{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence of chickenpox in France" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data on the incidence of chickenpox are available from the Web site of the [Réseau Sentinelles](http://www.sentiweb.fr/). We download them as a file in CSV format, in which each line corresponds to a week in the observation period. Only the complete dataset, starting in 1991 and ending with a recent week, is available for download." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Offline data available.\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02022387175903539306FRFrance
1202237717354942976315FRFrance
2202236710691781960213FRFrance
3202235715814002762204FRFrance
4202234722667883744315FRFrance
52022337734001739911026FRFrance
62022327780140861151612618FRFrance
7202231768964170962210614FRFrance
82022307903957701230814919FRFrance
92022297148511006019642221529FRFrance
102022287154711102819914231630FRFrance
112022277211911619826184322440FRFrance
122022267168541280620902251931FRFrance
132022257222461801126481342840FRFrance
142022247224581810526811342741FRFrance
152022237187721487522669282234FRFrance
162022227189161494122891292335FRFrance
172022217203101630724313312537FRFrance
182022207235851900428166362943FRFrance
192022197185931418123005282135FRFrance
202022187178511396321739272133FRFrance
212022177203141600124627312438FRFrance
222022167196601486024460302337FRFrance
232022157177991371521883272133FRFrance
242022147170051316220848262032FRFrance
252022137154481165919237231729FRFrance
262022127147021079418610221628FRFrance
27202211711729834715111181323FRFrance
282022107133141003616592201525FRFrance
29202209710485760013370161220FRFrance
.................................
16301991267176081130423912312042FRFrance
16311991257161691070021638281838FRFrance
16321991247161711007122271281739FRFrance
1633199123711947767116223211329FRFrance
1634199122715452995320951271737FRFrance
1635199121714903897520831261636FRFrance
16361991207190531274225364342345FRFrance
16371991197167391124622232291939FRFrance
16381991187213851388228888382551FRFrance
1639199117713462887718047241632FRFrance
16401991167148571006819646261834FRFrance
1641199115713975978118169251832FRFrance
1642199114712265768416846221430FRFrance
164319911379567604113093171123FRFrance
1644199112710864733114397191325FRFrance
16451991117155741118419964271935FRFrance
16461991107166431137221914292038FRFrance
1647199109713741878018702241533FRFrance
1648199108713289881317765231531FRFrance
1649199107712337807716597221529FRFrance
1650199106710877701314741191226FRFrance
1651199105710442654414340181125FRFrance
16521991047791345631126314820FRFrance
