdNdJuK7vU4lSRqbxZws/i1GH/n8mST/CkwAv9TrVJKksVkwBFX1pSS/ABwHBLixqn7Q+2SSpLFYMARJztxr0+OTfBfYVlX7/FawJOngsZhDQ2cDJwGf6dafC/w7oyC8s6ou6Gk2SdIYLCYEu4EnVNUOGH2vAPgA8EzgCsAQSNJBbDGfGlq9JwKdncDjq+pOwHMFknSQW8weweeSXAp8tFs/C7giyeHAXb1NJkkai8WE4HXAmcBzuvUrgVVVdS/wvL4GkySNx4KHhqqqgJsZHQZ6GaMLxt3Q81ySpDHZ7x5BkscDrwJeDdwBXAikqtwLkKRDyAMdGvoq8DngJVX1dYAkbxrLVJKksXmgQ0NnAbPAZ5L8TZJTGH2zWJJ0CNlvCKrq4qp6JfCzjH7f8JuAlUk+kOS0Mc0nSerZYk4W31tVH66qFwPHANcAG3qfTJI0Fgf0y+ur6s6q+uuqen5fA0mSxuuAQiBJOvQYAklqnCGQpMYZAklqnCGQpMYZAklqnCGQpMYZAklqnCGQpMYZAklqnCGQpMYZAklqXG8hSPLYJJ9JckOS65O8odt+ZJItSW7qlkf0NYMkaWF97hHsAn67qp4APAt4XZLjGV3CemtVrQG24iWtJWlQvYWgqrZX1Ze623cz+oX3jwHWAtPdw6aBM/qaQZK0sLGcI0iyGjgR+CKwsqq2wygWwFHjmEGStG+9hyDJI4B/At5YVd87gOetSzKTZGZubq6/ASWpcb2GIMlDGUXgw1X1z93mHUlWdfevAnbu67lVtamqJqtqcmJios8xJalpfX5qKMAHgRuq6n3z7toMTHW3p4BL+ppBkrSw5T2+9snArwLbklzTbfs94N3ARUnOBm4BXt7jDJKkBfQWgqr6PJD93H1KX+8rSTowfrNYkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcb2FIMl5SXYmuW7etiOTbElyU7c8oq/3lyQtTp97BB8CTt9r2wZga1WtAbZ265KkAfUWgqq6Arhzr81rgenu9jRwRl/vL0lanHGfI1hZVdsBuuVR+3tgknVJZpLMzM3NjW1ASWrNkj1ZXFWbqmqyqiYnJiaGHkeSDlnjDsGOJKsAuuXOMb+/JGkv4w7BZmCquz0FXDLm95ck7aXPj49+BPgCcFyS7yQ5G3g3cGqSm4BTu3VJ0oCW9/XCVfXq/dx1Sl/vKUk6cEv2ZLEkaTwMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMGCUGS05PcmOTrSTYMMYMkaWTsIUiyDDgXeCFwPPDqJMePew5J0sgQewTPAL5eVd+oqu8D/wisHWAOSRLDhOAxwLfnrX+n2yZJGsDyAd4z+9hWP/KgZB2wrlu9J8mNvU7VlhXA7UMPsRTkj6eGHkE/zL+be7xtXz8qD9jjFvOgIULwHeCx89aPAW7b+0FVtQnYNK6hWpJkpqomh55D2pt/N4cxxKGhq4A1SX4qycOAVwGbB5hDksQAewRVtSvJ64HLgGXAeVV1/bjnkCSNDHFoiKr6OPDxId5bgIfctHT5d3MAqfqR87SSpIZ4iQlJapwhOMRk5PNJXjhv2yuSfGLIuaT5klSS985bf3OStw84UtMMwSGmRsf6Xgu8L8lhSQ4H/gh43bCTST/kPuDMJCuGHkSG4JBUVdcBHwN+B3gbcH5V3ZxkKsmVSa5J8pdJHpJkeZILkmxLcl2Sc4adXo3YxejE8Jv2viPJ45JsTXJttzx2/OO1ZZBPDWks3gF8Cfg+MJnkicDLgGd3H+HdxOg7HDcDK6rqSQBJHjXUwGrOucC1STbutf0vGP3jZTrJa4A/A84Y+3QNMQSHqKq6N8mFwD1VdV+SFwBPB2aSADyc0TWfLgOOS/KnjD7S+8mhZlZbqup7Sc4HzgH+a95dJwFndrcvAPYOhR5khuDQtrv7A6NrPJ1XVX+w94OSPJnRZcHPAc7i/67xJPXt/Yz2XP/uAR7jZ9x75jmCdnwKeMWek3NJHp3k2CQTjL5P8lFG5xOeOuSQaktV3QlcBJw9b/O/MTpsCfDLwOfHPVdr3CNoRFVtS/IO4FNJHgL8gNGni+4HPpjR8aJidIJZGqf3Aq+ft34OcF6StwBzwG8MMlVD/GaxJDXOQ0OS1DhDIEmNMwSS1DhDIEmNMwSS1DhDoGYl+f0k13fXtLkmyTN/zNd7bpJLH6z5pHHxewRqUpKTgBcDT+0uwbECeNiA8yyvql1Dvb/a5h6BWrUKuL2q7gOoqtur6rYk30zyriRfSDKT5KlJLktyc5LXwv/+zof3dFdr3ZbklXu/eJKnJ/lykp9OcniS85Jc1W1b2z3m15N8NMnH8BpPGpB7BGrVJ4G3Jvkao8tvXFhVn+3u+3ZVnZTkT4APAScDhwHXA3/F6IJoJwBPAVYAVyW5Ys8LJ3k28OfA2qq6Jcm7gE9X1Wu6q7temeRT3cNPAp7cXWpBGoQhUJOq6p4kTwN+DngecGGSDd3dm7vlNuARVXU3cHeS/+5+kD8H+EhV3Q/sSPJZRld2/R7wBEbX2T+tqm7rXuc04KVJ3tytHwbsucb+FiOgoRkCNav7QX45cHmSbcBUd9d93XL3vNt71pczupLr/mxn9IP+RGBPCAKcVVU3zn9gd3L63h/jP0F6UHiOQE1KclySNfM2nQB8a5FPvwJ4ZZJl3dVbfx64srvvLuBFwLuSPLfbdhnwm92F/Uhy4o87v/RgMgRq1SOA6ST/keRa4Hjg7Yt87sXAtcBXgE8D66tqds+dVbUDeAlwbvev/j8EHsrot3Fd161LS4ZXH5WkxrlHIEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1DhDIEmNMwSS1Lj/AZp5iWFf4mMkAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(x='Smoker', y='Age', ci=95, data=data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On voit bien que l'âge des non fumeuses est en moyenne plus élevé, et donc que les observations ne sont pas bien réparties. Mais alors, comment l'âge rentre-t-il en jeu ?\n",
"\n",
"La prochaine étape est donc d'étudier les données plus précisément, notamment suivant les tranches d'âges.\n",
"\n",
"## Décès liés au tabagisme suivant l'âge\n",
"\n",
"En reprenant les données précédentes et en rajoutant une catégorie d'âge (18-34 ans, 34-54 ans, 55-64 ans, plus de 65 ans), on réalise les mêmes analyses."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Visualisation du taux de mortalité suivant les âges et le statut de fumeur\n",
"\n",
"tranche_age_label = ['[18-34]', '[35-54]', '[55-64]', '[65-100]'] # the label text\n",
"x = np.arange(len(tranche_age_label)) # the label locations\n",
"width = 0.35 # the width of the bars\n",
"\n",
"fig, ax = plt.subplots()\n",
"ax.bar(x - width/2, data_age.reset_index()[data_age.reset_index().Smoker == 'Yes']['Mortality'], width, label='Smoker')\n",
"ax.bar(x + width/2, data_age.reset_index()[data_age.reset_index().Smoker == 'No']['Mortality'], width, label='Non smoker')\n",
"\n",
"ax.set_ylabel('Mortality rate')\n",
"ax.set_xlabel(\"Age group\")\n",
"ax.set_xticks(x)\n",
"ax.set_xticklabels(tranche_age_label)\n",
"ax.legend()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On remarque sur le graphique ci-dessus que finalement pour chaque classe d'âge le taux de mortalité chez les fumeuses est supérieur ou égal à celui des non fumeuses !\n",
"\n",
"En s'intéressant à l'histogramme des âges chez ces deux populations ci-dessous, on s'aperçoit qu'il y a plus de non fumeuses d'âge supérieur à 65ans, qui ont donc plus de chance de décéder naturellement. Cette tranche est donc sur-représentée chez les non-fumeuses, amenant en moyenne à un taux de mortalité plus élevé.\n",
"\n",
"**Etudier des données dans leur ensemble peut donner des résultats très différents par rapport à des études sur des sous-groupes. Cela peut amener à des erreurs d'interprétation importantes.**"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4XOWZ8OHfO0UaadSL1Ytlyb33ggum995CqEkICSQhS0gIu8my7JcNm8CmQQyEmgRCMSR2TA3FgHuVu41lWV2yei8jzbzfH2csZGNbozqamee+Ll2jOXPOmeeonGferrTWCCGEECZvByCEEGJkkIQghBACkIQghBDCTRKCEEIIQBKCEEIIN0kIQgghAEkIQggh3CQhCCGEACQhCCGEcLN4O4C+iIuL05mZmd4OQwghfMr27durtdbxve3nUwkhMzOTbdu2eTsMIYTwKUqpQk/2kyojIYQQgCQEIYQQbpIQhBBCAD7WhiCEGPk6OzspKSmhvb3d26EEHJvNRmpqKlartV/HS0IQQgyqkpISwsPDyczMRCnl7XAChtaampoaSkpKGD16dL/OIVVGQohB1d7eTmxsrCSDYaaUIjY2dkAlM0kIQohBJ8nAOwb6c5eEIIQQApA2BCHEEHtlc9Ggnu9r89I92u8Xv/gFr7zyCmazGZPJxNNPP828efP6/b5r167lscceY82aNf0+x0gnCUF4zWDcKDy9OYjAsnHjRtasWcOOHTsIDg6muroah8PhtXi6urqwWEb+7VaqjIQQfqe8vJy4uDiCg4MBiIuLIzk5mczMTB566CEWLFjA7Nmz2bFjBxdccAFjxozhqaeeAozeOg888ACTJ09mypQpvPbaa185/9atW5kxYwb5+fm0tLRw5513MmfOHGbMmMGqVasAePHFF7nuuuu47LLLOP/884fv4gdg5KcsIYToo/PPP59HHnmEsWPHcu6553LDDTewdOlSANLS0ti4cSM//OEPuf3221m/fj3t7e1MmjSJu+++m7feeovc3Fx27dpFdXU1c+bMYcmSJd3n3rBhA9/73vdYtWoV6enpPPTQQyxfvpznn3+e+vp65s6dy7nnngsYJZXdu3cTExPjlZ9DX0lCEEL4nbCwMLZv387nn3/OJ598wg033MCjjz4KwOWXXw7AlClTaG5uJjw8nPDwcGw2G/X19axbt46bbroJs9lMQkICS5cuZevWrURERHDgwAHuuusuPvjgA5KTkwH44IMPWL16NY899hhgdLstKjKqQ8877zyfSQYgCUEMI6dLsz6vmo35NewsqmN/WSPtXS6cLk1YsIUIm4W0mFDGxIcxJj6MIIvUaIr+M5vNLFu2jGXLljFlyhReeuklgO5qJJPJ1P398eddXV1orU97zqSkJNrb29m5c2d3QtBa8+abbzJu3LgT9t28eTN2u32wL2tIyX+cGHINrZ383weHWPTox9z6/Bb+9Fk+bQ4n2aPCmZMRzcIxsWTF2TGbTGw5WstfNhXyy3cPsHpXKZVNMv2B6LtDhw5x+PDh7ue5ublkZGR4dOySJUt47bXXcDqdVFVV8dlnnzF37lwAoqKiePvtt3nooYdYu3YtABdccAF/+MMfuhPJzp07B/dihpGUEMSQcXS5eGlDAU98kkdjeydLx8bz88smsnz8KGxW8yl7GXU6XRTWtLKjqI5tBXVszq9lVkY0505MIMLWv/lZhHd5oydYc3Mz3/ve96ivr8disZCdnc0zzzzjUZfRq666io0bNzJt2jSUUvzqV78iMTGRgwcPApCQkMA///lPLrroIp5//nl+9rOfcd999zF16lS01mRmZvps11R1puLRSDN79mwtC+T4hvyqZu57LZfdJQ0sHRvPgxeNZ0JSxAn79NbttLmji08PVbIpvxazWXHJ5CRmZ0afMBpTup2OPAcOHGDChAneDiNgnernr5TarrWe3duxUkIQg25VbikPvrmHYKuJp74+kwsnJ/XrPGHBFi6Zmsz8rFj+nlvK33NL2V/eyDWzUgkLlj9dIQabtCGIQaO15slP8vjBq7lMSYnkvR8s6Xcy6Ck2LJg7F43m0qlJHKlq5o9r8yhvaBuEiIUQPUlCEINCa83Dq/fx6/cPccX0ZP7yzbkkRtoG7fwmpVg4Jo67lmThcmme+vQI+8saB+38QghJCGIQaK35xdsHeGljId9aPJrfXD+dYIt5SN4rNTqU756dTUKEjVe2FPLm9pIheR8hApEkBDFgv/3wMM+uO8rtCzN56OIJmExDO/VxhM3KN84azeg4O/e/sYs/bywY0vcTIlBIy5zol+M9hHYU1bFyewmz0qPJHhXG37YUD8v7B1vM3Logk3V51fx81T4sJpP0OBJigCQhiH4rrm3lHztLyYq3c+WMFEzDvCiK1Wziya/N5Nt/2ca//2MPNquJq2emDmsMwgPbXhjc882+o9ddlFL827/9G48//jgAjz32GM3NzTz88MODG8sgGEnTakuVkeiXpvZO/rq5kIgQK1+bk455iKuJTifIYmLF12excEwsD6zczdpDlV6JQ4wswcHBvPXWW1RXV3s7lCHV1dU1qOeThCD6zOXSrNxeQnunk6/PzyDUy2MCbFYzT98ym7EJ4dz7yk4OlEvvo0BnsVi46667+M1vfvOV1woLCznnnHOYOnUq55xzTvdEdLfffjvf//73WbhwIVlZWaxcufIrx7a0tHDJJZcwbdo0Jk+e3D01tr9Mqy0JQfTZCxsKOFzZzMVTkkiMGLyupQMRFmzh+dtnYw82c+eLWznWKHMgBbp77rmHl19+mYaGhhO233vvvdx6663s3r2bm2++me9///vdr5WXl7Nu3TrWrFnDgw8++JVzvvfeeyQnJ7Nr1y727t3LhRde2P3a8Wm1Fy9ezO23387KlSvZtGkTP//5zwFOmFb7ww8/5IEHHqC8vLz7+A0bNnD33XezatUqsrKy+MUvfsHy5cvZunUrn3zyCQ888AAtLS2AMa32Sy+9xMcffzyoPzNpQxB9cqC8kf999yATEsOZm+n9aX1Pnv7iullpPPNZPlf9cT13LR7j0Yyp0hjtnyIiIrj11lv5/e9/T0hISPf2jRs38tZbbwFwyy238OMf/7j7tSuvvBKTycTEiRM5duzYV845ZcoUfvSjH/GTn/yESy+9lMWLF3e/5g/TaksJQXjM6dL85M3dRIRYuGpm6glzCo0UyVEh3DgnjfL6dl7dWoTLh+bqEoPvvvvu47nnnuv+ZH0qPf+Oe06Hfap53saOHcv27duZMmUKP/3pT3nkkUe+cmx/p9W22WwnzJR6fFrt3NxccnNzKSoq6p6jaKim1faohKCUuhD4HWAGntVaP3rS68r9+sVAK3C71nqHUioN+DOQCLiAZ7TWv3MfEwO8BmQCBcD1Wuu6Qbgm/zbYPTbAo14bAC9tKGB3SQN/uGkGTe2D25g1mMYnRXDp1CT+ubuc9/ZWcPGUgU+fIXxTTEwM119/Pc899xx33nknAAsXLuTVV1/llltu4eWXX+ass87y+HxlZWXExMTw9a9/nbCwMF588UWPj12yZAlPP/00t912G7W1tXz22Wf8+te/5uDBg0RFRfHcc89x/vnnY7fbWbZsWfe02n/4wx9QSrFz505mzJjR1x9Bn/SaEJRSZuBJ4DygBNiqlFqttd7fY7eLgBz31zxghfuxC7jfnRzCge1KqX+5j30Q+Ehr/ahS6kH3858M4rWJ09h8tPaE50ecvS92X9/q4LcfHWZsQhiNbZ0jsnTQ04IxcVQ1d7Aur5rESBsz06O9HVLg8vADx1C5//77eeKJJ7qf//73v+fOO+/k17/+NfHx8bzwgucfsvbs2cMDDzyAyWTCarWyYsUKj4/1hWm1e53+Wim1AHhYa32B+/lPAbTWv+yxz9PAWq3139zPDwHLtNblJ51rFfCE1vpfPfdRSiW5jz9xyaGTyPTXDEoJ4SsJIf26Xo95eXMhXxxr4gfnjCXGHjTgGIaD06V5Yf1Rimpb+dbiLNJiQk+5n7QhDC6Z/tq7BjL9tSdtCClAz+GnJe5tfdpHKZUJzAA2uzclHE8Y7sdRp3pzpdRdSqltSqltVVVVHoQrBtvR6hb2lTWybNwon0kGAGaT4qa56YTbLPx1cyGNbZ3eDkmIEc2TNoRT1Q2cXKw44z5KqTDgTeA+rXWfOolrrZ8BngGjhNCXY8XAubTmnT3lRIZYWTQmztvh9Jk92MIt8zN56tMj/HVzId9anIXVPLh9KXpb6McTUkoRI4En/xklQFqP56lAmaf7KKWsGMngZa31Wz32OeauKsL9KENMR6DdJfWU1rdx/sQEn130PjHSxnWzUympa2NVbukZe3uIwSE/Y+8Y6M/dk//wrUCOUmq0UioIuBFYfdI+q4FblWE+0OBuG1DAc8ABrfX/neKY29zf3was6vdViCHR5XTxwb5jpESFMC0tytvhDMik5EjOGT+KHUX1rD9S4+1w/JrNZqOmpkaSwjDTWlNTU4PN1v/Bor1WGWmtu5RS9wLvY3Q7fV5rvU8pdbf79aeAdzC6nOZhdDs93q1gEXALsEcpleve9pDW+h3gUeB1pdQ3gCKg95ZNMay2FdZR39bJVTOHf+K6oXD2+FFUNLbz7p5yEsKDyUkI93ZIfik1NZWSkhKkzW/42Ww2UlP7P8GjR+MQ3Dfwd07a9lSP7zVwzymOW8ep2xfQWtcA5/QlWDF8upwuPv2iioyYULLjw7wdzqAwKcW1s1J5ujmfv20t4u4lYxg1Qqbe8CdWq5XRo0d7OwzRD75ZKSyG3LbCOhraOjlnQsKIH3PQF8EWM7fMz8BiMvHixgIa26XnkRDHSUIQX9GzdDAmfmiGyHtTtD2I2xZk0trh5M8bCmjuGLmjroUYTpIQxFfsKqmnoa2Ts8eP8qvSQU8p0SHcNDedisZ27nxhK60OSQpCSEIQJ9BaG9M9RNjIGeUfbQenMy4xnOtnp7GtsJY7X9xKm8Pp7ZCE8CpJCOIEeZXNHGvs4KzsOL8tHfQ0NTWK/7t+OpuP1nLLc5upa3F4OyQhvEYSgjjBurxqwm0WpqZFejuUYXPljBT+cNMMdpc2cPWKDRRUn36qZCH8mSQE0a2isZ3Dlc0syIrFYgqsP41Lpybz8jfnUdfq4LIn1rEqt9TbIQkx7ALrv16c0aYjNVhMakSshOYNczJjWH3PWeSMCuMHr+Zyz8s7KKpp9XZYQgwbSQgCgI5OJ7kl9UxNjSQ0OHBXVk2PDeX1by/gR+eP5cMDx1j++Fp+vHIXWwtqcbpkKgbh3wL3P1+cYFdJA44uV8CWDnqymE3cuzyH62ansWLtEV7ZUsTr20qICwtiamoUmbF2YsOCUAqcTs2m/BraOp20Opy0dTpBG1NvR4ZYSXWP5RgVLiOixcgnCUEAsKWghsQI22kXkQlECRE2Hr58EvefP5a1h6r48MAxDlU0sfGIkQCOC7KYCLWaCQkyE2I1g8lYnOdwZTM7i+sBmJISyTkTRkliECOaJARBSV0rZfXtXD4tOSC6mvZVuM3KZdOSuWxaMmCM1XA4XWhtzI+0cnvJKY/TWlPf2sm2wlrW59Wwr6yBa2amMkOW8xQjlCQEwdaCWqxmxXQfn+J6uCilCLaYPdov2h7EeRMTWTAmjle3FvHG9hJaHU4WZfveYkPC/0lCCHAOl2JPaQOTkyOxWXu/yfmjwVjxrDdhwRZuW5DJ69uKeXtPOVazibmjpb1GjCzSyyjAbW8Io73TJdUYw8BqNnHT3HRyRoXx9p4yKpvavR2SECeQhBDgPq+JIMJmIcsPZzUdiUxKcc2sVKxmE69vK6bL5fJ2SEJ0k4QQwBo7zeQ2hDEtLcovVkTzFRE2K1fPSKGsvp21h2RVMTFySEIIYBvqwnGimJEm1UXDbWJyJFNSIll3uFrWYxAjhiSEAPZ5TSQZIe0kRkrfeG84d0ICnU4Xn38hpQQxMkhCCFCVHVbyWkNYFNPo7VACVnx4MNPToth0tEYamMWIIAkhQG2uDwdgfnSTlyMJbMvHj8Lp0qxYe8TboQghCSFQba4LZ3RoOwnBssi8N8WGGaWEV7cU09QuvwvhXZIQAlC1w8LhlhDmRUl10Ugwb3QsbZ1O/rmr3NuhiAAnCSEAbakzqovmSXXRiJAaHcK4hHBe2zr0I6aFOBNJCAFoc3046SHtJNtOX0Vh66gmojmfsJZighz1wxhd4FFKcePcNHaVNLC/TEptwntkLqMAU9lu4lBzCNclV3dvG1P0BgBBjgYSazYR2ZJPaMeJXSHbgmJptGdQEzmZptAMOMNAtiPp1w1N8H7sqhkp/PLdg7y2tYj/umKyt8MRAUoSgo/ZfLR2QMd/VB2JRjEnqrl7m3I5SazZSErV5yhcNIZmUB01jQ5rBCbtwtrVRHhLEbEN+0io20FrcDwVsfOoipoOSgqZgyEqNIgLJyXy952l/PTiCQE70aDwLkkIAWZHfRhxQZ2k2ToAMDs7GFf4MuFtJdSGj6Mw8QIcQV+dBrs8bhHK1Ulswz4Sa7eSVbaGpOqNFCcspy58/BlLDMIz18xKZfWuMtbnVXPOhARvhyMCkHy8CyAOl2JPk51Zkc0o9WUysLeVcTj1ag6n33DKZHCcNlmpjp7O3qxv8kXaDYBibPEbjC36G0GOhuG7ED+1ICuWcJuF9/ZWeDsUEaAkIQSQfU2hdLhMzIxsRrm6upNBXtq11Eb2od5aKeoixrE7+24KE88noqWQqUdWkFCzBbQsRN9fQRYT505I4F8HjtHllFlQxfCThBBAtjeEEWxyMTG8lbTKjwhvK+FI6tXURYzv3wmViYrY+ezO/g5NIalkVrzHxKMvENGcP7iBB5ALJiVS39rJlgG2FQnRH5IQAoTWRvvB1IgW4lqPkFSzmYqYOdRGThzwuR1BURzKuJkjKVdgc9Rw0frrGJ//Iko7ez9YnGDp2HhsVhPv7ZNqIzH8JCEEiMK2YGo6rSwMr2RM6SraguIoTjh38N5AKaqjprE7+7uUxS9m5qHHOWfzHYS1yGCrvggJMrNs7Cje31eByyXVb2J4SS+jALGr0VgR7RrHKixdLRzKuhGXyTro79NlsfP5jN+QWbaG2ft/ycXrr2XHuPvJS7/er3siHR/L0W/mL9dXvtAezHuNkeSW1DNTljYVw0hKCAFid6OdhbZC0hq2Uxkzi9aQpKF7M6UoSLmMt896i6roGczd//84e+u3CW2TahBPnJ3owISW1dTEsJOEEADanYqDzSHcb30Dl7JQFrd4WN63LSSRT2Y/xZZJPyOuPpeL113N6NLV0hOpF5FBmmkxXXx+WBKCGF6SEALAgeZQxlHErM4dVMTOo9MaNnxvrhR56dfzzllvUh+ew4Ld/87infdh66ju/dgAtjjBwa7iehpaZUpsMXw8akNQSl0I/A4wA89qrR896XXlfv1ioBW4XWu9w/3a88ClQKXWenKPYx4GvgUc/xj0kNb6nQFdjTil3Y12HrD8iU5zCOVxC70SQ0toGh/Ne55xBX9l2he/5+LPr2bbpIcoSrzAr9sWPHXylCSxrjZc2s7/vneQySmRHp3ja/PShyI0EUB6LSEopczAk8BFwETgJqXUyX0VLwJy3F93ASt6vPYicOFpTv8brfV095ckgyHS2FjPMvMuKmLn4zR7b/1krcwcHH0b7y56g5bQFM7KfYCl2+8htK3MazGNVNn2NoItJvIqm3vfWYhB4kmV0VwgT2udr7V2AK8CV5y0zxXAn7VhExCllEoC0Fp/BsgoGy+pcVi4oGstnViojJ7l7XAAaAzL4oMFf2X7hJ8wqnYbl35+JeOO/hnl6vJ2aCOGRUFWfBiHK5vQ0uYihoknVUYpQHGP5yXAPA/2SQF6WwLqXqXUrcA24H6tdd3JOyil7sIodZCeLkXivjpUb+Lb5s8pCZtKlyV0WN7T0y6YXaZg9mbdRWb5O8w6+GvGF/yVo8kX0xKS8pV9A3FK7ZxRYRwob6S2xUFsWLC3wxEBwJMSwqkqeE/+yOLJPidbAYwBpmMkjsdPtZPW+hmt9Wyt9ez4+PjeYhUniavPJVR10BQ/MkoHJ3MERfJF+o0cTr0Ga1cTk/OfY3TpaixdUlWSM8po/P9Cqo3EMPEkIZQAaT2epwInV/p6ss8JtNbHtNZOrbUL+BNG1ZQYRNrlYpnjUw6asmkLHcJxBwOlFLWRk9idfQ9lsQuIa9jNtMNPkli9MaCnv4ixBxEVaiW/ShKCGB6eJIStQI5SarRSKgi4EVh90j6rgVuVYT7QoLU+Y3XR8TYGt6uAvX2IW3jAWV9EmqpiX5h3ehb1ldMcTHHieewZczfNoalkHPsXU/KeJrrxYECOXVBKMTrWTkF1i7QjiGHRaxuC1rpLKXUv8D5Gt9Pntdb7lFJ3u19/CngHo8tpHka30zuOH6+U+huwDIhTSpUA/6m1fg74lVJqOkbVUgHw7UG8LgFE1O6lTodhjhtN7zV4I0d7cByH0r9GVPNh0iv+xdji14luOkTuuPuoipnt7fB6ZXa2YW+rIKSjkmBHPSbdhdIuOi122oNiaA1JpDU4waPutqPj7OwsrqeqqYNREd7rISYCg0fjENxdQt85adtTPb7XwD2nOfam02y/xfMwRV+ZnA5yOvayRi8i1eY7yaCbUtSHj6U+LJv4ulwSa7dw3uY7KI1fwq6x36c+Ypy3IzxBsKOO2Po9RDUfJqytDOVOwE6TFZeyopUJa1dL9/b2oGhqIyZSETOHTmvEac+bGWfMQXW0pkUSghhyMrmdn4puPIgNB/tCZpLmy+O+lImqmJlsnfJzxha8wqT857h4/bWUjFrG/qxvUB093WuhmZwOUis/ZkzxmyTVbEIDLSHJlMYvpik0jbbgBDot9u6SgNJOghz1RLQWEtOwn6TqDSS6pyEvizsLpyXkK+8Raw8i3GahoLqFeaNjh/kKRaCRhOCnwuv2UeyKxxqZCDR5O5wByyxdg8Mawe4xd5NYu4WEms2kVq6lMTSDsvhFNNjH9GnE80C6sUY25TGm5E0yS9dg66ynOSSZ4vhlVEdPw2E9/ahircx0BMdSFRxLVfRMgh11pFR+SlLNRuIa9nAk5Uoaw7JOOEYpRWasnaPudgQlo7rFEJKE4IcsXc3Et+XxR9flTApv93Y4g8ppCaF01FLKYxcwqn4HidWbGF/4Cq3BozgWM4uayKk4zYPfZ9/S1Up6+fuMKXmT+PpdOJWFkoTlHEm7horY+YwpfrPP5+wIiiY/9UoqYueRXfJ3xhf+lfK4hRSPWg7qy/4eo+Ps7CltoK61kxh70GBelhAnkITgh2Ib9hnTJ6t5/CjYvxLCcS5zEBWx8zkWPYfYhj0k1m5ldPm7pFd8SF34WGoiJ9MQNgZt6v+fuHJ1klizhfTy90iv+ACrs5UGexY7xv+Io8mX0REc0/tJPNAaksTeMd8iveJ9kqs3YOuoJS/16u7XRx9vR6hukYQghpQkBD8U27CPgzodW3g0SvU2WNy3aZOZ6ujpVEdPx95WRnzdTmIa9xPXuA+nstBoz6TRnkVzSDKtIYm4TKe/oZqcDiJa8omr301izSYSarYQ3NlAp9lOUeJ5HEm7luqoaUMyGZ/LZKUg+VLag+PIqPiA8YV/pTDlEjqtEcSHBxMaZOZodQuzMmTBHDF0JCH4GWtnM2FtpbzddQ3jw9q8Hc6waglJpiUkmcKkC4lozieqOY/I5iNEN+cBRsfbTksYDmsEacc+Qivjzz+osx6bow57Wykm90C4FlsCpaOWUpxwDuVxi3ANQTXUqVTEzsdhCWNM6T9Ytu27fDLnGbosoWTE2imsaRmWGETgkoTgZ6KaDqHQfOCazbfCWr0djldoZaYhPIeG8BwArJ1N2NvLsbeVE9TZQHBnI0GdjZh0F2iNIyiS2siJFCZdQH34WOoiJtAUmu61ablrIyejlZns4jdZvOMHfDrrCdJjQjlQ3khLRxf2YPm3FUND/rL8TEzTISpVHKWmZFJsed4OZ0TotIZTbw2nPnxs97aRPlleXcQENk95hAV7/oNFu37CkbT/BqC4rpXxiacftyDEQMiKaX7E7OwgouUoH7pmMS6sDZP0UPRpR1OvYPv4B0g79hGXV/8Jk4Li2sAs9YnhISUEPxLZnIdJO/m7Yx7j4gKr/cBfHcq8hYiWQqYUvMAd9jDW1p7r7ZCEH5MSgh+JbjpEm8nOdj024BqU/ZZSbJv4IBWx83iw6yli6nbjkonuxBCRhOAnlMtJVNNhcs1TMCvICvXP8QeBSJusrJv+OE3WWH5j/h2Ntce8HZLwU1Jl5CfC2oqxuDp4V88i296O1SSfIs/E01XdvOnkGHePupIFJc9yXu73qc2+9qu9oMy9DJSbfceZXxcBT0oIfiKqOQ8XJv7RNp3xAdrd1N/ZIkfxmOtr5DgOkFSzwdvhCD8kCcFPRDbncyw4g0bsjJX2A7+kFGwPWcRHzCHt2MeEtxR6OyThZyQh+AFj4FUFu8yTAMixS0LwV9lh7fyg/du0WaPJLnkLS5eMXhaDRxKCH4hsyQfgw87pJAV3EG5xeTkiMVRy7G00E8o7MV/H4mwlu+TvoOX3LQaHJAQ/ENmUh8MSxgdtOYwNk95F/izb3o5Cs9kxhoKki4hsySe5er23wxJ+QhKCr9MuIlvyqQjJobHLKtVFfi7U7CLV1sHhlhCqomZQHTmZ1Mq10p4gBoUkBB9nbyvD6mxjl2kiAGMlIfi9nLB2DreE4EJxNOkSOoKM9gQczd4OTfg4SQg+Lqr5CBr4yDmVEJOTtJAOb4ckhthYexstTjMVHUG4zMEcTr0Gi7MVcl+R9gQxIJIQfFxEy1FabEnktsSTbW+XCe0CwPFqwcMtNsBYca0o4Xyo3A/5a70YmfB1khB8mMnlIKythLrQ0RS2Bcv4gwCRbHMQanbyRXNI97ZjMbMhcRocXAN1Bd4LTvg0SQg+LLy1GJN2sd88Ho2SBuUAYVKQbW/jcMuXCQGlYNoNYIuCHS9Bh7QniL6ThODDIpqP4lImNjjHAcZNQgSGHHs7RW3BtDt71BFaQ2HWHdDRZCQFl9N7AQqfJAnBh0W0HKU5JJUDrVEkBDtkQFoAybG3oVHktYZw11pwAAAgAElEQVSc+EJUGky5DmoOG9VHQvSBzHbqo8xdbdjbyymNX8qRChvjw2VCu0ByvDSY12Jj8sm/+7R5UF8M+Z9ARBKkzvVChP207YXBPZ/M8NonUkLwURGtBSigJDibmk4r2bL+QUAJt7hIDHaQ1xJy6h0mXQmxObDrNag+PLzBCZ8lCcFHRbQU4FRWdrjGANJ+EIiy7W3ktdg45QJqJovx6dgeD9ueg6aKYY9P+B5JCD4qsuUoTfZ0vmgNw4wmM1QGpAWabHs7dZ1WajpPU/NrDYW53wKzFTavgNr84Q1Q+BxJCD7I0tVMSEc1jaGZ5LWEkBHaTpCskBZwcrrbEU5TbQQQGgvzvgPOLnjxMhmjIM5IEoIPimgpAqAhNIMjLTbG2KX9IBBlhHRgUS7y3COWTysiGeZ/x5jr6MXLoOqL4QlQ+BxJCD4ovLUQp8nKYZVBm8ssDcoBymoyqgoPn6mEcFxkKty6Crra4Llz4ejnQx+g8DnS7dQHRbQU0hySRl6bHZAG5UCWY2/j4+oonJ7UGCZPh29+BC9fB3+5Ci74H6ONQfVzAqzB7iIqvE5KCD7G0tVKaEcljfZ08lpCCDE5SbY5vB2W8JJsezsdLhPFbcGeHRCdAd/4ALKWwbsPwF+vgcbyoQxR+BBJCD4mvNVoP2gKzSDP3X4gM5wGruzumU89qDY6LiQKbn4DLnkcCjfAE7Phk/+B9oYhilL4Co+qjJRSFwK/A8zAs1rrR096XblfvxhoBW7XWu9wv/Y8cClQqbWe3OOYGOA1IBMoAK7XWtcN8Hr8XnhLIS5loTY4lcI2G5cm1Ho7JOFFCUGdhFu63A3LfSgpKgVzvglZZ8NHj8Cn/wubn4ap18PUGyBlludVSVpDZyu01bm/aqGtAVydxvoMZivYIiEkBmKyIDi8X9cqhl6vCUEpZQaeBM4DSoCtSqnVWuv9PXa7CMhxf80DVrgfAV4EngD+fNKpHwQ+0lo/qpR60P38J/2/lMAQ0VpIc0gKR9vtOLUiO1TaDwKZUpAd2u7uetqPqsPYMXD9S1CWC+t/C9tfgi3PGN1Vk2dAwiRjcFtItHHjdzqMG359MRRvdt/8643tPZnMYA42AuxyGMnhuPBkSJkBGYuMsRJixPCkhDAXyNNa5wMopV4FrgB6JoQrgD9rrTWwSSkVpZRK0lqXa60/U0plnuK8VwDL3N+/BKxFEsKZtTcQ2l5BafwSjrgnNcuWLqcBL9veRm6jnaZORbi1n+NRkqfDdS8a1UYH1kDRBijdaSy44+r66v6hcWANgbAkiJ9gfPoPif7yK8j+ZQnjeAmipcqYdK/yABx8Gw5/CJlnwdgLwBzU38sXg8iThJACFPd4XsKXn/7PtE8KcKbWqgStdTmA1rpcKTXKg1gCW9EmFNBkzyCv0ka0tZOYoFP8s4qAkm1vR6PYXWthUUJn7weciS0SZtxsfIFxM+9oNKqCUGCxgS3CSAae9jJSykgQQXaIzoTs86ChBI58Akc+gordMP1m4zXhVZ40Kp+qIvHkjyGe7NMvSqm7lFLblFLbqqqqBuOUvqtgHS5lojkklbyWECkdCODLhuXcWuvgn1wpI0lEZxo9lMITjGQwUJGpMPMWmH+PUQJZ/zsokLER3uZJQigB0no8TwXK+rHPyY4ppZIA3I+Vp9pJa/2M1nq21np2fHy8B+H6scL1tISk0OgKpqIjSMYfCADCLC6SgjvYORQJYajF5cCSHxttFXvfhMMfcOrZ+sRw8CQhbAVylFKjlVJBwI3A6pP2WQ3cqgzzgYbj1UFnsBq4zf39bcCqPsQdeDqaoCyXxtCM7rlrZISyOC7b3k5urcU376XWEGOlt9Q5cOgdWdjHi3pNCFrrLuBe4H3gAPC61nqfUupupdTd7t3eAfKBPOBPwHePH6+U+huwERinlCpRSn3D/dKjwHlKqcMYPZhO6MoqTlK8BbSTJnsGR1ptKDRZUmUk3HLsbVR3mClr89GhRSYzTLsJ0hca