16531991037153871048420290271836FRFrance
16541991027162771104621508292038FRFrance
16551991017155651027120859271836FRFrance
16561990527193751329525455342345FRFrance
16571990517190801380724353342543FRFrance
1658199050711079666015498201228FRFrance
16591990497114302610205FRFrance
\n", "

1660 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202238 7 1759 0 3539 3 0 \n", "1 202237 7 1735 494 2976 3 1 \n", "2 202236 7 1069 178 1960 2 1 \n", "3 202235 7 1581 400 2762 2 0 \n", "4 202234 7 2266 788 3744 3 1 \n", "5 202233 7 7340 0 17399 11 0 \n", "6 202232 7 7801 4086 11516 12 6 \n", "7 202231 7 6896 4170 9622 10 6 \n", "8 202230 7 9039 5770 12308 14 9 \n", "9 202229 7 14851 10060 19642 22 15 \n", "10 202228 7 15471 11028 19914 23 16 \n", "11 202227 7 21191 16198 26184 32 24 \n", "12 202226 7 16854 12806 20902 25 19 \n", "13 202225 7 22246 18011 26481 34 28 \n", "14 202224 7 22458 18105 26811 34 27 \n", "15 202223 7 18772 14875 22669 28 22 \n", "16 202222 7 18916 14941 22891 29 23 \n", "17 202221 7 20310 16307 24313 31 25 \n", "18 202220 7 23585 19004 28166 36 29 \n", "19 202219 7 18593 14181 23005 28 21 \n", "20 202218 7 17851 13963 21739 27 21 \n", "21 202217 7 20314 16001 24627 31 24 \n", "22 202216 7 19660 14860 24460 30 23 \n", "23 202215 7 17799 13715 21883 27 21 \n", "24 202214 7 17005 13162 20848 26 20 \n", "25 202213 7 15448 11659 19237 23 17 \n", "26 202212 7 14702 10794 18610 22 16 \n", "27 202211 7 11729 8347 15111 18 13 \n", "28 202210 7 13314 10036 16592 20 15 \n", "29 202209 7 10485 7600 13370 16 12 \n", "... ... ... ... ... ... ... ... \n", "1630 199126 7 17608 11304 23912 31 20 \n", "1631 199125 7 16169 10700 21638 28 18 \n", "1632 199124 7 16171 10071 22271 28 17 \n", "1633 199123 7 11947 7671 16223 21 13 \n", "1634 199122 7 15452 9953 20951 27 17 \n", "1635 199121 7 14903 8975 20831 26 16 \n", "1636 199120 7 19053 12742 25364 34 23 \n", "1637 199119 7 16739 11246 22232 29 19 \n", "1638 199118 7 21385 13882 28888 38 25 \n", "1639 199117 7 13462 8877 18047 24 16 \n", "1640 199116 7 14857 10068 19646 26 18 \n", "1641 199115 7 13975 9781 18169 25 18 \n", "1642 199114 7 12265 7684 16846 22 14 \n", "1643 199113 7 9567 6041 13093 17 11 \n", "1644 199112 7 10864 7331 14397 19 13 \n", "1645 199111 7 15574 11184 19964 27 19 \n", "1646 199110 7 16643 11372 21914 29 20 \n", "1647 199109 7 13741 8780 18702 24 15 \n", "1648 199108 7 13289 8813 17765 23 15 \n", "1649 199107 7 12337 8077 16597 22 15 \n", "1650 199106 7 10877 7013 14741 19 12 \n", "1651 199105 7 10442 6544 14340 18 11 \n", "1652 199104 7 7913 4563 11263 14 8 \n", "1653 199103 7 15387 10484 20290 27 18 \n", "1654 199102 7 16277 11046 21508 29 20 \n", "1655 199101 7 15565 10271 20859 27 18 \n", "1656 199052 7 19375 13295 25455 34 23 \n", "1657 199051 7 19080 13807 24353 34 25 \n", "1658 199050 7 11079 6660 15498 20 12 \n", "1659 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 6 FR France \n", "1 5 FR France \n", "2 3 FR France \n", "3 4 FR France \n", "4 5 FR France \n", "5 26 FR France \n", "6 18 FR France \n", "7 14 FR France \n", "8 19 FR France \n", "9 29 FR France \n", "10 30 FR France \n", "11 40 FR France \n", "12 31 FR France \n", "13 40 FR France \n", "14 41 FR France \n", "15 34 FR France \n", "16 35 FR France \n", "17 37 FR France \n", "18 43 FR France \n", "19 35 FR France \n", "20 33 FR France \n", "21 38 FR France \n", "22 37 FR France \n", "23 33 FR France \n", "24 32 FR France \n", "25 29 FR France \n", "26 28 FR France \n", "27 23 FR France \n", "28 25 FR France \n", "29 20 FR France \n", "... ... ... ... \n", "1630 42 FR France \n", "1631 38 FR France \n", "1632 39 FR France \n", "1633 29 FR France \n", "1634 37 FR France \n", "1635 36 FR France \n", "1636 45 FR France \n", "1637 39 FR France \n", "1638 51 FR France \n", "1639 32 FR France \n", "1640 34 FR France \n", "1641 32 FR France \n", "1642 30 FR France \n", "1643 23 FR France \n", "1644 25 FR France \n", "1645 35 FR France \n", "1646 38 FR France \n", "1647 33 FR France \n", "1648 31 FR France \n", "1649 29 FR France \n", "1650 26 FR France \n", "1651 25 FR France \n", "1652 20 FR France \n", "1653 36 FR France \n", "1654 38 FR France \n", "1655 36 FR France \n", "1656 45 FR France \n", "1657 43 FR France \n", "1658 28 FR France \n", "1659 5 FR France \n", "\n", "[1660 rows x 10 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_url = 'https://www.sentiweb.fr/datasets/incidence-PAY-7.csv'\n", "data_file = \"./incidence-PAY-7.csv\"\n", "\n", "import os\n", "from urllib import request\n", "if not os.path.exists(data_file):\n", " print('Offline data not available: attempt to retrieve database online')\n", " request.urlretrieve(data_url, data_file)\n", "else:\n", " print('Offline data available.')\n", "\n", "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Are there missing data points? No, the dataset is complete." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "raw_data[raw_data.isnull().any(axis=1)]\n", "\n", "data = raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our dataset uses an uncommon encoding; the week number is attached\n", "to the year number, leaving the impression of a six-digit integer.\n", "That is how Pandas interprets it.\n", "\n", "A second problem is that Pandas does not know about week numbers.\n", "It needs to be given the dates of the beginning and end of the week.