7QqFG7wdUUDyaByC1vodjJt+z21P9fheA/ec5tibTrO9BjjH40gDXeF6UGaaQtLIqwgh2eYg1CxLZgrD8fak3ForKb46FboyweRrjK6se1ca3V3jcrwdVUDx0Y8TAahgPSTPwGkKIq/FJu0H4gQZIcYU6Lk1PtiO0JPJDDNvM5LB9hegVQZeDidJCL7A0Qql2yFjIVUOK41dFulhJE5gMcHkqC521PrBfJXWEJjzLXA5YdffjNHOYlhIQvAFpduMkZ6ZZ3HEPfe9jFAWJ5sV28meOisdTm9HMgjscTDpKmMgm0zVPWwkIfiCgvVG/Wr6fPJabViVi/QQH60nFkNmVpwDh0uxt94PSgkAafNg1ESj11HzMW9HExAkIfiCwvWQOAVskeS1hDA6tB2L/ObESWbFGqOUt1f7eDvCcUrB1BuNyfF2vy7jE4aB3FZGuq4OKNkKGWfR5XSRL0tmitOIt2ky7F1s9/WG5Z5sETD+Eqg9AuW53o7G70lCGOlKt0NXO2Qu4otjzTi0SRqUxWnNiu1ke43Vvz5Mpy+AiBTYv+qrs6qKQSUJYaQrWA8oSF/ArpJ6QBqUxenNjO2kusNMUYvZ26EMHmWCSVdDez3kfeTtaPyaJISRrnCdMc9LaAy5RfWEmZ0kBA9wRkvht2bHudsR/KnaCIx1G5JnwJGPZWW3ISQJYSRzdhpTVmQsAmBXST3Z9rZ+r4ku/F9OhJNwi4tt/pYQAMZdAtoJeR96OxK/5Sf90/xU2U5jYZHMRTR3dPHFsSauSpT2A3F6ZgXTYztP3dPI0/ULRip7nNEVtWgDjFluLMQjBpWUEEaygnXGY8YidpfU49LGJGZCnMmc2E6+aDTT4PDDomTO+cbj4Q+8G4efkoQwkhWuh7hxYI9jZ5HRoCwJQfRmXnwnGsUWfxmP0FNItDEjavFmaKn2djR+RxLCSOXsgqJNkGm0H+wsqiMr3k6YReZ1EWc2LaaTIJNmU5WfrlOcfa7R8+jIx96OxO9IQhipKnaBoxkyFqG1ZmdRPTPSpM5U9M5mNrqfbq7ywxICGEt6ps6Bki3Q3ujtaPyKJISRqmC98Zh5FsW1bdS0OJiRHuXdmITPmBfXyf56C42dftiOAJC13JgNteAzb0fiVyQhjFSF6yFmDIQnsqOoDoCZ6VJCEJ6ZF+/AhWKbP7YjAITFQ9JUo+NFp/S8GyySEEYilxMKN57QfhAaZGZsQpiXAxO+Ymbs8XYEP00IAGPOMaZ1KZLlNgeLJISR6Nhe6GiAjLMA2Flcz9TUSCxm+XUJz9jMMD2mk83+2rAMEJUOsTlw9DPjQ5QYMLnDjETd7QeLaO90sr+sUaqLRJ/Ni+tkb72FJn9tRwAYvdiY4+jYPm9H4hckIYxEheshKgMiU9lT2kCXSzNDEoLoowWjHDi18t/eRgCjJhljEwpkVbXBIAlhpHG5jISQ6a4ucjcoSw8j0VezYjsJMWs+P+bH1UYmszHXV81haKrwdjQ+TxLCSFN1ANrquie021lUT3pMKHFhwV4OTPiaYDPMj3fwmT8nBID0+WCySClhEEhCGGl6tB+AkRCkdCD6a0mCg6PNFopb/PhfPSgMkmcaKwt2ytQuA+HHfyU+6uinEJkOURmU1bdR0djOjDRJCKJ/liQaK4z5fSkhc7GxmlrJFm9H4tMkIYwkLqdR7M1aAkp1T2g3M0MalEX/ZIU5SQl18lmFnyeEqDSjI0bBOtAy31d/SUIYScp3GatBjV4GGA3KwRYT4xMjvBuX8FlKGdVGGyqD6PT3+2TmYmipguovvB2Jz5KEMJIc/dR4HL0EMAakTUmJJMgivybRf0sSHDR1mcit9ePupwBJ0432BGlc7je504wk+Z9C/AQIT8DR5WJPaYM0KIsBWzjKgUVpPir382ojswUyFsKx/dBa4+1ofJIkhJGiq8NY/yBrKQD7yxtxdLlkhLIYsMggzYL4Tt4vDUZrb0czxNIXGvVkx3vriT6RhDBSFG+BrjYYbSSEHYXHB6RJQhADd35KB0ebLRxuNHs7lKEVEgUJk40V1Zxd3o7G50hCGCmOfmasAuUef7C1oJbU6BASI21eDkz4gwuSO1Bo3i8LgAGOGYugs8VYZEr0iSSEkeLop8bgGlskWmu2HK1l7ugYb0cl/MSoEBczYrp4rzQAEkJcDoTGGVPAiD6RhDAStNUZoyzHnA3AkaoWaloczM2UhCAGz4Up7eyrt/r3qGUwStoZC6E2HyoPeDsan+Lnfxk+Iv9TYzBN9rmAUV0ESAlBDKoLUoxRy+8HQikhda4x8d22F7wdiU+RhDASHPkIgiMhZTYAW47WEhcWxOg4u5cDE/4kI8zJxKhOVhcHQLtUcBgkToddr4KjxdvR+AxJCN6mNeR9ZHQ3NVsAutsPlPLjhU2EV1yT0c7uOiuHGvy8txEY1UYdDbD3LW9H4jM8SghKqQuVUoeUUnlKqQdP8bpSSv3e/fpupdTM3o5VSj2slCpVSuW6vy4enEvyMVUHobG0u7qopK6V0vo25kj7gRgCV6a3Y1GaNwpCvB3K0IvJgvjxsO15b0fiM3pNCEopM/AkcBEwEbhJKTXxpN0uAnLcX3cBKzw89jda6+nur3cGejE+Ke9D4zH7HEDaD8TQig3WnJPUwT+KbP4/t5FSMPtOKNsBZTu9HY1P8KSEMBfI01rna60dwKvAFSftcwXwZ23YBEQppZI8PDaw5X1ofIqJTAVgy9E6woMtMqGdGDLXZbZT3WHiE3+fARVg6g1gCZHGZQ95khBSgOIez0vc2zzZp7dj73VXMT2vlAq8IbmOFijc0F1dBLDhSDVzR8dgNkn7gRgayxIdxAU7ef1oAFQbhUTBlGtgz0pjJmFxRp4khFPdmU6eEeV0+5zp2BXAGGA6UA48fso3V+oupdQ2pdS2qqoqD8L1IUc/Mxb1cFcXldS1UljTyqLsOC8HJvyZxQTXZ7bzcXkQBc0B0Lg8+05j5PLu170dyYjnSUIoAdJ6PE8Fyjzc57THaq2Paa2dWmsX8CeM6qWv0Fo/o7WerbWeHR8f70G4PuTQOxAU3r1+8oY8Y4ZGSQhiqN2e3YbFBM98EertUIZe8kxImmZUG/n97H4D40lC2ArkKKVGK6WCgBuB1Sftsxq41d3baD7QoLUuP9Ox7jaG464C9g7wWnyLywWH3oOcc8FiDBRal1dNXFgwYxPCvByc8HejQlxck9HOygIble1+3vv8eONy5T5jEklxWr3+JWitu4B7gfeBA8DrWut9Sqm7lVJ3u3d7B8gH8jA+7X/3TMe6j/mVUmqPUmo3cDbww8G7LB9Qug1aKmHcJQBordlwpJpF2bEy/kAMi2+Pa6XLBS8cDoC2hMnXGqVx6YJ6RhZPdnJ3CX3npG1P9fheA/d4eqx7+y19itTfHHoHTBajhAAcOtZEdbNDqovEsMkMc3JRagd/PRLCXWNbiQ724+qU4DCYdiPs+DNc+EsIlW7dp+LnZcUR7OA7xkjKEKNz1XppPxBe8P0JLbQ6FY/tC4BpUmbfAc4OyH3F25GMWJIQvKHmCFQf6q4uAlifV83oODspUQFQfBcjxrhIJ7eNaeOV/BB213pUYeC7EiZB2nzY+qzRhie+QhKCNxxy16CNN2br6Ohysjm/hkXZsV4MSgSq+ya1EGdz8bOd4bj8uNYIgHl3Qd1RyPuXtyMZkSQheMP+VZA4BaLSAWMyuxaHk7PHjfJyYCIQRVg1/z61mV11Vv/vhjrhcghPgk0rvB3JiOTnZcQRqK7AWAzn3Ie7N310oJJgi4mFY6T9QHjHFWkd/KusnV/tsTMhsouliY5+n2vz0doBxTJvKOfxMlthzjfg4/8HlQdh1Pihey8fJCWE4bbv78bjpKsBo7vpxwcrWZQdR0hQAIwaFSOSUvDr2Y2MjXTyvc0R/j2CedYdYA6GLU97O5IRR0oIw23vm5A6B6IzAGO5zKLaVu5akuXlwESgC7XAMwvqufzjGK5fG8ULZzUwKapr2OMYaAkDeill2ONgynXG4jnLfyZdUHuQEsJwqvoCKvbA5Gu6N3188BgAZ4+X9gPhfelhLl5bWodFwfVro/iwzE9nRJ3/HehslYFqJ5GEMJz2vQUomHhl96aPDlQyPjFcupuKEWNcpJO/L68jI8zJNzdE8c31keQ3DawKSWtoc5qodViocViodVhodyrvTS2UOBnGnAObn4LOdi8FMfJIldFw0dqoLso8CyKMaZwaWjvZVljH3UulukiMLAkhLt46u44XDofy5MFQlr8fy6xYBxemdDApqovMMCfhVo3VpGnrUlR3mKhqN1HdYWLbsWhqHFaqHRZqOq3UOCw0dlpwnmLyY7PSjApykGxzkBXazqTwVrLt7VhNw5ApzroPXroMdv3NGLQmJCEMm9LtUP0FzP9u96b391fgdGnOm5joxcCEODWbGb4zvpVrM9t47WgIb5cE84vd4R4cGUmQchEX1ElsUBfTIlqItnZhN7uwmV2YlEZraHWaae4yU9FhpbQ9mB0NYbxRrrCbncyLbmJJTAPjw9oYsqm9MhdD8gzY+ATMvBVMftyQ7iFJCMNl+4tgDT2h/WDN7nLSYkKYlhrpvbiE6EW8TXPvhFbundDKsTYTR5rMHG0209ql6HQpbGZNnM1FXLCLeJuLwmM1hJldfb6RN3eZONAcypa6cNbXRvBxdRRjQtu4IrGGOVHNDPqaUUrBoh/AG7fDwbdh4uWD/Aa+RxLCcOhogr1vweSrwWYsjVnb4mB9XjV3LcmS2U3FoBiM3jmeMAPZCrD22NhlfNW2QHg/7yphFhdzopqZE9XMN5wVfF4byT+PxfB/+alk29u4Pe0YOfZBru+fcDnEZMFnv4YJlzF0xRHfII3Kw2HPSmPFppm3d296b69RXXTp1KTTHydEgLKZNefF1/PbSfl8N7OM6g4r/3Ewk2cKE2hzDuJty2SGJQ9Axe4vp5QJYJIQhsOOl2DUREid3b1pze4ysuLsTEyK8GJgQoxsJgVLYxv57eR8Lk2o4ePqKB7Yn8mBpkHslTfleogZA2t/GfArqklCGGrlu6FsJ8y8rbs4WtnUzqb8Gi6dlizVRUJ4IMTs4pbUKh4eV4RZwSNfpLOqImZw7t9mCyz9sTFG6OCaQTih75KEMNS2PA2WEJh6ffem1blluDRcJtVFQvTJ+LA2Hp1QwLzoJl4pHcXj+Sm0OwfhQ9Xka92lhEfB5Rz4+XyUJISh1FgOu16DGV/vHh6vteaVLUXMSI8iJ8GTLnxCiJ5CzC5+MLqMW1OPsa0+jEe+SKe+c4BdRs0WOPshOLbXmNIiQElCGEqbV4B2woIvVxfdcrSW/KoWvjY33YuBCeHblIJLEur40ZhSituC+dnBDMrarb0feCaTr4GUWfDxf4OjZXAC9TGSEIZKewNse8GYpiJmdPfmV7YUEW6zcOnUZC8GJ4R/mB3VzH+OK6LdZeLnBzM41DyAxmal4IL/gaZy2PDE4AXpQyQhDJXtL0JHIyz6fvem2hYH7+6p4JqZqTLVtRCDJNvezn+PLyTM4uK/v0hja31Y/0+WPh8mXgHrf2tU+QYYSQhDoaPZ+IQxeokxNN5t5fZiHE4XN0l1kRCDKjG4k0fGF5IR2sH/HUnh74XB/T/ZuQ8bDcvvPThY4fkMSQhDYcMfoKUSlv+8e1NHl5Pn1xUwb3QM4xKlMVmIwRZhcfIfOcVMDG/lh1sj+cuRflYfxWTB0gdg/z/g0LuDG+QIJwlhsDVVwIbfG20HaXO6N6/cXkJFYzvfW57jxeCE8G8hZhc/yS7h3KQOfrYznD+uzevfiRb+wBhM+vb90N44uEGOYJIQBtsn/wPOTjj3P7s3dTpdrFh7hOlpUSzKjvVicEL4vyCTZsWCBq5Ia+dX7x3if987iO7rCDZLEFz+B2gsgw8fHpI4RyJJCIOpYg/s/AvM+aZR7HT7x85SSura+P452TIyWYhhYDXBb+Y2cvO8dFasPcLPV+3D5epjUkidbXQZ3/acMRtqAJCEMFi6HPCP70BonDEM3q2908nvPz7MxKQIzh4ny2QKMVxMCv7flZP59tIs/rKpkPvf2EWX09W3k5zzc0iaDv/4LtQXD02gI4gkhMHy+eNGCeGy356waPdTnx6huLaN/7hkgpQOhBhmSil+etEEHrhgHH/fWcp3Xt5Be2cfpqawBMN1Lxi9jt78hvHBz49JQhgMZbnw+WMw9QYYf0n35qKaVv649giXTUtmYXacFwMUIrDdc3Y2/3X5JP61/xjfeGkrLR1dnh8ckwWX/w6KN8Oa+/x6RlRJCAPVWmusuBQaBxc+2r1Za83D/9yH1aT494sneC8+IQQAty3M5PHrprEpv5brn95IRUMfFtuZfA0s+ynkvgyf/u/QBellkhAGossBr90CjaVww19OqCr66+YiPj5YyQ/PG0tipM2LQQohjrtmVirP3jabguoWrnhyHXtLGzw/eOlPYPrNxroJ254fuiC9SBJCf2kN79wPhevg8icgbW73S7uK6/nvf+5n2bh47lw0+gwnEUIMt7PHjWLldxZiVoprVmzgjW0eNhYrBZf+FnLOhzU/hI1PDm2gXiAJoT9cTuMPYsefYfGPYNoN3S/VNHfw3Zd3EB8ezG+un45p0FcGF0IM1ISkCFZ/7yxmZUTzwMrdPPjmblodHrQrWILghpeNtZjffwg+8a9V1iQh9JWzE966C7a/AGf9Gyz/j+6Xapo7uPnZzVQ3d/DHm2cSbQ/yYqBCiDOJCwvmz3fO5bvLxvDatmIu+f06dhbV9X6gJQiufcGoPvr0UXj1ZmirH/qAh4EkhL6oK4QXLoa9K40JsM79z+5lMauaOvjanzZTUNPC87fPYVpalFdDFUL0zmI28eMLx/O3b83H0eXimhUb+M9Ve2lo6zzzgWYLXPGk0ZHk8PvwzFIo3DA8QQ8hSQiecLmMVZSeWgxVB+Ha5+GsH3a/vDm/hkv/8DmFtS08f9scFkkXUyF8yvysWN69bzG3zM/gL5sKWf7YWl5cf/TMYxaUgvnfgTveNe4RL1xkDGBrrhq+wAeZJITeFKyDZ8+Bv38b4sfC3Z8bXdCA5o4ufv3+QW760yZCgyysvHuhjDcQwkdF2Kz81xWT+ef3ziJ7VBgP/3M/Zz+2lmc/z6eh9QwlhrS5cM8m40Pi7tfgd1PhvYeMeZB8jPJk0iel1IXA7wAz8KzW+tGTXlfu1y8GWoHbtdY7znSsUioGeA3IBAqA67XWZ6zAmz17tt62bVsfLq+f2hth31vGimfluRCRYrQVTL0BTGbqWx2s3F7CirVHqGlxcPXMFB65YjJhwZYhD23zG48P+XsI4evmjXZ3AZ99R7+O11qz8UgNv/3oMFuO1mKzmrh4ShKXTk3irOx4giyn+SxdfdiYtWD360YJIvs8o9NJzvkQZO/n1QycUmq71np2r/v1lhCUUmbgC+A8oATYCtyktd7fY5+Lge9hJIR5wO+01vPOdKxS6ldArdb6UaXUg0C01vonZ4plyBJCRxOU74KSbZD3IRRtBFeXMf3t7Dthxtcpb4X1eTV8crCSf+0/hsPpYkFWLA9eNH5Y2wskIQjRu4EmhJ72lzXyl00FrNldTlN7F2HBFuaNjmHBmFimpUUxMSkC+8kfBusKYOtzsOcNY0lOc5CxGlume9GspGlgj+tugxxqg5kQFgAPa60vcD//KYDW+pc99nkaWKu1/pv7+SFgGcan/1Mee3wfrXW5UirJffy4M8XS74RwbJ9R999WB611xmNbLTSUGL+4hhLA+Dk0ReRQGLOIPeGL2aPGUlTbxqFjTVQ1dQAQaw/ismnJXDsrlckpkX2PZYAkIQjRu8FMCMc5ulysy6viwwOVbDxSw9HqFsC4pyeE20iNDiElOoTU6BASImyE2yzYrYrk+u0kHPuc8NLPsNUe7D6fy2rHFJUGkakQmQYRyRAUZpQkguzG95YgQBlvkjj1hMGvfeFpQvCkjiMF6DlyowSjFNDbPim9HJugtS4HcCeFoZsKdNvzsPXZL58HhUFINIQnQsYiiM2m3D6OS1c2U9MeCZXGzz8m9BjJUSEsHRvPhKQIFmTFMj4xXMYWCBGAgiwmlo9PYPn4BAAqG9vZW9bA3tJGimpbKalrZUdRHW/vLqfrhKm2zRifj5cRTiuTTUeZqAoZb6nnuligoRjKdkJrzZkDuPlNyDl3aC7OzZOEcKq738nFitPt48mxZ35zpe4C7nI/bXaXLPoqDqj+8mkjUAbsAz467UEFwA5gTT/e0AtOuka/5O/X6O/XB8N+jXcO31t96YzXuLe/Z/2v8/p7JECGJzt5khBKgLQez1Mx7qae7BN0hmOPKaWSelQZVZ7qzbXWzwDPeBDnaSmltnlSXPJlco2+z9+vD+QaRzpPup1uBXKUUqOVUkHAjcDqk/ZZDdyqDPOBBnd10JmOXQ3c5v7+NmDVAK9FCCHEAPRaQtBadyml7gXex6gMe15rvU8pdbf79aeAdzB6GOVhdDu940zHuk/9KPC6UuobQBFw3aBemRBCiD7xqOO81vodjJt+z21P9fheA/d4eqx7ew1wTl+CHYABVTn5CLlG3+fv1wdyjSOaRwPThBBC+D+ZukIIIQQQAAlBKXWhUuqQUirPPSLa5yml0pRSnyilDiil9imlfuDeHqOU+pdS6rD7MdrbsQ6EUsqslNqplFrjfu5v1xellFqplDro/l0u8KdrVEr90P33uVcp9TellM3Xr08p9bxSqlIptbfHttNek1Lqp+57zyGl1AXeidpzfp0Q3FNnPAlcBEwEblJKTfRuVIOiC7hfaz0BmA/c476uB4GPtNY5GAMsfD0B/gA40OO5v13f74D3tNbjgWkY1+oX16iUSgG+D8zWWk/G6FRyI75/fS8CF5607ZTX5P6fvBGY5D7mj+570ojl1wkBmAvkaa3ztdYO4FXgCtnL69EAAAPNSURBVC/HNGBa6/LjkwdqrZswbiQpGNf2knu3l4ArvRPhwCmlUoFLgB5DzP3q+iKAJcBzAFprh9a6Hj+6RoxOKyFKKQsQijEGyaevT2v9GVB70ubTXdMVwKta6w6t9VGMXphzGcH8PSGcbkoNv6GUygRmAJs5aToQYOimAxl6vwV+DLh6bPOn68sCqoAX3NVizyql7PjJNWqtS4HHMLqUl2OMTfoAP7m+k5zumnzu/uPvCWHAU2eMZEqpMOBN4D6tdaO34xksSqlLgUqt9XZvxzKELMBMYIXWegbQgu9Vn5yWux79CmA0kAzYlVL/v727eakijsI4/n0qE6JFJdGmyBZRkEHkJrVFaJtaRC93oeCu/olwFdGiTZsgaNOiF1pUFiFBBEXQJimooDcjjHJhFEHQTui0+P0UIfRe0xxneD4wqHe4cA73Mof5jfNMf7FVLbrSHX+qPhAaid0oJUlNpGFwLSIG88tfcwwIs8WBlEAXcEjSJ9IyX7ekq1SnP0jfzbGIeJr/vkkaEFXpcT8wGhHfImICGAQ6qU5/083UU+mOP1UfCI3EbpSOJJHWnt9GxLlpuyoRBxIRJyNiY0S0kj6zhxHRT0X6A4iIceCLpMnI9x7gDdXp8TOwR9Kq/H3tIV3rqkp/083U012gV1KzpC3AVmC4gPoaFxGV3kiRGiPAR2Cg6HoWqKe9pFPPV8CLvB0EWkj/5fAh/1xXdK0L0Os+YCj/Xqn+gF3As/w53gHWVqlH4BTwjhTweQVoLnt/wHXSNZEJ0hnA8dl6Agbysec9cKDo+uttvlPZzMyA6i8ZmZlZgzwQzMwM8EAwM7PMA8HMzAAPBDMzyzwQzBok6YikkLS96FrM/gcPBLPG9QFPSDfLmVWOB4JZA3JuVBfpRqTe/NoySRdy5v+QpHuSanlfu6THkp5Luj8ZbWC2lHkgmDXmMOnZBSPAD0m7gaNAK7ATOAF0wFTO1HmgFhHtwCXgTBFFm83FiqILMCuJPlIkN6TAvT6gCbgREb+BcUmP8v5tQBvwIMX4sJwUd2C2pHkgmNUhqQXoBtokBekAH8Dtmd4CvI6IjkUq0WxBeMnIrL4acDkiNkdEa0RsAkaB78CxfC1hAymID1KQ2XpJU0tIknYUUbjZXHggmNXXx99nA7dID34ZI6V5XiQ9te5npMe11oCzkl6S0mg7F69cs3/jtFOzeZC0OiJ+5WWlYaAr0rMOzErH1xDM5mdI0hpgJXDaw8DKzGcIZmYG+BqCmZllHghmZgZ4IJiZWeaBYGZmgAeCmZllHghmZgbAH5yiADBOnC6yAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Visualisation du nombre de femmes vivantes et décédées par tranche d'âge\n",
"\n",
"sns.distplot(data[data.Smoker == 'Yes']['Age'], label='Smoker', kde=True)\n",
"sns.distplot(data[data.Smoker == 'No']['Age'], label='Non smoker')\n",
"plt.legend()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ainsi 2 conclusions peuvent être tirées sur ce biais d'étude:\n",
"- Ce biais arrive notamment à cause de la **non homogénéité de l'échantillon**. On voit bien ci-dessus que toutes les tranches d'âge ne sont pas représentées de la même manière si les femmes sont fumeuses ou non fumeuses. Il faut cependant faire attention à étudier des *tranches d'âge régulières et adaptés à l'étude*.\n",
"- De plus, dans la 1ère partie l'âge des participantes avait été mis de côté au profit d'une moyenne sur l'ensemble. Cette **mise à l'écart de ce paramètre** a induit une mauvaise interprétation.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Décès et régression logistique\n",
"\n",
"En dernière partie une régression logistique est réalisée afin de supprimer le biais induit par des tranches d'âges arbitraires et non régulières.\n",
"\n",
"Tout d'abord une nouvelle colonne est créée avec :\n",
"- Si la femme est décédée: 1\n",
"- Si la femme est vivante: 0\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Exemple :\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Smoker
\n",
"
Status
\n",
"
Age
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Yes
\n",
"
0
\n",
"
21.0
\n",
"
\n",
"
\n",
"
1
\n",
"
Yes
\n",
"
0
\n",
"
19.3
\n",
"
\n",
"
\n",
"
2
\n",
"
No
\n",
"
1
\n",
"
57.5
\n",
"
\n",
"
\n",
"
3
\n",
"
No
\n",
"
0
\n",
"
47.1
\n",
"
\n",
"
\n",
"
4
\n",
"
Yes
\n",
"
0
\n",
"
81.4
\n",
"
\n",
"
\n",
"
5
\n",
"
No
\n",
"
0
\n",
"
36.8
\n",
"
\n",
"
\n",
"
6
\n",
"
No
\n",
"
0
\n",
"
23.8
\n",
"
\n",
"
\n",
"
7
\n",
"
Yes
\n",
"
1
\n",
"
57.5
\n",
"
\n",
"
\n",
"
8
\n",
"
Yes
\n",
"
0
\n",
"
24.8
\n",
"
\n",
"
\n",
"
9
\n",
"
Yes
\n",
"
0
\n",
"
49.5
\n",
"
\n",
"
\n",
"
10
\n",
"
Yes
\n",
"
0
\n",
"
30.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Smoker Status Age\n",
"0 Yes 0 21.0\n",
"1 Yes 0 19.3\n",
"2 No 1 57.5\n",
"3 No 0 47.1\n",
"4 Yes 0 81.4\n",
"5 No 0 36.8\n",
"6 No 0 23.8\n",
"7 Yes 1 57.5\n",
"8 Yes 0 24.8\n",
"9 Yes 0 49.5\n",
"10 Yes 0 30.0"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_reg = data.replace('Alive', 0).replace('Dead', 1)\n",
"\n",
"print ('Exemple :')\n",
"data_reg.loc[0:10, ]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On réalise pour chacun des groupes *'Smoker'* et *'Non smoker'* une régresion logistique pour visualiser la corrélation entre l'âge et le décès (et donc la probabilité de décès en fonction de l'âge)."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Optimization terminated successfully.\n",
" Current function value: 0.412727\n",
" Iterations 7\n"
]
},
{
"data": {
"text/html": [
"
\n",
"
Logit Regression Results
\n",
"
\n",
"
Dep. Variable:
Status
No. Observations:
582
\n",
"
\n",
"
\n",
"
Model:
Logit
Df Residuals:
580
\n",
"
\n",
"
\n",
"
Method:
MLE
Df Model:
1
\n",
"
\n",
"
\n",
"
Date:
Fri, 31 Jul 2020
Pseudo R-squ.:
0.2492
\n",
"
\n",
"
\n",
"
Time:
15:58:40
Log-Likelihood:
-240.21
\n",
"
\n",
"
\n",
"
converged:
True
LL-Null:
-319.94
\n",
"
\n",
"
\n",
"
LLR p-value:
1.477e-36
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
-5.5081
0.466
-11.814
0.000
-6.422
-4.594
\n",
"
\n",
"
\n",
"
Age
0.0890
0.009
10.203
0.000
0.072
0.106
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Logit Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Status No. Observations: 582\n",
"Model: Logit Df Residuals: 580\n",
"Method: MLE Df Model: 1\n",
"Date: Fri, 31 Jul 2020 Pseudo R-squ.: 0.2492\n",
"Time: 15:58:40 Log-Likelihood: -240.21\n",
"converged: True LL-Null: -319.94\n",
" LLR p-value: 1.477e-36\n",
"==============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"Intercept -5.5081 0.466 -11.814 0.000 -6.422 -4.594\n",
"Age 0.0890 0.009 10.203 0.000 0.072 0.106\n",
"==============================================================================\n",
"\"\"\""
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Pour les Fumeuses\n",
"data_reg_smoker = data_reg[data_reg.Smoker == 'Yes']\n",
"model = logit('Status ~ Age', data=data_reg_smoker)\n",
"result_smoker = model.fit() #algorithme de Newton-Raphson par défaut\n",
"logit_smoker = result_smoker.predict(data_reg_smoker) # predictions\n",
"result_smoker.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pour les fumeuses on voit que l'âge est un paramètre statistiquement important (P < 0.05), avec un coefficient de pente de 0.089 (avec une erreur de 10%), compris pour un CI de 2.5% entre 0.106 et 0.072."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Optimization terminated successfully.\n",
" Current function value: 0.354560\n",
" Iterations 7\n"
]
},
{
"data": {
"text/html": [
"
\n",
"
Logit Regression Results
\n",
"
\n",
"
Dep. Variable:
Status
No. Observations:
732
\n",
"
\n",
"
\n",
"
Model:
Logit
Df Residuals:
730
\n",
"
\n",
"
\n",
"
Method:
MLE
Df Model:
1
\n",
"
\n",
"
\n",
"
Date:
Fri, 31 Jul 2020
Pseudo R-squ.:
0.4304
\n",
"
\n",
"
\n",
"
Time:
15:58:40
Log-Likelihood:
-259.54
\n",
"
\n",
"
\n",
"
converged:
True
LL-Null:
-455.62
\n",
"
\n",
"
\n",
"
LLR p-value:
2.808e-87
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
-6.7955
0.479
-14.174
0.000
-7.735
-5.856
\n",
"
\n",
"
\n",
"
Age
0.1073
0.008
13.742
0.000
0.092
0.123
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Logit Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Status No. Observations: 732\n",
"Model: Logit Df Residuals: 730\n",
"Method: MLE Df Model: 1\n",
"Date: Fri, 31 Jul 2020 Pseudo R-squ.: 0.4304\n",
"Time: 15:58:40 Log-Likelihood: -259.54\n",
"converged: True LL-Null: -455.62\n",
" LLR p-value: 2.808e-87\n",
"==============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"Intercept -6.7955 0.479 -14.174 0.000 -7.735 -5.856\n",
"Age 0.1073 0.008 13.742 0.000 0.092 0.123\n",
"==============================================================================\n",
"\"\"\""
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Pour les non Fumeuses\n",
"\n",
"data_reg_nosmoker = data_reg[data_reg.Smoker == 'No']\n",
"model = logit('Status ~ Age', data=data_reg_nosmoker)\n",
"result_nosmoker = model.fit()\n",
"logit_nosmoker = result_nosmoker.predict(data_reg_nosmoker) \n",
"result_nosmoker.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pour les non-fumeuses on voit que l'âge est un paramètre statistiquement important (P < 0.05), avec un coefficient de pente de 0.1073 (avec une erreur de moins de 10%, suffisamment faible pour comparer avec les résultats des fumeuses), compris pour un CI de 2.5% entre 0.123 et 0.092. Ce coefficient est plus élevé que pour les femmes fumeuses, avec cependant un coefficient d'interception plus important.\n",
"\n",
"Afin de mieux visualiser cette variation en fonction de l'âge, les fonctions logistiques sont tracées. Seaborn utilisant le package statsmodel pour la fonction lmplot, il est possible de l'utiliser pour visualiser de manière simple les deux courbes sur un même graphe avec les intervales de confiance pour chacune des courbes."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAFgCAYAAACcxo+vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XeYlNXZ+PHveZ7puzPb6SigIE2wYAdjSdE3RtNsaUZjS6KJb6rpb2J8k5jyS9QYW0yPKWoSX2OJ0SgqooIKCAgiICAsbJ/dqU85vz+e2T4zOwu7wu7en+vaa3eeemZ3du457T5Ka40QQgixr4z9XQAhhBCjgwQUIYQQQ0ICihBCiCEhAUUIIcSQkIAihBBiSEhAEUIIMSQkoAghhBgSElCEEEIMCQkoQgghhoRvfxdgsM444wz98MMP7+9iCCFEqdT+LsBbZcTVUBobG/d3EYQQQuQx4gKKEEKIA5MEFCGEEENCAooQQoghIQFFCCHEkJCAIoQQYkhIQBFCCDEkJKAIIYQYEhJQhBBCDAkJKEIIIYaEBBQhhBBDQgKKEEKIITFsAUUpdZdSao9S6pUC+5VS6kal1Cal1Gql1FHDVRYhhBDDbzizDf8auBn4bYH9ZwIzc1/HAb/Ifd9/Nj4Ky34GrW9A5cFw4mdh1jt6HfLEq3u4belmtrckmVoV4YqTZ3DK7HEDX2vaEtj6VMFrr3r8r5jLb6La2kXWLKOmLEDUbgEnA4Yfxs3pOidfGQB+8PCrbG5MADC9JsK1Z84B4PsPrWdLU5KT9Etcbj7AJPawQ9dxm3MWT7pHAPA242WuMB9gqtHAm3ocD5R/kLef/ZGu86c0P8Ml/B9TVQPbdR0NZg3vMl8m5CaxfGUsMxZRbu1hst6Dq6GCNkI6i4sioYPs1LWUqzTjVCsAW5nI960LeCJ3fwBDQVXYRzjopzxgopRibuI5vmjfwTi9uytlq43B60zhZvVhmiae0vX8b1u6mdr6J/mI+w+msAfLLKemPIDPTvC6VcOv9Huoi4b4sPN3gh3b2a7reLTyAnaPO4nHXm0gkXUoC5hcung6bzNWEVl6HQfrHfhw+qWLtTFQgELjoNHaxK96H5fGZIs7iTKVZqJqwoeLAnTuy+26htvrk53b+fvosU0rSJdNITLjJFj/d7Sdye3o/9LT9Ehvm/vBwiBLiLDhYLqZ7oMNP4QqcZJNGF137r6OjYEPeu3TPX7outdg8+n2LXee8zXgaIUBGOjuY/I8565r6O5DCpWrx2HePQATUIV+lz2uoSoOhnf/uN/7gvAorQv9dYbg4kpNAx7QWs/Ps+824Amt9d25xxuAU7TWu4pdc9GiRXrFihVDX9iNj8JDXwAjAP4wWClws3Dmj7pePE+8uodv3r8Wv6kI+01SloPlaL5z9rzeQaXvtZKN0LEbIuOgvK7ftVc9/ldqn/oaFj78OIzTDSi0949kmN4rOlwL/gCrDv86V6+o7VWGeMoiYzkkLRcj9+J3NYT93htW0nJZol7if8xfk8VHigBhsgSw+ab9cQC+4+veFyFLQNl8T32Cp/URLLJf5H/MX3Xtn0QTNaodCwXKj8LCh6aVKBnXYLxqA7r/aRXem6TCe4NyMTDQtOhyvmRf0RXUOoV9YLmKJeplfuq/iRjJ3n8rDS6KJmL8r+8qnlZHooDFvMR/W3eQ1T5MbKYYTQDsohZX+YiRxNEubW4ZlhGizMhiuFm+lv04T+kj8JsKV8NJ+iVu8N9GNe0YuSBQSK837wL7GeCYQel5ocH866rCD/tdpkChe74Rl3Tvnif0Orm0Mg7q+ZVSlkJKfS6dPwYr4AO/HExQkfT1b4HJwPYej3fktu0fy37mBYBAxHsDD0S8x8t+1nXIbUs34zcVkYAPpbzvflNx29LNxa+VbgMUZON5r20uvwkLH5YRpkq35T65uoAG09d9rhHAXH5TvzK0p206sg6moTANw/tSikTW8bYrxWXGA7mAEAQUKYJk8XGF+QBXmL33JQmSxc9HnX+QyDr99leqBBrvU52tvReRBqI6Qa1q7/Me4v0vdb7QTDRu7m06qlJcYT7Q70+RssFUiivMByjXKW+j7vGF94m1nBQX2n+nI2PTnra5wPo7WfykVYg6FcfRCkcbVOs2LCNMRCcp0ylSBHE0ZFSItOvrKoOhDHyGweXmA5STQg0QTDqf40D7h+XdZLBvtqUerwv8PFzXynd8j7/zkBnK55Jt7/W+ILrtz4CS7/8s759XKXW5UmqFUmpFQ0PD8JSm9Q2vNtGTPwyt27oebm9JEvabvQ4J+012tPT5BN33Wk4WlOl9z3PtamsXlgp5m7HQuaaQrl+HUt65/jDV1q5+ZbBdF1f3qZorr5bSuX2qaiBFoNd5KQJMUQ1MybMvndvnapii9vTab+LmPpl75ev8buJ27ctHo7qOdVGYOExR+f+eSnn3NYr8x/twmcQeHFdju97P6Vw5A9i4uZAQwM6Vz/aarxR01syTuefZs6I+RTVg5mnmEqPEvgYr7fZ6XxDd9mdA2QFM7fF4CrAz34Fa69u11ou01ovq6uqGpzSVB3tNUT1ZKag8qOvh1KoIKcvpdUjKcphSFSl+LTMA2vG+57l2s38ifp32NuNHdb0p597StPbOtVI0+yf2K4PPMDAUvd4Utfb6JDq3b9d1hMn2Oi9Mlh26jh159oVy+wwFO/S4XvudXMDTXWFPdW13uoJhfwrdo8aicTDZofP/PbX27lusjmBjsJNxmIbCZ3g/h3LlzOLDQGOgyea6Ch182JhoDSoXfSO559kzGO/QdTiYQ/4hWRwg9vWTgjJ6vS+IbvszoNwPfCw32ut4oG2g/pNhdeJnvX6NbNJ7N8smvccnfrbrkCtOnoHlaJJZG62975ajuzqFC14rVAFoCMTyXts5/mr82PjdFC2qAgM314OiwLG7z3WzOMdf3a8M0ZCP8oCJ42oc1/W+tKYsYHrbteYO9ywC2ITJAJowGQLY3OacxW1O730RMgSw+J15DmUBs9/+Vl2GwuvM9Knu/pF2VUajjvbqO+2ukXgcVK4XRdOuw9zmnNXvTxH2gaM1tzln0aFyNT1Fr/YjF0UHYe72vZfyoI9oyMef/O8lgEVIp2nQMUylMZVLs6rA76ZIqggJFSZMBlNBUKcJGXZXGVztYrsutztn0UE4F46KK2X/sASmwb4plnq8KvDzcF0r3/HD0U44lM8lEO31viC6DVunvFLqbuAUoBbYDXwL8ANorW9V3kfEm4EzgCRwsdZ6wN72YeuUhx4js7Z5n0CKjPLa0ZJkSkmjvHLX6hrllf/axUd5BWDc7H6jvHqWAUbPKK9I0E9ZCaO8fq4+TGPBUV4NWGbZsI7ygs6a1t6P8vKuIaO8RvkorzHTejqso7yGw7AGFCGE2BeuA3bG+yDoWF7fZ8WUMRNQhnMeihBCjF6ODXa6O4DYGS+gjGESUIQQohR2xhtMY6dzc8n6Bw+NJmu7ZB0Xy9ZkHYcJtfuhrPuJBBQhhMjHzoKVzAWRFLhuv0McrcnaDhlbk7EdsnZu/tgYJQFFCCHAG4FpJb1RmFYiN8KyN1d7gSNtuWRsB8vpH2Q6KStJsH4lzFw4nKU+oEhAEUKMXa7rBY9s7ivPIKWs45K2HNK2Q8YqXgMxO3YR3vE04TefJbjnZZRrw2lXDeMTOLBIQBFCjC2dNZFMe8EgkrEdklmHtOVg52nq6skX307kjccJb19KoOW13rdS5tgZM4wEFCHEWGFnvCCSieftD8nYDomsQzrr4OjiQcRMNhDZ8iiRNx7rF0ScYAWpySeRnnw86QmLmDKkT+LAJgFFCDF6ae0FkHTcCyh9WK5LMuOQzNoD1kSUnSG8/UnKNj9MsH5lVxYIADtcR+rgU0hOPZls7XwwzCJXGr0koAghRh/H8rJ8p9v6NWlpNMmsQyJrk7EGnjfia9tK+Wv3E9nyCGa2vfsWwQqSB59G8uC3k62b5+X46nkfrVnXkGXqzKF5SiOBBBQhxOhhpSHdCpmOfrts16Uj45DIWLgDZQhxHUJvLiO64V5Cu1/s2qyVSWrKYhIzziA96Tgw+r+Fbm21eHRTkkc3J9nV7rD1pH1+ViOGBBQhxMhnpSHV7A357SPrOLSnbZJZh4HmiCg7TdnrDxJ99c/4Orpz1VrRySQOeQ+JGWfghqv7ndeecfn360ke2pRgfYO1z09npJKAIoQYuewsJJu80Vp9pC2HeMYqqVlLZduJbriP8g33YGbauranJh1Hx6wPkJ50bN4mrdW7s9z/aoIntibJ9rjNxHKTtx8S4e0z+ixtMcpJQBFCjDyuA8lmr8O9T/NVMmvTnrHJ2iUGklfvIfrqXzEsr5lMG34SM86gfc752LH+654ksy6PbEpy3/oOtrZ2T34M+xSnTg9z5swyFkwIYCiF6y/bxyc6skhAEUKMLOk2r1bSZ1RWMmsTT1tFZ693Unaa8g33EFv3R4ysF0hcX5iOWe+jffa5uOGafufsbLe5Z20HD25MkLC6g9icOj9nH1bOaTPCRPwGWpm4gRhWIAqmfx+f7MgiAUUIMTLYGUg0eP0lPaQsm3i6tBoJrkPZ5oeIrb4LX6rR2+SL0H7YB+iYcx5usKLfKesasvxpTTtPbk3h5uJI0FS845AI75tTxqxabyVWbQRwgjHcQKz3IipjiAQUIcSBL9kMqZZezVsZ26E1ZZUWSIBg/YtUrryJQOvrgNe01X7Y+2mf95F+gURrzcpdGX73cjsv7uqevzKuzOT9c8t5z2FlxIJen4prhnCDlejA2GreykcCihDiwGVnoWN3r0mJluvSlrJIZfsnb8zHTOymcuXNRLY/2bUtMf1dtC28FKdsfK9jtdY8/2aGX70YZ21Dtmv7zBo/Fx4e5dTpYXyGV/twzRBuqBrtD+/LMxxVJKAIIQ5M6bjXxJWrlbha05ay6MjYlJQi3rUp33AvFavvwrBTAGRq59G66DNka+b0O3zlzjS/fDHOmt3dgWTh+AAfPSLGsZODKCWBZCASUIQQBxatoWOPl3crpyNrEU/aA+bY6uRv3kD18hu68mw5oWpaj/oUyWnv6Ne/saExy20vtPHCzu5a0FETg1xyVIyFE4LdxTKCOOFqtH9sDQUeDAkoQogDh2NB+y6vqQsvdXxrKlvSXJLO82Ov/JbY2t+jtINGkZh5Dq1HXIYORHsdWt9uc9uKNv69OdW1bcH4AJceHePIiaGubVr5vEDS53zRnwQUIcSBIZuA9nrQGo2mPW3TlrIodQVEf8vrVC+7jkDrZgCs2ME0n3At2dp5vY5LWi5/XN3O3WvauyYjzqjyceUxFRw/JdTVtKVRuKFK3GDVmB21NVgSUIQQ+1+y2fvCS5XSnMiWNJ8EAO1SvuEeKl+6DeVaaGXQPucC2hZcDGaPJiuteWxzipufb6Up6V27NmJw2dEVvOvQCKbRHTRcfxlOuDZvri5RmPy2hBD7j9Zex3s6DkA8bQ2qVmKkW6hedj3hXc8DYJVPpvmkb5CtndvruC0tFj99trVrCHDAhAsPj/KhBVEi/u6UKtrw44RrpZ9kL0lAEULsH64LHfWQTWK5Ls2JbMlzSgACe1ZT8/T/dE1Q7JjxX7Qu+kyvYJCxNb9bFef3q9pxcjHq5INDXH1cJROivd/+nGAlbqh6SJu3Aj5j4INGEQkoQoi3nutAfCfYGZJZm+ZEFl1irQStia7/ExUv347SDq4vQvNxXyQ17fReh728K8MPn2lhW5s3X2Vy1OSaEyo5fmrv4b7aCOBE6tC+EEPFbxpURvxEQ5J6RQghho/rQPxNsLO0piza09mBz8lRdorqZ79PZNt/AMhWHkLTku9gx6Z2HZOyXG5d0cZ967wMxKaCDy2IctERMYK+3rWPoa6VmIaiMhwgFvZ1de6PJRJQhBBvHceG+Js4dpamRKb04cCA2VFP7dKvdc0tScw4k5ZjPof2dXe8r96d4XtLW9gR92olc2r9fGlJFYdWB3pdSxv+XK1kaCYnKqWIhXxURgK9OvfHGgkoQoi3hmNDfAfZbJamjsyAa7j3FNizhtqlX8PMtKKVSevRV9Ex6/1dNQvL0dz1Upw/rGpHA34DLjkqxgWHR7tSpXRyAzGccE2/9U32ViTgo7osMOb6S/KRgCKEGH65YJJKp2nqGER/CRB+4z/ULLse5WZxAjGalnybzISju/Zva7O47olmXm30VkqcWePn6ydXM6O6d/+FxvBqJYHyIXlKftOguixAWVDeRjvJb0IIMbxyfSbtyRStydL7Szo73ytf+gUAVnQqDafegBOd3HXIw68l+PGyVtK2RuH1lXziqBh+s0+txAzhRMYNyfokSikqw34qI/4x2U9SjAQUIcTwyQWTlvYEHZlBrLWuXSpX3kx0wz0AZOoW0Pi267vSzKdtl/+3rJUHX/PWkK+LmHz9bVUcNan/SC2viat2SDrewwGTmrKgNG8VIAFFCDE8XAfdtoOmeEfJqea982yql/+Asi2PAJA86FSaTvxq16z3ba0WX3+siS255XdPOijEV5ZUUREye11Go7xJisHYPj8Vn2FQUy7NWwOR344QYui5Dm7rDhra2gc1WREnQ+3T/0N4xzMAtM96H62LPtvVgb50a4rrlzaTtDSmgiuPqeD8+eX9mp60MnHKxu/zKK7O0VtVkQDGGB69VSoJKEKIoeW62K07aGyNl56PC2+d99onv0qofgUAbfMvIr7gElAKx9X86qU4v3nZS2lfGzG47rQa5o8P9ruONgLYZRP2ub8k6DepLQ8Q9JkDHywACShCiCFmte2ksSU+qGHByk5R+8RXCO1+EYCWoz5Nx5zzAUhmXb79RDPLtntryS8cH+Dbp9VQE+n/Ru/6It4qjPswJNhQiqqyABXhsTXLfShIQBFCDBmrrZ6GppaSF8KCzmByLaHdLwHQsugaOg57PwC72m2ufbSRzS1ef8n755Zx9XGV/eaWALj+KE6kbp8630N+k7poEL8pne57QwKKEGJIZNubaGxoGGQwyfQKJs3HfJ7ErHMAWLM7w1f+3URb2sVU8LkTKzl7dv45JE6oykuhspeUUlRHAlREpFayLySgCCH2mZWK07h756CCCY5FzVPf6A4mx36exEwvmPxnS5LvPtlM1oGKoMF1p9dw5MT+/SUAdrhun0ZyBXwGddGg9JUMAQkoQoh9YmfTNO7aPrhg4trULLuO8M7lALQcfTWJmeegtebPr3Tw8+fbAJgS8/Gjd9UyOdb/rUqjcCLj0YGyvS57LOynpiwgExSHiAQUIcRecxyHPTvfwHEGMc9Ea6qe+xGRbU8A0LrwMjpmn4urNTc/18Zf13YAMH9cgO+/o6bf/BLIpVEpm4D2792wYNNQ1JYHZV7JEJPfphBir7iuZk/9dhwrPajzKlbdQfnmBwGIz/sI7fM/iu1qvre0hX+97s18P2VamK+/rbpfunnonGMyYa/XLwn6TcZJx/uwkIAihNgrDQ17sJNtgzqnfMO9xNb+HoCOQ99D28LLSNsu33ismeU7vMD0vjllfPb4yrxp4LUyscsn9lorfjCkiWt4SUARQgxaQ0ucTHw3g3lbDr/xHypX3AhAaspJtBzz3yQszZf+1cjq3V7SyEuOjPHxI6N53/C18uWCSaDfvoEYSlEbDVIuTVzDSn67QohBaU2kSTXvQA0iBX2g4RUvBT2aTO18mk76FnHL4AsPN7A+l3b+v0+o5P1z8w8L9oLJpL2a/e43DcbHQpLQ8S0gAUUIUbL2tEVbww4Mt/TMwWbHLmqf/CrKzWJFp9B4yvdotvx87uEGNjVbGAquXVLFmTPzj9bqrpkMPphEAj7GRYOSh+stMqwhWyl1hlJqg1Jqk1Lq2jz7K5RS/6eUWqWUWquUung4yyOE2HvJrE1zUwOGlSj5HJXtoO6JazEzrTiBGI2n/IAmt5zPPugFE1PBt06pLiGYDL6ZqyoSYEJFSILJW2jYAopSygR+DpwJzAUuVErN7XPYp4F1WuuFwCnAj5VSg3/lCCGGVdpy2NMSRyUbSz/Jdah5+tv427agDR9NJ3+XBv8krnmogS2tNj4Dvnt6DafNiOQ9vbsDfnBvCUopxsVCVJXJW8lbbThrKMcCm7TWm7XWWeBPwDl9jtFAVHk9cOVAMzCIAe1CiOFmOS6721IYHbsH1W9Ssep2wrueA6D5uC9SHzucax5qYHNLdzBZfHD+eSR7G0x8hsHEipB0vu8nwxlQJgPbezzekdvW083AHGAnsAb4rNaDmW4rhBhOrqupb0tDogHllr58b2Trv4mtuxuA9tnnUT/5XXzu4cauYHLdaTWcdFCBYJKbtDjYocEBn8GkyhAhv6RQ2V+GM6Dka7js+/HmXcDLwCTgCOBmpVS/pDxKqcuVUiuUUisaGhqGvqRCiH601uxuT2OnOzCy8ZLP8zdvpGr5DwBIT1jEznmX84VHuvtMvnNakZoJaq8mLYYDJpMqwvhksuJ+NZy//R3A1B6Pp+DVRHq6GLhPezYBW4DZfS+ktb5da71Ia72orq5u2AoshOjW2JEllc5iJkv/EGdk4tQu/TqGk8Eun8Sbx3+TLz/WyvoGbzTXN06pZkmBYALgRMYNOp1KecjHhJh0vh8IhjOgvADMVEpNz3W0XwDc3+eYbcDpAEqp8cBhwOZhLJMQogRtKYv2tIWZakTpErs1tUv1suvxJepxzRD1S77L1562ebneayr70uIqTi/QAQ94678H8s9DKaQi7GdcNCQz3w8Qw9ZzpbW2lVJXAY8AJnCX1nqtUurK3P5bgeuAXyul1uA1kX1Zaz2IYSRCiKGWthyaE1lUtgPD6ij5vOjaPxDe+SwAzcd+ju+srmb5Di831zUnVPLuWYWzAjvBKtxgxaDKWVMWlPVLDjDDOhRCa/0g8GCfbbf2+Hkn8M7hLIMQonS247I7nkY7Nr5U6Z/tgvUrqVj9SwDaDz2bH+w5nn+97gWjS46K8YECM+ABXH85bnhwi2PVRYNEQxJMDjTSgyWEADo74TM4rs41dTklnWekmql55jqUdslWH8YvAh/vSkH//jllfPyIaMFzXTOEExlXchk755hIMDkwSUARQgDQlMiSsRyUlSy9qUu7VD97PWa6Gddfzn1Tr+WWF72swadND/PZEyoL9m9o5fOGB5fY/6GUYnxMEjweyOQvI4SgI2MTT1mgvdpJqaLr/kR41wsArJh1DV9/wZs7ctTEIF97WzVGoWCCwi6fAEZpc0YMpZhQIXNMDnRSQxFijLMcl8b2DABGuhlVYuLHQOM6KlbdAcDOqe/m4tXzsF2YXunju6fXEDAL1zycyLiSJy5KMBk5JKAIMYZprdnTnsHVGpwMRqa0BbOUlaTmme+gtEMqejDnv3k+CUtTGzH44btqiQYLv7U4wcqShwdLMBlZJKAIMYa1JC0yltf5bqaaSs7VVbnyRnwdO3ENP5+zr2Z70kfYr7jhnbWMLy/cku76wrjhmpLuIcFk5JGAIsQYlbYcWpPepEOV7cCwUyWdF97+FOWve7MB/lT2UR5qmYSh4H9OqWZmTeFkjlr5cCLjS7qHBJORSQKKEGOQ62oacv0maBcz1VTSeUaqiarnbgDg9chCvtZwGgBXHVvBiQWSPUJnjq5xJXXCSzAZuSSgCDEGNSWyWI6X2NtIt5aWXkVrqpf/ADPTRsYs58PNl6IxOGd2GR+cV7xPxA1Vo30D5+iSYDKySUARYoxJZm3a07mRXI6FkWkt6byyzQ8S3rkcgC9nLqGeGo6aGOSaInNNAFx/GW6ocsDrSzAZ+SSgCDGGOK6msb17XRMzXVpHvJnYTeXKmwF4VJ3A3+3jmRQ1+c5p1fiKZPnVhr+kmfDepEUJJiOdBBQhxpCmRAbb9Zq6lJ0qbX14ral67ocYVoJWVcGXUhcR9iu+9/ZaKkKFA4BGecFEFX+bUUoxIRYiHJBgMtLJTHkhxohExqYj3d1XYqSaSzqv7PV/Et71POA1dbUQ4/qTq5lRXTyfltdvUnyhrM50KhJMRgepoQgxBjiupqmju6lLZTswnPSA55nJPV1NXf9wTuQR9xg+fmSUk6cV72Avpd+kM5hEAvK5drSQgCLEGNCzqQutMdMl1E60pur5n2DYSRp1jG9ZF3H8lBAXH9lvle7epxl+nPDAK6uOi0owGW0koAgxyiWzfZq6Mm0l5esKv/E44TeXAfAt6+OURSv55imFEz5Cj36TAeab1EWDlEnW4FFH/qJCjGJun6YuXAcj3TLgeUamjaoVPwPgUecoHjOO59a3F8/RBbllfAfoN6kpk8WxRiupoQgxijUnuycwAhjpFhRukTM8lStvxsy00q7DfMO6mM+fWMUhA3XC+6PoYPHmsMpIQJbtHcUkoAgxSqUtx1vjpJNjYWTjA54XrF9J2ZZHAPi+fSHHHnYQZ8wsvB48gDYCOJHaoseUB31UlxXO9SVGPmnyEmIU0rpHrq6ckiYxOhliy38MwAp3Fi9UvItbji8+WkujsMuKzzcJ+k3qoqWtfyJGLqmhCDEKtSStXk1dpU5ijL7yB0KJHVja5Ho+wXWn1xH0FV+i1wnXFl0sy28aTIiFiqZnEaODBBQhRpmeaek7lTKJ0RffRvna3wPwS+e/eP/ihUyKFW/EcP3lRftNjFxKFbNIehYxekhAEWIU0VrT2NG7qUtlEwNPYtQa/9M/wqdtduhath7yEU6ZHil+ivLhRArPN+nMzxXwydvMWCF/aSFGkdakRdbuMYqr1EmMm/5NbcvLAPwidCmXHj9hwFMGytNVF5WUKmONBBQhRomM7dCa6j1h0cjGUW62wBk52QRlK34OwKPuMfzXO94xcL9JoALtL5x+pbosQLlMXBxzJKAIMQp0jurSuscoLu2WNIlxz5N3Uu02k9IBGo78NAdVFJ8noo1A0XXhy0M+KiMyPHgskoAixCjQlurT1AUYmVaUdoqeV//GayzY/XcAHo59kMXzpg94LydSBwVGbIUDJnXlMjx4rJKAIsQIl7VdWpJ9cnO5Dka6reh5GcvFt+wn+JXDdiYw5x0fH3BorxOsLJhaxW8ajIvK8OCxTAKKECNcU6JPUxe52skAKVaeffJBjnTXAlB/xNWUhYvn4NKGHzdfC93IAAAgAElEQVRUnXefaXjL98rw4LFNAooQI1hHxiaV7dOs5VgYmeK1kxe3tXJa/S8B2FB+HBPmLRnwXk44f1NX5/BgvylvJ2OdvAKEGKFcV9Pc0X8El5luKZpipS3tsPup3zBZNWHhI3LKZwe+VyBWcFRXTXlA1oIXgAQUIUas1pTVvWhWJyeDYbUXPEdrzV1LN/IxfT8Aew49FyqmFL2PVj6cAqO6KsJ+YpKKXuRIQBFiBMraLm2p/otkmQMME35kU5LT6u8ipCwS/hr0URcNeC8nXJt3AmMk4KNGRnSJHiSgCDECtSSz/TrilZ0umgByd4fN0meXc5b5HACpRVei/cXTq7j+cnSgf+p6b0SXBBPRmwQUIUaYtOWQyNj9thebxOhqzfeebOKL6rcAJKrmkJr+zqL30cr0aid9dI7oMmREl+hDAooQI0xTon9HvLJTGHay4Dn3retg2p7HWGBsAaDjmKsLTk7s5IRr+60Nr5RiXFRGdIn8JNmOECNIR8YmY/Wf/V4sPf22Votfv7CbR/x/BiBx8Olk6+YXvY/ri6AD5f2215QHJOGjKEg+ZggxQmitaclXO7FSBdPT267m+qUtXKIeYIJqwTUCtB1xRfH7oPI2dcmILjEQCShCjBDxlN1rFcZORpH09H9e005zwy4uNx8AoGPO+TjlxVPTu6FKMHsHDhnRJUohAUWIEcBxNS3JwdVONjdb/PLFOF/w/5WwyuKEqonP+3DR+2gjgBus6rVNRnSJUklAEWIEaElmcXX/2e9GJv/ILtvV/O9TzczUW3m/+RQAbQsuGXCYsDfnpLuzvnMJXxnRJUohnfJCHOCytkt7uv8wYW9kVyrvOX9c3c6Gxiy/9/8BA41VMY3EIf9V9D6uv7xfepXaaFCW8BUlk1eKEAe45kT/SYwARro17/Gbmy1+9VKcU4xVLDa9bMKtR34SjMKfH/PNOYmF/bLqohgUCShCHMCSWZtkNl/tJJ133ontar73VDOu6/LN4N0ApMcfRXrS8UXv44Sqe805CfgMaspk1UUxOBJQhDhAaa1pypNNGLz1TvL505p2Xm20ONd8khl6OxpF61GfKjqJ0TVD6GCs+9q5fhNZKEsMlgQUIQ5QhYYJ42Tz5uza2mpx14txQmT4auheAJLT3oFVPavgPTTKW9K3h9poUGbCi70yrK8apdQZSqkNSqlNSqlrCxxzilLqZaXUWqXUk8NZHiFGikLDhAHMPH0njqv5wVMtWC58NvIIFU4z2vDTtvATRe/jBivA7G7aioak30TsvWF75SilTODnwDuAHcALSqn7tdbrehxTCdwCnKG13qaUGjdc5RFiJGlO5B8mjGOhrI5+m+9b18Ere7JU0s6lylvrpGPW+3DKJxa8h1Ymbqh7zonfNKgtl34TsfeGs4ZyLLBJa71Za50F/gSc0+eYDwH3aa23AWit9wxjeYQYETK2Q3u6/1onAEamrd9qjDvjNrevjAPwk7p/4neSuP5y4vM/WvQ+Tqi6a50TJf0mYggMZ0CZDGzv8XhHbltPs4AqpdQTSqmVSqmP5buQUupypdQKpdSKhoaGYSquEAeG5jz5ugBwbYxsvNcmrTU3PNNC2tYcHm7klMRDAMTnfdhrzipAG8FeHfE15QGZbyL22XC+gvJ91Olbh/cBRwPvBt4FfEMp1a8HUWt9u9Z6kdZ6UV1dXd/dQowaiYxNKts/mzDkr508+FqSlTszANxY9w8M18IO19Fx2AeL3qfnkr7lQZ8kfRRDYjh733YAU3s8ngLszHNMo9Y6ASSUUkuBhcDGYSyXEAckrXWR2omDkeldO2lMOtz8nNdB/7Gpe5i253EA4gsuRvsK595yfZGuGfFev4nk6RJDYzhrKC8AM5VS05VSAeAC4P4+x/wDWKKU8imlIsBxwPphLJMQB6y2lJV/mDCdtZPe+376bCsdWU0saPAF888oNFbsIBIzzih6HydcDXj9JnXRoOTpEkNm2GooWmtbKXUV8AhgAndprdcqpa7M7b9Va71eKfUwsBpwgTu11q8MV5mEOFDZjktrMn9HvFc7aeu1aenWFE9u9fJ4fXfudmLrnwWgbeFlRVOsuP4omF6NpCriJ+SXxbLE0BnWAeda6weBB/tsu7XP4x8CPxzOcghxoGsukE0YwMj2rp20Z1x+8qyXZfiYSQHe2eitE5+pmUNq6skF76FROLlhwuGASWVEhgiLoSXDOoTYz9KWQ0eebMIAaLdf38mtL7TRlHQJ+xTXH7qBUMMaAG8lxmIpVoIVYPoxDUWd9JuIYSABRYj9rKlQRzy5vhPdPeprVX2G+zd4aVc+cVQ50zbeBUBq4jFkJhxV8DoaAzdYCUBdNIhPUquIYSCvKiH2o3jaImPlHybs1U66+06yjuaHT3tNXbNr/VxU9hyB1tcBaFt4edH7uKFKMLxmrkhAUquI4SEBRYj9xHE1LUVrJ/FetZPfrYrzRpuNqeDaE6NUrvkVAMmDTsGqOazgdbThxw1WEvSbVEVkvokYPhJQhNhPWpJZHDd/Rzxa96qdbGmx+P2qdgAuODzKgpZH8Xe8iVYGbQuKJ4B0QjWYpsH4aFBSq4hhJQFFiP2g0LK+nYxsHKW9/a7W/PCZFmwXJkdNLjk8QMUrvwYgMeMM7IqDC17HNUPoQBm15dJvIoafvMKE2A9akvmX9QW82kmPFPX/tyHBmt1e09gXFldRs/nvmKkmtOEnfvjFRe/jRGqJhf2USUp68RaQgCLEWyxtOSQyhWsnKtveVTtpTDrc+oLX9HXGoRGOqXOIrv0DAB0zz8EpG1/wOq4/SiAYlqV8xVtm0AFFKVWllFowHIURYiwoNkwYwOyxvO9Ny730KhVBg08fV0F0/Z8xs3FcX7hoenqNgY7USEp68ZYqKaDk0svHlFLVwCrgV0qpnwxv0YQYfdqLDRMGVLYD5XopWJZtS/H4Fi+9ylXHVVBNO9H1f/auc9gHey2O1ZcbqqA6FpGlfMVbqtRXW4XWOg68H/iV1vpo4O3DVywhRh+tdeF8XTmdy/smLZefLPN+PmpikHcdGiG67g8Ydgo3UE773AsK30f5CMdqJSW9eMuV2lPnU0pNBM4DvjaM5RFi1Iqn7ILZhAGUlUS53tomv3oxzu6EQ8CEL5xUiS/VSPnGv3nXmfMhdCBa+EaRamqj4SEtu9h3K1euHOfz+e4E5jPy+69d4BXbti89+uiju1baLTWgfAcva/DTWusXlFIzgNeGoZBCjEqOq2lJFu87MdLeLPiNjVn+utZbN/6iI2JMrfATe/63GE4WJ1RFx+wPFLyGNoLU1tZhSkr6A47P57tzwoQJc+rq6loMwygwxG9kcF1XNTQ0zK2vr78TOLtze0kBRWv9V+CvPR5vBgq/qoUQvbQWySYMoKwUhpPGcb05J46GaZU+Ljw8itm+k7JNDwAQn/dRtK9w7SNcNU5Sqxy45o+GYAJgGIauq6trq6+vn99ze0mvPKXUr+i/fC9a60uGqHxCjFqW4xIvMokRwMh4tZO/re/g1Uavn+WLJ1XhNxUVr/wapR3syDg6Zp5d8BpmoIyaysId9WK/M0ZDMOmUey69mu5Kbcd7APhn7usxIAZ0DGnphBilWhJFJjECyk5j2Cn2JGxuX+mlqn/PYWUsmBDE17aVyJZ/ARA//ONgFp5TUj1uoqy+OMJ9+ctfnnDooYfOmzVr1tzZs2fPffzxx8v25XoPPPBA9NRTTz10qMo3kFKbvO7t+VgpdTfw72EpkRCjSNpy6CgyiRHAyM07+dmzraQsTVXI4JPHVABQsfpXKO1ilU8uurRveayKUHif3nvEfvbvf/+77JFHHqlcs2bNunA4rHft2uXLZDL77ROCZVn4/YMbKbi3Iw1mAgft5blCjBkDTWLEyWBYCZ56I8XSN9IAfOb4SqJBA3/za0S2/QeA+IKLCy7t6zdNKmsmDGm5xVvvzTff9FdXV9vhcFgDTJw40Z42bZo1efLkw6+66qrJRxxxxOz58+fPefrppyOLFy+eOXXq1Pk33HBDHYDrulxxxRVTZs6cOW/WrFlz77jjjn5tn08++WRkzpw5c9etWxeIx+PGueeeO23+/Plz5syZM/f3v/99JcCNN95Yc+aZZ8447bTTDl2yZMmswT6HUvtQ2undh1IPfHmwNxNiLBloEiN4806SWZefPuvVUo6ZHOT0GV6ne8XqXwJgVUwnefDpBa6gqK6pQ/kkvcpI9973vjf+ve99b9K0adPmL168OH7hhRc2v/vd7+4AmDp1avbll19+9ROf+MTUSy65ZNpzzz33aiqVMubPnz/vS1/6UsNvf/vbyjVr1oTXr1+/dteuXb5jjz12zjvf+c6ubolHH3207Jprrjno/vvv3zRz5szsVVddNfnUU0+N//Wvf93a2NhoLlq0aM7ZZ58dB3jxxRfLV69evXb8+PHFX7x5lNrkVWTQuxCiL601LYnikxhxshhWB798Mc6e3JyTz59YhVKKQONawm8uA6Bt4SfAMPNeorIsSCBaO9TFF/tBRUWF+8orr6x7+OGHo4899lj0oosuOuSb3/zmDoDzzjuvFeDwww9PJhIJo6qqyq2qqnKDwaDb2NhoPvXUU9Hzzjuv2efzMXXqVPu4447rePrppyMVFRXupk2bQp/61KemPfrooxunTZtmATzxxBOxRx55pPLGG2+cAJDJZNSmTZsCAEuWLInvTTCB0msoj2mtTx9omxDC05q0sN3CkxjBq51saMxyz7ruOSeTY96/ZMXLdwCQrT6M1JQlec8P+X1EK+sKBhsx8vh8Ps4666z2s846q33BggWp3/3udzUAoVBIAxiGQSAQ6GotMgwDy7JUsUEf48aNszKZjLF8+fLItGnT2sD7wHPPPfdsWrhwYabnsU8//XRZJBIp/sItomgfilIqlMvfVZtLClmd+5oGTNrbmwoxmtmOS2tqoNqJhc7E+eEzLbgapufmnAAE61cS2v0iAG0LL4U8yR0NpagqD0NYhgmPFqtWrQquWbMm2Pn4pZdeCk+ZMmWATjjP2972tvZ77rmn2rZtdu7c6Xv++efLlyxZkgCIxWLOQw899Nq3vvWtyQ888EAU4NRTT43/+Mc/Hu/mPvQ888wzQ5JaYaAayhXANXjBYyXQ+cqOAz8figIIMdo0DzBMGMBMt3Dvug425OacfGGxN+cEralYdScAmboFpCcem/f86rIAvvLavMFGjEzxeNz8zGc+c1A8HjdN09TTpk3L/OY3v3lj0aJFFQOd+9GPfrR12bJl5XPmzJmnlNLf/va3dxx00EH26tWrAZg6dar9wAMPbDrzzDNnRiKRrd///vd3Xn755QfNnj17rtZaTZkyJfOf//xn074+h6JVpa6DlLpaa33Tvt5sKCxatEivWLFifxdDiLzSlsPO1lTxgxyLpl1b+Nh99aQszdmHlfHFxV5NI/Tms9Q94Y132fP2G8mMP6Lf6dFQgMpoGVTKQMsRQgGsWrVq68KFCxv3d2GG0qpVq2oXLlw4rfNxqZ3yNyml5gNzgVCP7b8d8hIKMYINOEwYb72TG5e3dM05uTI35wTtdtVO0hMW5Q0mAZ9JRdgHkZohLbcQQ6HUTvlvAafgBZQHgTOBpwEJKELklDJMGMfi6Y27eSo35+Tq3JwTgPC2Jwm0eDlX2xZe2u9UQylqygIofxgCMolRHHhKndj4QeB0oF5rfTGwEAgWP0WIsaOkYcJApr2Jny3vnnPy9tycE1yna95JcspisrVz+51bXRbAZxhSOxEHrFIDSkpr7QK2UioG7AFmDF+xhBhZ2lIDDxPGsfjl8jf7zTkBiGz9F/74NjSK+IJP9Du1LOgn7PeBP+x9CXEAKjXP9QqlVCVwB95orw7g+WErlRAjiOMOvBIjwKYdu7gvN+fk4iO755zgWFSs/hUAyYNPx6o6pNd5ftOgKpLLqSS1E3EAK7VT/lO5H29VSj0MxLTWq4evWEKMHAOtdQLgWFl++J8duBpmVPm44PDu5BNlr/8TX6IerUwvZ1cPCkV1WRCF8vpN/KG+lxbigFFSk5dS6rHOn7XWW7XWq3tuE2KsKmWtE4C/vfA6rzXl5pycVIUvl2Ze2RkqXvkNAIkZZ2DHpvY6r7LMT8DM/ZtK7UTsJdd1Ofroow/7y1/+Euvcduedd1YtWbJk5lDep2gNRSkVAiLkZsrTPbExhsyUF2LAtU4A6lvaueuFBgDOmV3G4eO7x7OUb7wPM9WENvzeeic9hAM+ygO5pq5gFCQBpNhLhmFw6623vnH++ecfctZZZ62zbVtdd911kx988MEhXcp9sDPlO7UjM+XFGJfKDrzWidaamx7bSNrWVIcNrugx6VlZCaJr/wBAx8xzcMrGd+0zlUFVJBdAlJLayRj0z9U7Y3c8tWXCrrZUcGJFOHPZkun1714wKb631zvmmGPS73znO9u+8Y1vTEgkEuZ5553XNG/evMxNN91Uc/vtt4+zLEstWrSo4ze/+c0213U599xzp69bty6stVYXXXRRw9e//vU9A91joICyDPgL8MHc5MaL8NaS3wr8cW+fmBAjndaaxo7MgMct3VDPs294HfHXnNA95wQguv4vmNk4rhkiPu8jvc6rLgtgdqZVCVWAKevEjyX/XL0zdt0/1x/kN5SOBn12U0fGf90/1x8EbNuXoHLDDTfsXLBgwdxAIOCuWrVq/QsvvBD6xz/+Ufniiy+u9/v9XHjhhQffcccd1bNmzco0Nzf7Nm7cuA6gsbGxpAykA/Wh3AZkcsHkZOB7wG+ANuD2vX1SQox08ZSN5RQfJtyRtrnpP68DcMLUEKdM6x7ua6Rbia7/s3fc7HNxw9Vd+8qDfkL+3P+vUpIAcgy646ktE/yG0iG/6SqlCPlN128ofcdTW/ZpJbVYLOa+973vbT7vvPOawuGwfuihh2KrV68uO/zww+fOnj177rPPPht9/fXXg3Pnzk1v3rw5dPHFF0+99957Y9XV1SWlsx/oY4+ptW7O/Xw+cHtuOeB7lVIv78sTE2Kksh2XluTAKVbuWLqJ5qRD2Kf43AmVXXNOAKLr/oBhJ3ED5cTnXNC13W8aVEZ6LLsarpL09GPQrrZUMBr09WpPDfoMd1dbap8nlBuGgWF4dQmtNRdeeGHjz372s519j1u7du3ae++9t+Kmm24ad88991Tdfffdbwx47QH2m0qpzqBzOvB4j31SBxdjUnMJw4TX7Gjj/9bsBuDSo2NMiHb/u5jJPUQ3/A2A+JwL0cHOIcQ9hggDGAaEKoe8/OLAN7EinMnYbq/354ztGhMrwgO3sw7CmWee2f6Pf/yjeteuXT6A+vp687XXXgvs3LnT57oul1xySct3vvOdnWvWrImUcr2BgsLdwJNKqUYgBTwFoJQ6FK/ZS4gxJW05dAwwTDhru/z4XxsAmF3r5wNzy3vtj635DcrN4oSq6Zj9wa7tVT2HCAOEq72gIsacy5ZMr7/un+sPwnKMoM9wM7ZrWK5Wly2ZXj+U9zn22GNT11577c5TTz11luu6+P1+fcstt7xhmiaXXXbZNK01Simuv/76HaVcr2hA0Vpfn5tvMhH4l+4eH2kAV+/bUxFi5CmlI/7u57exrSWFqeBLi6swje6mLl98O2WvPwhAfP5H0T6vX6XXEGHwOuFDAy6DIUapXMf7tqEc5dXpJz/5Sa/mrSuvvLL5yiuvbO573Pr169cN9toDNltprZfn2bZxsDcSYqRrS1lk7eId8VubEvzhuW0AnD+/nJk1veeOVKz+JUo72GUT6Dj0bCC3+mKkzxyTcLUsnjXGvXvBpPhQBJC3ktSnhSiB42paBljrxNWaHz2yEdvVTI6aXHxUrNd+f/NGIm943ZBtCy4B06uRVEZ6DBEGbwJjqPe5QowEElCEKEFzYuCO+Ptf3sm6Xd4Hyi8sriLk6/3vVbHqDgCsiukkp70DgEjAR1mgT0OBTGIUI5QEFCEGkLVd2tPFswnviae546ktAPzXzAiLJvVO4hjc/TLhnc8B0LrwUjBMTGVQ2bepSxbPEiOYBBQhBjDQnBOtNT997DVSlkNVyODTx1X2PYCKl24FIFM7n/SUxQBURvy9m7oAymqHrNxCvNUkoAhRRNpySAyQr+vxVxtYvtkbJPPZEyqJBXv/W4V3PEWwyRsw03rkFaAUkYCPSN+mrmAUfLIQqhi5hjWgKKXOUEptUEptUkpdW+S4Y5RSjlLqg4WOEWJ/aB6gI74taXHzfzYBsPigEKdN77OaomtT8bKXpSg16QSy4xbmb+qSBJDiLaCUOvqyyy6b0vn4m9/85vjPfe5zQ5Y5ftgCilLKxMtIfCYwF7hQKdVvoezccT8AHhmusgixN5JZm7RVPIXRz5/YRFvKojxg9FrSt1PZ5oe7lvZtO+JyoEBTV6hSEkCKYRcIBPSDDz5Y1TkzfqgNZw3lWGCT1nqz1joL/Ak4J89xVwP34q1TL8QBQWs9YO1k+eYm/r3ee9l+6tgKast659xSdppY59K+096BVXVI/qYuw5AEkKK/tX+Lccfps/jx7MO54/RZrP3bPo8lN01Tf+xjH2v43//93/F9923cuDFwwgknzJo1a9bcE044YdZrr7026AV4hjOgTAa293i8I7eti1JqMvA+4NZiF1JKXa6UWqGUWtHQ0DDkBRWir4EmMXZkbP7fo97aREdODHLWrP6pjso33IMv1YA2/LQt/AQ+w+g/gREkxYrob+3fYjz81YNINPgJxmwSDX4e/upBQxFUvvjFL+657777qpuamnp9ArryyisP+tCHPtS0cePGdeeff37TJz/5yamFrlHIcL6K803z7TuQ/6fAl7XWRdsVtNa3a60Xaa0X1dXVDVkBhcgna7u0JIsPE7596WYaOjIEfYovL+7f1GWkW4l1Lp4163045ROpLgtg9G3qMv2SYkX0t+zmCZh+jT/sohT4wy6mX7Ps5n1KXw9QXV3tnnvuuU3f//73x/Xc/tJLL5VdfvnlzQCf/OQnm1euXFme/wqFDWdA2QH0jHBTgL4pkhcBf1JKbQU+CNyilHrvMJZJiAE1dGSKLuv74hstPLB6FwCXHx1jcqx/c3Rs7e8wrASuv5z4/I8SCwUI+vKkoY/USIoV0V/8zSC+UO8qsi/kEn9zSIYBfuUrX9n9xz/+sTaRSAxpDBjOgPICMFMpNV0pFQAuAO7veYDWerrWeprWehpwD/AprfXfh7FMQhTVlrTIFOmIT2Udfvyol8pu/vhQv0zCAGbHTso35tLTz/sIvrJqKsL+fsfhD0Fw0B8CxVgQm5zBTvd+f7bTBrHJQ5K+fvz48c573vOelj/+8Y9dE5+OPPLIxJ133lkFcNttt1UvWrSoY7DXHbaAorW2gavwRm+tB/6itV6rlLpSKXXlcN1XiL2VtV2aB5jEeOfTW9jVlsZvKq5dXNErk3CnipfvRLk2dqSOxOwPUl1WoG8zIpMYRQEnXlWPYymslIHWYKUMHEtx4lVDlr7+a1/7Wn1ra2tX9foXv/jFtt/97ne1s2bNmnv33XfX3HLLLduLnZ/PsI5T1Fo/CDzYZ1veDnit9ceHsyxCDKRxgKauVdtb+dtLbwJw8VGVHFzZv9YRaFxH2Rv/BqBt4aVUV0Tx5+twD0a9GooQ+cx7XxzYxrKbJxB/M0hscoYTr6rPbd9ryWTypc6fp06daqdSqa7Hhx12WHb58uX7lEleBr4LgdfUVWzOScpyuOERb9GsOeMiXDg/zwJ2WlPx4i0AZKtmYhz2bsL+PP9iMolRlGLe++L7GkDeajJWUYx5pTR13bF0c1dT11cWV+DL09QV3vE0oYbVACSOuYrK8gI1kHCVTGIUo5IEFDHmDTSq66VtLfz9ZW+A4iWLaplelWe0lmtT8dIvAEhNOp7yQ0/sXhu+J8OUSYxi1JKAIsa01mS26KiuZNbmh494zcqzx5dxwdz8Hezlr/0Df/sOtDLQJ34mf78JeNmEZZjwWOW6rjtq/vi559JraLMEFDFmZWxnwAmMv3hiM/Vxr6nrq0uq8zZ1qUx7V4qVzMyziEw4LP/F/GGvM16MVa80NDRUjIag4rquamhoqABe6bldGnLFmKS1pqG9eFPXc1ua+OcabwLjpcdPYnpF/mMrXvkNZjaO64/gP+nT+S+mFJSPy79PjAm2bV9aX19/Z319/XxG/od5F3jFtu1Le26UgCLGpNZk8Vxd8ZTFj3JNXQsmxzh/tkmf2j0Avvh2yjfcC4Bz5MX4Cy2QFa7qWkNejE1HH330HuDs/V2O4TTSo6QQg5a2HFpTxZu6bnx8E02JLGG/yVffVouZJ5gAVL50C0o7OOUT8R/14fwXM/3SES/GBAkoYkwppanr8Vf38PirXlr6Ty6ewuRw/iHFwfqVhHc8A4Cx+LOFV1uUjngxRkhAEWNKcyKL5RRu6mpoz/DTf3tp6Y+fXs05Mwoc6NpUrrzJ+3HiEahD3p7/uEAEAmX7UmQhRgwJKGLMSGUd2oo0dbla84OHX6UjY1MR9vPFk2sxyD+kuPy1+wm0bkajMBZ/Pn8NRCnJ1yXGFAkoYkxwXK+pq5i/v/QmL25rBeALp09jnC+Z9zgj00Zs9S8BUHPPgfH9Vrb2hCrAN+hF74QYsSSgiDGhsSOD7RZu6trSmOC2pZsBOHP+BE6eVLiPpWLVLzGz7ehAORxfYJiwYXgrMQoxhkhAEaNeW8oikbEL7s/aLt/953osRzOxIsSnTxyH4aTzHutv2UTZJm9ZH3XsFRApEDQiNbKsrxhz5BUvRrWM7dCcKJ748falm9nSmMBQ8PUzDyPmtuU/UGsqX/gpSrtQNR0OPzf/cb6ALOsrxiQJKGLUcl3NnvjAs+Hvy61xctGJ05hfZaF0/o74yNZHu7IJs+QLhScqSmp6MUZJQBGjVkNHpugQ4eZElhse9tY4OXxyjA8fVYeRzb/8hMp2UJlb64RDToeDjs9/UX9YhqpFHckAACAASURBVAmLMUsCihiVWpPZov0mrtZ878H1tCQtyoM+vnLmbALppoLHV66+CzPd7AWMJZ8vfONCqVeEGAMkoIhRJ5m1B+w3+dPz21nZOUT4nbOYFEih3Pzn+Fs2UbbxPu/BMZdB+fj8Fw3FCs+WF2IMkIAiRpWs7bInXny+ydqdbdz1zBYA3rNwIicfEsPItOY/WLvUrPh/3R3xCz+U/zhZ1lcICShi9NBas6c9jVukEz6esvjuP9fjapheW8anTp6BL9GAIv850c0P4t+zxnvwti8V74g38qzkKMQYIgFFjBoNHZmiKem11vzg4Q3sjmcI+gy+cdYcwk4c5eav0RipZipe9Jb15bB3w5Rj81/YF4Bw5b4WX4gRTwKKGBXa0xYd6cKd8AB/WbGDZzd7He/XvH0m0ytMzExLweNrX74FlW2HYAUs/u/CFy77/+3deZhcdZno8e97Ti3d1fuePZAQshD2KJvsoIAIDuqjuFydxxnc7gzeURAVUVBHnXHmcYNxHEevzox6UVQQRURAQRYhIBCSELKQfel9qb3qnN/943d6SVLVXR26U9XJ+3meerqWU1VvVVf127/t/enGWUqBJhR1BMjkPbrj4w/Cv7hrgP941JZWueyEWbxhRTtusrPo8bWdzxDd8jt74Zzri+9nUlUP4apDilupI40mFDWj5T2ffQPjL17sT2b5/L2j4yZ/f/FxuKkexC9cedj1MjT++V/shTmnwvIim+w5jg7EKzWGJhQ1Yxlj2Dc0ftFHzzd84dfr6YpnqAo7fPbKFVSTKbqAEaB93Q+QwZ3ghOGCTxXfHEsH4pXajyYUNWN1xTNkcoXLpAz7/mOvjJSkv/ENS1nQXIWb7Cp6fHN8M6E1P7IXXvN+aC6yw1a4Sut1KXUATShqRupPZicchH9sUzc/emoHAG89fS4XLG3HTXYjpvD9YiGo+dM/gvGheTGc9r7CDywCNW2vJnyljkiaUNSME89MvBJ+R2+SL9/3EmDrdF137iIkm8DJDRU8PhJyad7wY+jZCOLAxbcUX3NS1aAr4pUqQBOKmlHSOW/CnRcTmTyfuXstiaxHc02EW65cQUgMbqpwV1fIcWjN7ECe+g97xcnXQsfKwg/uuLpxllJFaEJRM0bO89k3mB53RpdvDF+67yW29yYJOcKtV62gpTaKm+oqWJZeEFqqXdwHPwt+HhrmwxkfKh5ETatunKVUEfrNUDNC3vPZO5DG84snE4D/emIbj2+2ixevv3gJJ8xpQDKDOLlEweNbaiNEnvu/0LUBELjkc7aicCHhaojWHfJrUOpIpwlFVTzPN+wZSI+7twnAIy938YMntgFw1clzeONJs8HL4qYKl6VvqI5Q3b8JVn/XXnHKu2D2KYUfXAfilZqQJhRV0XzfsHdw4mTy8r4hvjQyCN/ARy5cDMbgJrsQDr5vLBKiPmzg958F34PGhXDmOF1dVY22ZpdSqihNKKpi2erBE6816YlnuPmXL5LJ+8xuqOK2q04g7Do4qR4cL33Q8ZGQS3NNBJ64HXo22Vldl9wKoSIlVNwQxHQgXqmJaEJRFasrniGZHX+tSSbn8Zm719IdzxKLuHzhzStpiIWRbBw3O3DQ8a44tNREkB1Pw3P/ba9c9X6YdWLxJ6lpL75aXik1QhOKqkg98cyECxeHZ3S9tHcIAW5+43KOba2x4yYFV8MLLbURQtm47eoC6DjBJpRiquohEjvk16HU0UQTiqo4/cksA6nChRvH+s4jW3hkYzcAH75wMWcuagHjE0rsKzhu0lwTIeo68McvQaLTdnFd+oXiCxgdF2K6R7xSpdKEoirKQDI34Sp4gLuf282dq3cC8FenzuUtp82zg/CJvQX3hq+rilATCcH6u2FjUJb+3I9B44LiT1LTpmtOlJoE/baoijGQytGTGH8VPMDjm7v55kMbAThrUQsfvmAxgB2Ez6cOOj4admmsDkPvFnjkn+yViy+GFX9V/EmitfaklCqZJhRVEQbTOXriEyeTF3cNcFuwt8nxHbXcfOVyXEdwMgMFB+FDjkNLTRTyafjtTZDPQN1suPDm4gPtjqNrTpQ6BJpQVNkNpXN0T1CfC2BbT4Kbf/ki2bzPnMYqvnTNiVSHXSSXxE11F7iHHYR3ReDRf4XezSAuvP4f7WB7MbFW3edEqUOgCUWV1VA6N2GxR4DOwTSfuGsNg+k8TbEwX3nLSTTFIkg+jZvYV+AeQlttlIjrwobfwNq77NVnfghmn1T8iSKx8ZONUqooTSiqbEpNJv3JLDf87AU6hzJUh12+dM2JzG2sBi9nB+GLzOiqCrt24eLDX7RXLjgbTntv8ScSsWtOlFKHRBOKKotSk0k8k+cTd61hR1+KsCt8/s0ncHxHHfgeocTeghWEm2qCGV3ZONx3ox0/qZsNl37eroovpqbNropXSh2SaU0oInKZiGwQkU0iclOB298lIi8Ep8dF5OTpjEdVhlKTSTrn8elfvMjGzjiOwC1XruC0BU12rUl8T8HpwQ3VEWojYTAGHrwN+rfZveEv+yeobiz+ZNFa7epS6lWatoQiIi5wO3A5sAK4VkRWHHDYK8D5xpiTgM8D35mueFRlKDWZZPM+n/nli6zZZWdu3XjZMs45rhWMjxvfg/gHP0ZtNEx9VbBI8Znvw+YH7fnzboCOAz96YziuzupSagpMZwvltcAmY8wWY0wW+Alw9dgDjDGPG2P6gotPAvOmMR5VZn2JbMnJ5JZ71vLM9n4Arr/4OF6/omNk4WKhgo+xSIimWFAN+JVH4Mk77PnlV8EJ14z/hLUdOqtLqSkwnQllLrBjzOWdwXXFvB+4r9ANInKdiKwWkdVdXYW3cVWVyxhD11CGvuTEK+Bzns9t967jqVd6AfjwBYu5+pS5o8mkwMLFqnDIVg8G6H0FfnczYKDjRLjgk+MXdqxu0lpdSk2R6Uwohb7FBbfbE5ELsQnlE4VuN8Z8xxizyhizqq1NuyZmEmMM+wYzDKUnrs2Vzft87p51IzsuXnfeIt56elBSJbkPJ5886D5hN6gejECqH379D5BL2C6sK/4Z3HH2MAlFtSy9UlNoOqe07ATmj7k8D9h94EEichLwXeByY0zhrfXUjOQFm2NNtJ8JjHZzDbdM3v+6Y3jHa+zHx012FtzC1xWH1toojgh4WbjvBhjYbpPIFV8df1zEcaBulpalV2oKTWcL5WlgiYgcKyIR4B3APWMPEJEFwM+B9xhjXp7GWNRhlvN8dvenSkom6ZzHp3/54kgyue68RbzrjIUAuMkunFz8oPsIQmtdhJDj2BldD30Bdj9rb7zkVuhYOf6T1rQXrzKslDok09ZCMcbkReR/A/cDLvA9Y8xaEflgcPu3gVuAFuAOsf8p5o0xq6YrJnV4pHMe+wbTeH7BHs79xDN5Pv2LNazZNQjYMZO3nm7nZjipXpzsYIF7Ca3Dq+DB7gm/4df2/JkfgSWvH/9JY81a+FGpaSDGTPylrySrVq0yq1evLncYqoihdI7ueJZSPld9ySyfuGsNmzptC+T6i4+zA/CAk+7DTfcWvF9LTZRYJPhfaN098NCt9vzyq+CiW8bvxorUQP3s0l+QUq/eUdOvqsuC1ZTpiWdK2hgLYN9gmht/9gI7+lI4Ap+4bBmXrugAsJWDiySTpprIaDJ55RF4+Av2/LzXwgWfGj+ZhCJ2irBSalpoQlGvmucbOofSpLITj5cAbOmKc9PP19AdzxJ2hVuuXGEXLTJ+y2RkFTzAnufh/pvAeNC2LJjRNc6YiONA3RzdMEupaaQJRb0qmbxH52CGnHdwgcZCntvRz2d++SKJrEdNxOW2q0/g1AVNgB0zcTN9Be9XXxUZXQXfvRHu/ajd26RhHrzpGxAZZ0xExNby0jpdSk0r/YapQ5bI5OkayuCXOA734PpO/un+l8h5hpbaCF++5kQWt9lE4CS7C26QBbakSkN1kEz6XoG7PwyZQahuhqu+BbGW8Z+4phXC1SW/LqXUodGEog5JbyJLfwkr38EubvzhE9v4wRPbAFjYHOPLbzmRjvqq0UWLBdaZgE0mIyVVBnbCLz8EqV6INsDVd0DD/IL3G1FVD1UNJb8updSh04SiJsXzbRmVZDZf0vHZvM9Xf7eB36/vBOCU+Y3cetUK6qrCI4UeC9XmggOSyeAem0wSXXam1tW3Q+uS8Z88XKVFH5U6jDShqJKlc3a8JO+XNl7SHc/w2XvWsn7PEABXrJzF9ZcsIew64OcJxfcWrBoMhVomH4ShPbbr6k3fhPbl4z+5G7LjJroSXqnDRhOKKkl/MktvorQuLoB1uwf57D1r6UlkEeBvzz2Wt79mPhKUSQkl9iJ+4SnGdVURGofHTPp3wC8/APF9Nplc+Q2YPcG2OSLBjC6tIKzU4aQJRY3L9w2dk+jiMsbw6zV7+eZDG8l5hpqoy6evWM6Zi+zAud0DvvBOi2CnBo/M5urdYgfgE10QroGrvjlxMgFboys0TlFIpdS00ISiiprslOB0zuNrv9/I79btA2B+UzWff/NKFjTb8vCSjeMmO5HCRadpjEWoiwbJZO8a+NX1kBmwU4Kv+hbMOnHiIGrb7BiLUuqw04SiCupPZulL5koqoQKwvTfJbb9ax5ZuO1vr3CWt3PCGpdRG7UfMSffipguvMRGE5rEr4Lc/Cfd9HHKpYGrwN+3ixYnEmnVGl1JlpAlF7Seb9+mKZ0qqEgy2i+v+tfv4xkMbSed8HIEPBPuYiIidyVWkYjBAyHFoqY2MFnrc8Bt48Fbw83ZQ/eo7oHHBxIFUN+reJkqVmSYUBdjEMJDKTapVksjk+drvN/LgS3ZKcFttlJvfuJwT5wWtBC9LKLEP8QsP5kfDLi01UVwRW4J+9X/Cn//N3ti82HZz1bZPHEhVvV28qJQqK00oinTOozueIZsvbawE4Pkd/Xz5ty+xb9BO+z3nuBZueP1S6oPZWZJNBOMlhR9zv5lcXg7+8I+wPtguZ95r4PJ/hmjdxIFE60pLOkqpaacJ5SiW93x6k1ni6dJmcIHtEvveY6/w09U7MUAk5PDB8xZx9Slzgi4uY8dLMv0F73/QeEmyB+67EfY8Zy8vuxIuvLm0za+itVCn1YOVqhSaUI5Cw91b/clcyXW4wK4t+ef7N7Ct1+7tfnxHLZ+8fBkLW4JZVV7ObtdbZOW7HS+JEnGDir+d6+E3H7NrTADO+CCs+pvSFiNGa7UUvVIVRhPKUWYonaMvkSt5tTvYLrHvP7aVnz1jWyWOwLvOWMB7zlxIKEgOkh3CTXYX7eKKRUI0xSJ2/3ewG2P98cvgZSAcg0tvg0UXlhZQVb12cylVgTShHCVSWY+exOTGSQCe3NLDNx7cxN5B2+pY3FbDDW9YyvEdwfiG7+GmuooWdwShsTpsa3eBnQr8x6/AS7+ylxvmwRX/Ci2LSwuouglqJqgurJQqC00oR7hM3qMvkSt5pfuwrqEMtz+8iUc2dgMQdoV3n7GQa187f0yrJIGb6iq66j3kODTXRIiGginBvVvgtzdB72Z7edEFcPHnSht8B5tIqpsm9TqUUoePJpQjVM7z6ZvkgDvYQfefPrOD/3lyO+mgNXPqgkauv3jJyIp32yrpLrq2BKA66OIamRK85k547Ou2i8tx4ezr4eR3ljZeImK7uEpNPEqpstCEcoTJez79qRxD6XzJ60nADtT/aVMP3/7jZvYM2O6tpliYD5y/mEuXt9sZXIBkBnHTvUVbJSA01YRHt+pNdMFDn4dtj9nL9XPh0i/A7JNKC2x4t8VIrOTXopQqD00oR4i859OXzBHPTC6RAKzfM8i//WEzL+4eBMB1hGtOnct7zlo4UjoFL2tXvBeZwQUQdh2aa4JZXMbAhl/Do1+FjC1fz9I3wvk3jr9d71hu2CYTLfSo1IygCWWGy+Z9+lNZEhlv0olkW0+C7z++lUde7h657oxjm/nQ+YtZ0DLaveWk+3Cyg0WLOoJQXxWmvjqEIHbfkj98Gbb9yd5c1QDn3wRLXl96cJEY1M4Cx5nUa1JKlY8mlBkqnfMYSOVIZCY3RgKwZyDFD5/YxgPr9uEHOeK4tlo+eP4iTlsYDHobg5Ppx0n3F50KDMOtkqAWl5eD538MT/075IOWzOKL4fxPTLzv+1ixZq3LpdQMpAllBvF9QzybZzCVm/T0X4BdfSn+58/b+d26vSOJZE5jFe87+xguWtZu14gYg5MdtInEFE9WgtAwdjrwrmfsdODhGVyxFjjvRjjuktIDdFy7WFHHS5SakTShzADZvM9gOkc8nZ/UyvZhmzvj/OTpHTy8oXMkkbTVRnnPWQu57ISO/RcnpvuK7qQ4LBYJ0VAdJuQ4MLjLzt7a/KC9URw48W1wxocmNysrErPJRHdZVGrG0oRSoYwxxDN5htJ50iWWkj/w/s9u7+fO1Tt4euvoPiQd9VHedcYCXr9iFpHQcCKJB4lk/C1+IyGXxuqwXVeS6odnvg8v/D8YTkCzToJzb4COFaUHKmIrBes+JkrNeJpQKkw65xHP5Elk8nj+5Fsj6ZzH79d38vNnd7K1Jzly/cKWGG9fNZ9LlrfbFokxQYukf8JEEnIc6qvD1ERCkE3C0z+Cv/wQssHq+NoOOOvv4PjLSltXMixcZe9bSiFIpVTF04RSAXKeTyJojZS63e6Btvcm+dXzu7l/7T7iYwbqT5rXwNtXzeeMRc3BGImPkxnAyQxM2LXlikN9LERNJIRkE7D6TnjuvyE9YA+I1MJp74WTr4VwdenBOo4dY9FWiVJHFE0oZZL3fBJZ2xopdXfEA2VyHo9s7Oa+F/fy3I7RcvFhV7hoWTvXnDqXJcM1t7wcTnbIJpJxZm2BTSR11SFqoyEk1Q9/vhNe+AlkBoMDonDS2+H0900+KUTrbBeXjpUodcTRhHIY5T2fRMYjkT20cREA3xjW7hrkgfX7eHhDJ4nM6OPMqq/iypNmc/mJs2iK2cWAkkvaFkk+WewhR4Qch9qqIJH074Anf2SrAnuZ4IAqO+B+6nsmNw0YbPdWrNX+VEodkTShTLNM3iMZJJFDmeoLdoB9S3eCP2zo4sH1nSOVfwFCjnDOca1cvnIWq45pst1afh4n3YuTGRp36u+wsGsTSU3YQbY9Di/cCdsfHz0gWgcr32a7tia7PsQN2/toHS6ljniaUKaY7xtSOY9k1iOV9Sa178hYxhg2dyV4dGMXf3y5m+29+7cwju+o5dIVHVyyrIOGWNgOsufitlsrnyrpOaojIWojIaoy3fD8PbDubrvKfVjdbDjlnbD8zZNfG+KGoLrZ7l2ilDoqaEKZApm8TR6pnEc650+6BMqwvOezZtcAT2zp4bFNPSNFGofNaaziwqXtXLK83e6SaAyST+Ek+pBcYsKxEQBHhJpomBonR3jrQ7DhN7DjSTBj7jv/DDtGsvB1kx/rcMO2xHy0bnIzvpRSM54mlEOQzftB8rCnQ5neO6xrKMPqrb08tbWP1Vt7SWT3H1uZ21jNuUtauWBpG0vaaxFA8mmcZJdNIkWr/u6vKhwi5vrE9j6NbPo9bHkYcmNaPdVNsOxNsOLN0LRw8i8kXAVVjXZrXqXUUUkTygSMMWTyPpmcTzr/6hNIPJPn+R39/GV7P89u79tvrciwpR11nLW4mdcd18qxrTUIxg6uJ7uQfLLkJBIJucTIENv7NO7WR+CVP0J2zB4mTgiOeZ2tAnzMuZNfDyJiWyJVDRCKTu6+SqkjjiaUA+Q9n0zeJ53zbCLJH3oXFkBfMsuLuwZ5YWc/L+wcYHNXnAPzUU3U5fQFTbzmmGbOXNRMS20UvAxOLokk9iD59DiVfvcXCbnEkruJ7fkz7o4nYOfT4I1duCgw93RYciksvgSqGyf/okJROzYSqdNqwEqpEUd1QhlOHtn86M9DHUQffrwt3QnW7xlk/Z4h1u4eZFf/wQPkriOsmF3HqQuaOH1BEyvm1OOavB0PyfcjA6mSWyGCUOXFqen+C9Hdq3F2PQUDO/c/yHFh7iq75e6ii+w6kMlyQzaBROt0fxKlVEFHRUIxxpD1bMLI5v2R86+m6yqb99nak2BTZ5yX98V5ed8Qm7vi5LyDHzPsCstm1XHSvEZOmtfAyjkNVLt5JJ/ByaeQofEr+x7wYoimu4j1rqOq8wXcvc8ivVsOPq66CRacDQvPhoXnHNq0XTdsV8NHa7VLSyk1oSMqoQwnjpxnyI1JHIdazgTsQsK9A2m29iTY2p1kS3eCV7oTbO9NFk1IrbURls+uZ8XselbOrWdJazVRcoiXQbw0kpx4tfowycap7ttIdf8GIt3rcLvWIomugw90IzD7FJj3GjtLq325rfw7GSJ28WIkZhOJ1thSSk3CjEwo+eGk4fvk8sF579Uljng6z67+FDv7UuzoS7KjN8mOXns+M86CxKZYmCUddRzfUcvx7bUsba+ivRrEy9nk4fUhye6i9x9hfNz4XiL9W6gaeoVI3yZCvS/jDO4qfHy4GjpWwpzT7GnWSpsMJkPEJqJwzD5euFqn+iqlDtmMSyg5zz9okV8psnmfzqE0ewfS7BvMsHcwzZ6BNHsGUuzuTzOQGr9QYtgVFjTHOLa1hmNbaljcGmVJc4SWahMkjyz4Q4gZhHHCk3ya0NAuQkM7iAztJDK4jdDgNtz+rUi+2H7tAk3HQMcJ9jTrJGg5zs7SmgzHsUln7EkH1ZVSU2TGJZQDO5mG9w3pSWTpiWfpiWfojmfpimfojmfoGrKnvuT4CWNYXVWI+U3V9tQYZWFjhGOaQsypdQiRt8nD5IDg8Q7MAV4ON9VFKNGJm9hLKLGXcGIv4fgu3KHdOMkC3VVjuVFoPhZalkDbUmhbBq1LbBfUZDiuHfdwo3YQPVSlXVhKqWk14xLK3oE0n/rFGvqSOfoSWfqS2YID4cU4Am11UTrqIsxpiDKnPszs2hDz60PMrXNoiAB+LhjjMEDGnrJ53HQfTroXN9WHm+7BSfXgpnoIpboJJbtwk91Iqqe0Kb7hGDQugMaF0LwoOB0LDQsmtzrdDdluKydsE4cbnLSar1LqMJtxCWUglePJLb0Fb3PEjmm01IRpqwnTVhOitcZlVo1Le41DR41DWzRP1Isj2QRObi9ONqh/1TOEs3sAJzOEkx3AzQzgpAdwM/22Wm92aPLBxlqhfo6tidUwD+rn2Z8N8+3U3VLGKxzXdm25YZs0HHf0vBvWMQ+lVMWY1oQiIpcBXwdc4LvGmC8fcLsEt1+BHXl4nzHm2fEesz2S4ZZjN9AYytIYytLgZqiXNLVOhhgZXC9l13PkkshQCqc3aVeZ5xJ46UEilDg9dxwlr3NMdNvTnhcm/Rw+oKMbh1+nqefG/Ae5sHYn78n86JB/BwbwKO0L5oMtqVPsALGP5zQshFPfBVsfJdX1CptzLXzfvIm2uio+4v0XdUNbwM/bZ3dC0LrUTtzY+FvIxO307zM/Ahd8omgsf3ipk3333sbl8Z8TI0WSau6rvYZlp53Pydt/AP3bGDLVDA300Wzs1tK7nDnEz/0MJ1/0toMf8OUH4Pefhd5N9kW0LoHlV8HWR6F/m22hn309HH/p6PGPf93eFrH14FLx/v1e6wdC99IU3wTpIfCz9vW6UaidBWKgcSFbak/DWX8Ps72dCJBpWETdG7948PN0rrcliLycnRXZugQu/lzheA6MVR1EXs0q8HEfWMQFXgYuBXYCTwPXGmPWjTnmCuDvsAnlDODrxpgzxnvcVXNcs/q6qasXNU0vX81gWRzC+MX/wJeL2IWs6aoOtmZiVJGhniQhkyFGGrdYzOLaFq3xAAPn3VgwqfzhpU42/vQW/tq7E8+Ah4OLjys+CaoJ1c1G/ByRxE5c45PDwcfBxdAvtew+71/2TyovPwB3fxhSvTYGY0ZjqJkFtW2QS9mkcPlX7X3u+zg4EfsHfnAHvjHsMm144lJPEmN8cri004dTqGu5poO0J4TT+zAIHi5gcDD4VU1Er/n26PPkspDYF8QESMhm9eoWuPr2/eMJV+8f6+SSSsV9lKbLdLZQXgtsMsZsARCRnwBXA+vGHHM18ENjs9qTItIoIrONMXsOfrhhMjrNNRS150PBlNdIzF6O1IyewnZh3ub7b+dY2Xv0/GbVIYuUuEaoPAx+ZgCRGnJSTczrJkx2gs+1sf3BhMDLw5O3F0wo//7IFr7j3YNnwMdFsD9DxqNWUmxLO8zOdyHGYAAXg4eDh0+NSeE++U0Ym1Ae/zpkhoKEFrT1cjkbT3YQpN1+Z7PBsWD/eEdi0LMJxCXv+7QwwC5nLjGvGwP4SPFxymQ3PpHgdoPBTkTx8THpof2fJ9s9psq2fbVI2O5MemA8sH+s2kopaDoTylxgx5jLO7GtkImOmQvsl1BE5DrgOoAFCxbAp7dNOpjw/d/QZKJmNgMIhEwOx7GfZpc8Dmb8aSBjm+Hi2u6vAnb0JakmRTZIJiN3AQRDNu/jmtzIH/PhnwYhhEdz7oD/A/u32S64QhNExtaXC1dD/3b7AquaRm8XBw8hHMyodMkz4T/7xiMUHD/2SIODQ37/5/GC7rKRg4zt9vLzB8dzUKyqkOnspi/0mz/wc1/KMRhjvmOMWWWMWdXW1nZIwew0bSWWV1SqQgXflryE8YMk4REKOrrG+UM7duKG8YpuMTC/KUaKatwDWmjDrYJIyMGTMCZ4ruGfgiGPS2949v4P2LjQjuUU6ld2x9SDy6VGZzzmUqO3G4OLIRe0MjxC5HHJjvd/sLjkJTwS98jV+PiE9n8eN8J+75uIbbE4oYPjOTBWVdB0JpSdwPwxl+cBuw/hmCnxI/dqEkaLGqqJZQv3zlcIwYk2YIwh7KdISowE1ROM+Aj4xnZ3YezAfAEfOG8RP3GvwhVw8DAY+1OEONV0VPmYWBtGBAE8BMHHxZCQarwz/27/Bzz7eltDznjg++B5tgUgDkTqbaLJJu24xNnX25OftdfF2mxrQ3x6aBh5rUmqoWRJLwAAB8JJREFUGCI2kswOEmu17w+CwUHwETwcfKSqbv/nidSPKU9kACdIuPUHx3NgrKqg6UwoTwNLRORYEYkA7wDuOeCYe4D/JdaZwMD44yeH7lufu4lPOh+j058Ze5tXci/+kazT1HNd7uP8MPrOV/U7MFDyfMLhFU9FCRgBaVgIF3ySqllLWBjLEg+38sXQR7ij+VOkGpYgTpiR/7idELSfACe+3bZI/JwdAygyIA9wwbJ2lrztNu6qfScZqSIiHhmp4q7ad7P1vG9Q0zKHWFhINSxhj7Tj4wLCdmfewQPyYMcZrr7DzjYTbAugfTmcfxO0LoZ0P9R1jA5yH3+pPV/XYd+V1qU47ctprQmNvNb/aL6BaPvxOLFWcKKjr9eNQsNCCFdRNWsJ21b+PTvdhcHbJ6QbjrMD8mOfp3Wx3aY6HBudkt+2zA7IHxjPgbGqgqZtlheMzOL6Gnba8PeMMV8UkQ8CGGO+HUwb/hZwGXba8F8bY1aP95irVq0yq1ePe4hSSlWSo2b4dloTynTQhKKUmmGOmoSia+eUUkpNCU0oSimlpoQmFKWUUlNCE4pSSqkpoQlFKaXUlNCEopRSakpoQlFKKTUlNKEopZSaEppQlFJKTQlNKEoppaaEJhSllFJTYsbV8hKRLmDyO2yVrhXonsbHP1QaV+kqMSaozLgqMSY4suLqNsZcNh3BVJoZl1Cmm4isNsasKnccB9K4SleJMUFlxlWJMYHGNVNpl5dSSqkpoQlFKaXUlNCEcrDvlDuAIjSu0lViTFCZcVViTKBxzUg6hqKUUmpKaAtFKaXUlNCEopRSakoc1QlFROaLyMMisl5E1orI9cH1zSLygIhsDH42HcaYqkTkKRF5Pojp1nLHdEB8roj8RUTurZS4RGSriKwRkedEZHUlxCUijSLyMxF5Kfh8nVUBMS0N3qPh06CIfLQC4vo/wWf9RRH5cfAdqITP1fVBTGtF5KPBdWWPq5Id1QkFyAMfM8YsB84EPiIiK4CbgAeNMUuAB4PLh0sGuMgYczJwCnCZiJxZ5pjGuh5YP+ZypcR1oTHmlDFrBMod19eB3xpjlgEnY9+zssZkjNkQvEenAKcDSeAX5YxLROYCfw+sMsasBFzgHeWMKYhrJfC3wGuxv78rRWRJueOqeMYYPQUn4G7gUmADMDu4bjawoUzxxIBngTMqISZgHvZLdBFwb3BdJcS1FWg94LqyxQXUA68QTHqphJgKxPh64LFyxwXMBXYAzUAIuDeIrazvFfA24LtjLn8GuLHccVX66WhvoYwQkWOAU4E/Ax3GmD0Awc/2wxyLKyLPAZ3AA8aYsscU+Br2S+WPua4S4jLA70TkGRG5rgLiWgR0Ad8Puge/KyI1ZY7pQO8AfhycL1tcxphdwFeB7cAeYMAY87tyxhR4EThPRFpEJAZcAcyvgLgqmiYUQERqgbuAjxpjBssdjzHGM7ZbYh7w2qD5XVYiciXQaYx5ptyxFHCOMeY04HJst+V5ZY4nBJwG/Jsx5lQgQQV1jYhIBLgK+GkFxNIEXA0cC8wBakTk3eWNCowx64GvAA8AvwWex3aRq3Ec9QlFRMLYZPI/xpifB1fvE5HZwe2zsS2Fw84Y0w/8AbisAmI6B7hKRLYCPwEuEpH/roC4MMbsDn52YscEXlvmuHYCO4OWJcDPsAmm7O9V4HLgWWPMvuByOeO6BHjFGNNljMkBPwfOLnNMABhj/tMYc5ox5jygF9hYCXFVsqM6oYiIAP8JrDfG/OuYm+4B3hucfy92bOVwxdQmIo3B+WrsF+6lcsYEYIz5pDFmnjHmGGx3yUPGmHeXOy4RqRGRuuHz2P73F8sZlzFmL7BDRJYGV10MrCtnTAe4ltHuLihvXNuBM0UkFnwfL8ZOYCj7eyUi7cHPBcA12Pes7HFVsqN6pbyIvA54FFjD6LjAp7DjKHcCC7Af+LcZY3oPU0wnAT/AznZxgDuNMbeJSEu5YioQ4wXAx40xV5Y7LhFZhG2VgO1q+pEx5osVENcpwHeBCLAF+GuC32e5YgriimEHwRcZYwaC68r9Xt0KvB3bpfQX4G+A2nLGFMT1KNAC5IB/MMY8WO73qtId1QlFKaXU1Dmqu7yUUkpNHU0oSimlpoQmFKWUUlNCE4pSSqkpoQlFKaXUlNCEoo4aIvJXImJEZFm5Y1HqSKQJRR1NrgX+hF2YqZSaYppQ1FEhqNd2DvB+goQiIo6I3BHsd3GviPxGRN4a3Ha6iPwxKDh5/3C5DaVUcZpQ1NHizdj9SV4GekXkNGw5jWOAE7Grs8+Ckfpu3wTeaow5Hfge8MVyBK3UTBIqdwBKHSbXYsvvgy1ueS0QBn5qjPGBvSLycHD7UmAl8IAtL4WLLa2ulBqHJhR1xAvqL10ErBQRg00QhtEaYAfdBVhrjDnrMIWo1BFBu7zU0eCtwA+NMQuNMccYY+Zjd1TsBt4SjKV0ABcEx28A2kRkpAtMRE4oR+BKzSSaUNTR4FoObo3chd3QaSe23P2/Y6tMDxhjstgk9BUReR54DrtHh1JqHFptWB3VRKTWGBMPusWewu7+uLfccSk1E+kYijra3RtsaBYBPq/JRKlDpy0UpZRSU0LHUJRSSk0JTShKKaWmhCYUpZRSU0ITilJKqSmhCUUppdSU+P/MLYHObbFVqQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.lmplot('Age', 'Status', data=data_reg, logistic=True, ci=97.5, hue='Smoker')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A partir des données précédentes il est possible de voir : \n",
"- Pour des âges entre 35 et 60 ans, il y a plus de probabilité de décès pour les fumeuses que les non-fumeuses\n",
"- Pour des âges plus élevés les courbes se rejoignent et les intervalles de confiance se recoupent, ne permettant pas de conclure sur des probabilités plus fortes de décès dans l'un ou l'autre des cas.\n",
"- Le coefficient de régression des non-fumeuses est plus élevé avec une interception négative plus grande notamment parce que la probabilité de décès augmente fortement au-delà de 60 ans, comparativement à celle des non-fumeuses qui augmente de manière plus constante.\n",
"\n",
"**Ainsi ces régressions nous montre que l'effet du tabagisme est important pour une certaine tranche d'âge mais qu'au delà d'autres causes de décès entrent en jeu alignant le nombre de mort de manière identique entre les deux status.**\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}