\n", "We use the library `isoweek` for that.\n", "\n", "Since the conversion is a bit lengthy, we write a small Python \n", "function for doing it. Then we apply it to all points in our dataset. \n", "The results go into a new column 'period'." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are two more small changes to make.\n", "\n", "First, we define the observation periods as the new index of\n", "our dataset. That turns it into a time series, which will be\n", "convenient later on.\n", "\n", "Second, we sort the points chronologically." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We check the consistency of the data. Between the end of a period and\n", "the beginning of the next one, the difference should be zero, or very small.\n", "We tolerate an error of one second." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A first look at the data!" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm4XEWZ/vt135ubPYHsJIEEEnYhSIhBQISwBJcBFTQ6sigjyg8dt5kRnXGbEZVRBkRERFAWF2BQBpRN9t2EsCQhQMiFBHIh+77dpbvr98c51adOna+Wc25335vc8z5PP91dp05VnTpV9dW3FgkhkCNHjhw5cqgo9HQDcuTIkSNH70NOHHLkyJEjRwI5cciRI0eOHAnkxCFHjhw5ciSQE4ccOXLkyJFAThxy5MiRI0cCOXHIkSNHjhwJ5MQhR44cOXIkkBOHHDly5MiRQFNPNyArRo4cKSZNmtTTzciRI0eOXQrPPffcOiHEKFe+XZY4TJo0CfPnz+/pZuTIkSPHLgUietMnXy5WypEjR44cCeTEIUeOHDlyJJAThxw5cuTIkUBOHHLkyJEjRwI5cciRI0eOHAnkxCFHjhw5ciSQE4ccOXLkyJFAThxy7PJ4c/12PLl0XU83I0eO3Qq7rBNcjhwSx//kUQDA8h9/sGcbkiPHboScc8iRI0eOHAnkxCFHjhw5ciSQE4ccOXLkyJGAkzgQUX8imkdEC4hoMRF9P0z/HhG9TUQvhp8PKPd8k4haiWgJEZ2qpB9JRIvCa1cSEYXpLUR0a5g+l4gm1f5Rc+TIkSOHL3w4hw4AJwohDgcwDcBsIpoZXrtcCDEt/NwDAER0MIA5AA4BMBvA1URUDPP/EsAFAKaGn9lh+vkANgohpgC4HMCl3X+0HDly5MiRFU7iIAJsC/82hx9hueV0ALcIITqEEMsAtAKYQUTjAAwVQjwjhBAAbgJwhnLPjeHv2wHMklxFjhw5cuRoPLx0DkRUJKIXAawB8IAQYm546YtEtJCIfkNEe4Rp4wGsUG5vC9PGh7/19Ng9QogSgM0ARjDtuICI5hPR/LVr13o9YI4cOXLkSA8v4iCEKAshpgGYgIALOBSBiGg/BKKmlQAuC7NzO35hSbfdo7fjWiHEdCHE9FGjnAcZ5chhhBACf134DrrKlZ5uSo4cvRKprJWEEJsAPApgthBidUg0KgB+DWBGmK0NwETltgkA3gnTJzDpsXuIqAnAMAAbUj1JjhwpcP/iVfjiH17A1Y+83tNNyZGjV8LHWmkUEQ0Pfw8AcBKAV0MdgsRHALwU/r4LwJzQAmkyAsXzPCHESgBbiWhmqE84B8Cdyj3nhr/PBPBwqJfIkaMuWL+9EwCwasvOHm5Jjhy9Ez7hM8YBuDG0OCoAuE0I8VciupmIpiEQ/ywH8HkAEEIsJqLbALwMoATgIiFEOSzrQgA3ABgA4N7wAwDXA7iZiFoRcAxzavBsOXIYQawkM0eOHBJO4iCEWAjgCCb9bMs9lwC4hEmfD+BQJr0dwFmutuTIkSNHjsYg95DOsVvh14+/gW/cvtA7fy68zJGDR04ccuxWuOSeV3Dr/BXOfLkXTY4cduTEIUefRs455MjBIycOOfokcsYhRw47cuKQo09DWCPBdB9/fr4Nv3lyWV3ryJGjHshPgsvRJ9EoncPXblsAAPjssZMbU2GOHDVCzjnkyJEjR44EcuKQo08jV0jnyMEjJw45+iRyD+kcOezIiUOO3QZZwnHljEOOHDxy4pBjt0Eq2kAZ7smRow8hJw69HGu2tOPVVVt6uhm7BDLQhrqbsubIsasiN2Xt5Tj2vx9BZ6mC5T/+YE83pdcjjVgpP4U2Rw47cs6hl6OzlJ9U5oucB8iRo3bIiUOO3QaZ9Ac5RcmRg0VOHHLsNkijP8iFSrs+Hl2yBgtWbOrpZuy2yHUOOXYbZOEccsZh18V5v30WAHJ9XJ2Qcw45+iRyfXSOHHY4iQMR9SeieUS0gIgWE9H3w/Q9iegBIloafu+h3PNNImoloiVEdKqSfiQRLQqvXUmhyQgRtRDRrWH6XCKaVPtHzbG7IxPnsJs5Olz3xBuYdPHd2NlZdmfOkcMCH86hA8CJQojDAUwDMJuIZgK4GMBDQoipAB4K/4OIDgYwB8AhAGYDuJqIimFZvwRwAYCp4Wd2mH4+gI1CiCkALgdwaQ2eraa4/bk2rNvW0dPNyGFBKp3Dbso5XPv4GwCAzTu7erglOXZ1OImDCLAt/NscfgSA0wHcGKbfCOCM8PfpAG4RQnQIIZYBaAUwg4jGARgqhHhGBNu1m7R7ZFm3A5hFvcgQfdXmdvzL/y7ABTfN7+mm5LBgN2MCuoXeM3ty7Krw0jkQUZGIXgSwBsADQoi5AMYIIVYCQPg9Osw+HoB6iG9bmDY+/K2nx+4RQpQAbAYwIssD1QNd5cDXYM3WnHPozcgtWXe/58nRc/AiDkKIshBiGoAJCLiAQy3ZuT2LsKTb7okXTHQBEc0novlr1651NTtHH0MqD+nd1JhVdsHu+XQ5GolU1kpCiE0AHkWgK1gdiooQfq8Js7UBmKjcNgHAO2H6BCY9dg8RNQEYBmADU/+1QojpQojpo0aNStP0HL0Ia7a2o72r9grTTJzDLrjV/suCdyz9l1OHHLWBj7XSKCIaHv4eAOAkAK8CuAvAuWG2cwHcGf6+C8Cc0AJpMgLF87xQ9LSViGaG+oRztHtkWWcCeFj0QjOSto078cN7XkGl0uuatkthxiUP4TOhjboLG7Z34vSrnkTbxh3OvGlGzK4qk392+QZ86Y8v4L/++rI13+7KGeVoHHw4h3EAHiGihQCeRaBz+CuAHwM4mYiWAjg5/A8hxGIAtwF4GcB9AC4SQshtzoUArkOgpH4dwL1h+vUARhBRK4CvIbR86o249vE30Lp2mzujA2u2tGPFBveCt7vimTfWe+X7vxfexoK2zbjuiWXOvLvzeQ4bt3fipbc3Y3tHCQCwYuNONl/v21Ll2FXh9JAWQiwEcASTvh7ALMM9lwC4hEmfDyChrxBCtAM4y6O9vQKVGszAGT98CEDu3VlLbNyx+5pvnnnN03h97Xb87vz3AABKZXtAxl2VM8rRe5B7SGdAvjvrnfjVY6+nvqcXSi9ZvL52OwCgWAhW/ZJBtLlrPE2OXQE5cciAXWQ96XNoafIfzr3IjSYVmopBu8sm4hAOznyM5ugucuKQAV0Olj5Hz6CluejOtItDcg4m4iAhvcX/OO8t3PFCmzVvjhwc8qisGdCZE4deiTScg8SutsFuqoqVkmNw5ead2N4R2n6ED/bNPy8CAHzkiAmJ/Dly2JAThwzIT2frnRg9tL933l1TqKToHMpJsnb0jx6u/t7ViF6O3odcrJQBLpY+R+3goxpoDuXw41IQhyp20VfpFCvtos+Vo/cgJw4ZkM+73oWmQjCM07yXXVQfDSlNMlkr5chRK+TEIcdug2xOcLvWIit9bFy+Nrvac+XofciJQwY0yjZ+V7HB72lILiDNZnpXDS9R9iUO+dDJ0U3kxCEDGjXv8gmeDrXWBZXKFUy6+G7c8FQUumPzzi48/OrqmtaTBr5+DPnQydFd5MQhCxo082oRpmN3gQ8XddEfns9QrvnajjDy6U//9lpUx++fx2dvmI81W9tT12Vvh8A1j73Oxtu67ok3qr87uiphfnd5OXJ0BzlxyIBGyXNznaMfshDRrArpZeuCMBa1NmdeubkdP773VXz2hmS02msei4jDF//4AoBcrJSj/siJQwY0auKpC8DuvBMslSu47G9LsLU9W+A8X3HS4nc2Y+XmIJrpk63rAPi9S/Ykqhq/DvkMOzqT5zSohGzD9s661J8jh46cOGRAoyamWs/ushhwRO7uRSvx84db8eN7X81Upi9x+OCVT1Ydxf4w9y3v8mvR9eu2deDfbl9gPKRHbgQKzIzkj0m0t2p7ZyltE3PkiCEnDhnQqHU6xjk0qM5a4unX1+F/56+IpXFETopo2ruyiWrSit86StECbVtka2nP9MN7XsFt89vw14Ur2evR8Z7JWguMDMz1zLOveCLR9zlypEEePsMD+oLWKBFPUqy0a5lffurXcwEAZ02f6MgZgFuo6/HEm3vi3AfH6Z3Vw9SZDFyazxj819sXejVtV4T6/E8uXYeOUhmzDhrTgy3a/ZATBw/oi1bjOIfG11lvcM/R6PDZHSmVybXYDLhKkHVwPcFxDruLmDEr1Of/9PXBJiQ/OKu2yMVKHkhyDo2qV+UcGlNnvWFdaBv0jGroCVtzakm03t60MyyTvx5xDn519nUz57799I2BkzgQ0UQieoSIXiGixUT05TD9e0T0NhG9GH4+oNzzTSJqJaIlRHSqkn4kES0Kr11J4UwgohYiujVMn0tEk2r/qLVE401Zd+dwCHI5tD1hLZ/eV4FdS/HhvGUbAJiJQ6Vi5hxYsVKN2uULIQQWrNi0W1vN5YjDh3MoAfi6EOIgADMBXEREB4fXLhdCTAs/9wBAeG0OgEMAzAZwNRHJU1h+CeACAFPDz+ww/XwAG4UQUwBcDuDS7j9a7aBPh54xZW1MnfUGL1ZqbBtU4uDTrbXselPYjstCR7vNO5P6EFYh3WAnmL8uXInTf/EU7lrwTkPrNSEnUvWHkzgIIVYKIZ4Pf28F8AqA8ZZbTgdwixCiQwixDEArgBlENA7AUCHEMyJ4szcBOEO558bw9+0AZlEtefpuQh+IPWGttLugNzySN+dQh7pNo/q+xasAABt2dHrd0+h+fCM8w7p1zTb2+qYdnTjxp4/itdVbG9KeXjCMdnuk0jmE4p4jAMwNk75IRAuJ6DdEtEeYNh6AakPXFqaND3/r6bF7hBAlAJsBjEjTtnqipwbi7ujnwEEufvXaDe7oLOF3f3+z+t+XI+stfc77OTS4DdV3xF9/ZMkavLFuO65+pLUh7ekt72Z3hjdxIKLBAP4E4CtCiC0IRET7AZgGYCWAy2RW5naTHWZVD2e5prbhAiKaT0Tz165d69v0bqOnFNJxP4eemw1d5QqufrTV6MCVBry5KoXX6oMf3P0K/uP/Xqr+785ZCPXmZ32tlbZ1lPDk0nX1bYwC12N3lYI+bSo2xsZld9bB9RZ4vUkiakZAGH4vhPgzAAghVgshykKICoBfA5gRZm8DoBq2TwDwTpg+gUmP3UNETQCGAdigt0MIca0QYroQYvqoUaP8nrAOqOXALFnOo670Es7hlmdX4L/vW4JrHnu922WlfY5aSBc3bIuLarxFH3Xoc9fzsNcNt0gTzkagyjkYOqUrPIVoUdtmPNXaOKKVo37wsVYiANcDeEUI8T9K+jgl20cAyK3ZXQDmhBZIkxEonucJIVYC2EpEM8MyzwFwp3LPueHvMwE8LHqVxknTOdSwZV3MWcASqtKxUfqH1jVb8YlfPYO31kfRQbeEStJ6n53dqDf+bzHnMHeltWxXFlLXG5RvkmiZmC55pvWS1Vvxj9fVl2jNfWM9jvnxI3WtI4efE9wxAM4GsIiIXgzTvgXgk0Q0DcHsWg7g8wAghFhMRLcBeBmBpdNFQggpj7gQwA0ABgC4N/wAAfG5mYhaEXAMc7r3WOnxysotaCoQpo4ZkriWECvVsN7OUgUD+hXZazGdQw3rtOH2597G3GUbcO9LK/H54/cDEBGF5jqJDKJdae9CbxFdcGKlnoKJUHZZOOBa49L7XsW6bR0Nq6+vwkkchBBPgt+83GO55xIAlzDp8wEcyqS3AzjL1ZZ64rSfPQGA97JMmrLWbtHotIqVGm/KKtchVS4v29ivqfvEIetz1Ov5G62QzrLO9wba4BIrpdHjbOsoYe3WDkweOShjW3pBh/QB5B7SPQxf4tCoTSw37STn0E/hHJat245nlyfUQk70lt14GnBtzko4XMeTchuP3sA5FBzsnU13puPs6+fihJ8+mrktPd8bfQN5bCUP1NNaySbH7wkPac6stIvhHOTkrmU8m3qpmWxra1qv7O6u0677e+sBT7LZJt1Xmna/8Nam7rUlpw4NQc45GNC6ZhsmXXw3Hnx5NRN4r3Yz2Car7cnYSmp9so1Nxe7PSu45pJigt62LvcUmojeIUVx+DlmQtX9d3NfuhgdeXo1JF9+NLRkPw8qKnDgY8OKKYHdzz0srewnn0BhwE08+bxrxxl8MYRbY3bh3qbVHowlAlmct9IK10LUgZ2liVn+TXkArG4qrHl4KIPJSbxRy4uCBWhKH9q4y7nspOvDFXyFd/0Xspbc346rQw1WtLUvVXwrPOk4FlqtIX0ytymhk+Ixa35MWT7euM4bGUFHLPvENY6KjrxEHyTlm7a+syHUODnR0VbBma3ssrTuv6JK7X8HNSigHO+eQLkBcd3HHC29H9Rkq3NZRQkc3PKU5IueyhOkp9BKpUkPEKJ+6zn4mgkuslGXBzsw5GPpDCNErRHC1RoHRAzak3obWtgtBDrG7F63Eeb99NnatOy9pxcYdsf92nQP/uyfx/p88giN/8GDm+3mxUvYJ3d0J43M3V0V2QsY/68enB8EDznvvpMS1XiFWqjrBda+/typy87LBAfSt9Ttwwk8fxeot7ex10/rf6J11o1DoIZ1cThwyIOtLemLpWjy6JB4Typ9zaOzQUOtTJ+O6bcmooS6s93RYsp8DxF98dvnG1O3pTp3VOFBZTVkNC1tLU+AIOZBziOwFu2FTC1Ztbkel4r9jn33FE9XfMuSGjt/NfRPL1m2PcbIqTLqv3ZQ2VJ+30cQvJw5ZkPEd/b/fP59Is3EOsbHQgHFh4lS6y7X88y2R/oG3VspW7vaOEj7+q2dS3dOkbcOtj1ZTjiG833C7FDX21vWNM3F+e9NOzPzRQ7jioaXWe791xyJMuvju6j0SpsWuf2gy3dHFzw3jgUm9hb2uMeTzXv7Aaw2tNycODQQX1dR2nnGjdQ7qwldLq6IN2xUTvBp6JN/w9HKvfKrYKotDGdesrO/DJQZjiWfGulxo7ypj8w4/80jutL5VmwOxz+Ov2SMk/2HuW2y6SefQ0hxwT5c/+BpufTZ5r4lL2d3FSnOXbWio3iEnDhmQdffIBdmzh2/oOT+HRiJaeNI9ZC0sf2yTzaYfyTpJWULTQ+LDD//8SRz+n3/zyrtiY7DjVzcsal9meRcmnUOL4mz5jT8t8i5vd+UcCsoqbbNurHm9DatpF4PVq7aGY9A2oBvtIR1rSg0fUu1KVo6fcWtczHBjGs7Bro/IBu5999SOd6mH6arE9U8uq3n9Jp1DMaMG3lDcLg91zDaS/uXEIQMu/rP/bsYF28tWQ3Y33EO6XuWmLNi2TGRZRLIuPDqyvg+ODsSCHJYqCU9YH3rWKHEDb7mVzeLM1GTXo5ietcykL2zbhJufWZ6uYb0MlBOHvglfzqEnWeZaci18SdksgHTlsg/S3FIPbo1b2OR5GQDw26eW47DvxUU9Pv3SneHxwMurvfOq1dQgmEqKVDc4DuwfrnoK375zccYSk1i2bnvjrYaUjm6k2LHPE4efPbgUZ/ziqR6r3/aqe0tspW6X5bie9TyHLFxAIcU99j7IqHNgbpvxw4cylVUrfO6m+Ym0+cs3YClzYl4tneBMa2wWpb3Pfd3Fm+u344SfPorL/rakrvXoULu2kXSpzxOHyx98rRpHSUU9TMu5dck2oBstijYpRm0igzShmvU60t2XTPNe6JVsus7BqzmcKCXju8my87Prv0RYbm1x5jXP4OTLHzfWpyPLdKl1H3JiJYkf3fsKVmzYYbzugzVbA3+decvSh6rvDtQxOz9DmPzM9TasphzsTteqc2gg57B+WwdufCYK6+Fb34/ufdWZJ66QNiPtM2YxS01zB2utlILLWbYuGShNV5q+8FZtnPh6UueQdXCaRKVZH8Um7vnVY29ki/fVC6Bugn5w9yuNq7dhNeVgiYONO/D1kF6wYhOO/tFDVUcjE1rXbDN6ZMfPVQYWv7PFq26XjXtwvx2Kus1ZVneRMGW11Gk1c/Vo6hdufi55n/b/I1c/7S7IAp8em7DHgG7VoUKNM6YqSrNw2kbxkOOpsiqySzUyZ2q09i+2ucr9HHZPcDtd++LE/9Zx+i+ewsrNfBwaiTVb23HS/zyG797FK+e2tpdi/x9TFv3l6wJ2nFsA0i4KtvMcGoMsTnCMf4pjiVjYtgmrtybfSZZIu7YWVzzESrXs3keWuDcDvvAVsfn2k0tRvKMze8DInkSvNWUloolE9AgRvUJEi4noy2H6nkT0ABEtDb/3UO75JhG1EtESIjpVST+SiBaF166kcFUgohYiujVMn0tEk2r/qD0Pbo76cw7dg7SImbdsvfc90gRwnkXOmdaE0ZcYepWVoVN05s22oCxs25y+ghD/cNVT2MR5H8cs0DIXHxUn4t+2PLVER6lcHVP1NmVd9PZm63UJm84BAHZ01IY4NDo6qipxaGTNPpxDCcDXhRAHAZgJ4CIiOhjAxQAeEkJMBfBQ+B/htTkADgEwG8DVRCSjif0SwAUApoaf2WH6+QA2CiGmALgcwKU1eLZuoR5hktkdsq8TXA+Ysvo4PtXkvIWMFYwZ2pK6/OZifMiXDF66AB8LSyK7n0N0Yy1MIn1MnOsxdM6+bh7O+c28bpVhFivFoXPFpg2Ga45kDREu0VPhD+9eFJ3/0qvESkKIlUKI58PfWwG8AmA8gNMB3BhmuxHAGeHv0wHcIoToEEIsA9AKYAYRjQMwVAjxjAie8CbtHlnW7QBmUWNlDQ1BIziHWg6eurwC2w43ZVFZTFnVc7ABoCvjgpHV8kWtbp1ntFobqpxDgyXhKjcphN8moaL1tdHqSM8n9P98+S7DuXKNdA6NXJoSz96wmlPqHEJxzxEA5gIYI4RYCQQEBMDoMNt4ACuU29rCtPHhbz09do8QogRgM4ARTP0XENF8Ipq/dm3tZJ8q6kqZmTFl2/ll8XNopImluQ2WZ2LSuIifXvWkyh1AtyBKa4r75vqAKFzAKJt9oPbzv96+IFMZXHm+MbpqgazlXXp/3LLNRJf1d+T7ilycmI1LTING7t53asE6e5XOQYKIBgP4E4CvCCG22LIyacKSbrsnniDEtUKI6UKI6aNGjXI1ORN6k7NZfKz7NSyrJ3VNnd5SlpV5I1aDNttCplerqWHfqO90vefZGLadqg/j03iBJI9fPfZG7L9pkdUjFeu6BNPzuMZ+t8VKPSDL2NYRNxTpdR7SRNSMgDD8Xgjx5zB5dSgqQvi9JkxvAzBRuX0CgHfC9AlMeuweImoCMAxAYz1NQlSpVcaBsLOzjEkX343rnngjcY0XK9l0Duk5h1o6zvl0Abdw2ZrQ2wJn1mo36Q2lA7gQ7umLs7f/49Mn1LzP2fhKGerwXeS7LGHtbffpqJUpayOxs7MXcw6h7P96AK8IIf5HuXQXgHPD3+cCuFNJnxNaIE1GoHieF4qethLRzLDMc7R7ZFlnAnhY1JF3+4ernsSvH08u3kD3Wcb12wM58m8YZW5aWWU8Kqsf0u4shBCpApn5lmm8ZrNWspWZsiwVtn7fd9QgrzJqBfWdthsOs8lSnjGsBajmu02utBfbklEGnOV4aqQT3J1y/Z9PnFL97RIrjR3WP03zjNiwvbPb3ta+0J+9VxEHAMcAOBvAiUT0Yvj5AIAfAziZiJYCODn8DyHEYgC3AXgZwH0ALhJCSPJ3IYDrECipXwdwb5h+PYARRNQK4GsILZ/qgXJFYGHbZlxyD+9p2N2+ly/PlxBYOYcMUVm5fK+v3YabQ+9nfQLN+OFDOOGnj7JlrdkSV5hybDk3wdNyDj7mmNyBMbWYKEP6NzvzmKo565qncdj37k9Vn9pf7aUamFY6+qAuNgUJMY/A3QtXGnLbyuHT9Tmhn2GgEjvV+szFNc86cEy6BiYQdOby9Ttw3H8/0s2y/NBZ6jlWu8mVQQjxJMwShlmGey4BcAmTPh/AoUx6O4CzXG2pBTbusMt5bQvOv80+AP99nznoVrki8NLbZtv4lJasscXY32EomTbrsseqv3U599qtHVgLYOTgpFmoHvXUV2TVCH8F/b7Zh4zFfYtXOe/58qyp+JlyrGV3OMUs51fHOQczcRDC71zmyAnOZtjg3z4f1Ko4c+C9+H9d9KdeV63PXGIlH/1Sb0OCMPYmU9bdDbo5nQ7bJHvX+GHJ/EJUB90vHmnFhaFtfIHp2bSmrKrpnb/OwZ4xzU5SD2z3Y4bbYjmBGoqO1BZMuvjumOe2iqP3G4EPvmucpfQAicB7zjtqC7U+m1jJlxBLMaZRrES1f0a9ruzEnb9RHz/6mFb/qcTBJVYyXV6zpR1HXfIgWtcko9Cq0OfObc+u4DPWEDpBy6Oy1hGuvrUN9AHNRRy97wjMmLRnNe0n9y/B1H+/Fx2lcsyjlguVwStvzRWWMoiVXMTBFMmUlelrZW1nwg80FdMFE7SJoXx2RecqjldqbiJ4adA1H7hEW297dgVONIjZagHfnZ+az/ZYH/65K9w81YFzqE2BZoV0/L9t0Y+LlRwbP8P1+xevwtqtHfjtU8ut9+u4bX4DiEPJLFKrN5xipd0N3ZkohQKhUIifBS0PudfPh/bdoNvao04KXxNVVy5Tu9LqDiR0p7I0eHTJGhQLlJlV9l1A1Ws6cdRr/rc/LUQ94fsefXeI0g7elD3Yj9RYIe1RnI9YzDcqa8KUVfkfEys5neD4+mQ7pQ+LCXq7BrbUf/lMipXqXmUVfZBzcO0uzNcKRCBQbFDH5cYOkQ5bn4VzyGBmKRwTJI3FlM9A7KdvxZn7Xlm5hb123m+fxdnXZw/BoDfP58mS5zm4H9Ilrli+bjtmX/E4Nmx3+y1k4QC7c0wopagzbdnRdb+0ZCa/+myiYHX8uazrTMXIMfFk6zpj1OKwZbF/A5uLhny1g77pbKQYtO8RB0fv2nZ2RaKEDDcyJRTOsrmFWR+w9720Cif89FGUypXYomQq+831cW/SWrKdPrvcQczuKbU5barcPMoVPwVusQ46h1880opXV23F/R4K8SxK/e4s7t3VORx76cP49RO685r7vm7QhkS63mfq3zRiJdN1lZm0+ULo7eD0irVGbzdl3a3g1DlYrhEFuwxugldE/F5uF+NjrXTxnxdi2brt2Npe8rJWOv4njyYVreRJAAAgAElEQVTaYUMaEY4PcRjFWDk9/2Y6m3cfU1bbfYC/92viHSi33fFCFN0lTT/pHr02qO9x4p7mcxZqRWBtAST3HzPYWW7bxp344T3xsBd6215emQyY4DN2THn09GSspeh3XKyUlThEfWQbR/rtjfCpSxKHxlGHvkccMiqtgGAQFcggn9ecyXyjut7+PK/UEqiPtZLvbs23Tq6+258zK+qsyurUe9wof1dZxHq8dc029o7pijEBELV/e0cJX701inWUZg6m8XRWyx0/PCIOh02IW8Kpa5RK0E47dKyz3OQ1/mL/OopF/PQSfuk2ayXVICKrtZLavzYCkyBaDViodTFXLlaqI1zv03a5WKCQc+CIA2M9o4EjFys27GTzCCE0zsEPCWWeZdflglc4aM+06FraOyxlqZxDuRLr86dfX8feM23i8Nh/2T/f/0v8EKQ0LUrFOSiNVtuvR5g19f1XT96fTf/93DfZdJtYqZ5xuLKOHe5efQx3KMRY9cVxMY+mhd+Xc0gQqUYQh5BzOOXgMQ2rU6LPEQcX7ArpQG/AsZMVL52Du35Vbh7XOfgNCiEE7l+8Co+8GoS62qQ5/aUTK/nk4QllGsxbZnYm89Wf6+y3eputDLkYrNa8wZ9709/BLQ3nsFE5AEjtpoQuxEBv9h8zBGfP3CeR/rfFqxNpP5szzaiQfuDl1XhtNc9dueClT6gRAQGSO3S1v4sx4pBRrKSsgjbuY8tOLQheA9ZpacoqdSs551BHOF9oeJ1TbhYKgViJXRC1/7WIWpCJcwDw+Zufw2dueBbL123HV259MX7dk5UP0nxkA8kkexjyZNpvnlpmbZtP1V2VuFjJtyjZx3qbO1KEtmhPwTlc/+QyrN4SHl5j4RxUDksXUXKuKtzznj5tPIh4U+HP3TTfYZljhs+4WLl5pzOP6SXp70Lf8atH2hYNmykOpus+nMP9i1fhC7+Lh2nPynmlgbRWag7FZ7lCuo5wmrJarheI0FwssAPoq7e+GE16GJzgUpCMdds6vayVdKgD9jt3LcYTS+PilTQ6h6zhoO16Bcu1tMQhIVZKT5LleQ76wrFcO1PAho6U0VVlzCp1rCXFSub72Y2L5dFrvZ74lPedO/mzylV4+zloNEwV46XjHPj0GLfOmI9vae/C5Q+8lkhvREBfKVaqcg65WKl+cPWtzRGmQEBLU4HdVT6xdB1eXaW433M6hxRr16lXPI5bY+75foNCnQBD+zNmpmlYBwAvv2M7usPERdk4h9oNbrWeLE6I0yYOrxJ6nTh822Nxk3DpHM4/dnLsvxRjZNE5cHkBfjMChGPO0uUnH5w+GJ0fQ2nOdPFpB1rLcSqkBU9Ua2HKumpL/EjSHZ0lHPa9v8XnNtOOekGKSw/eaygAYPweA+tep0TfIw7K70kX3524LkUcHApEaGkuoMMj1DI3Vb3OR1B+b96pyKc9x6E6YAczPghcCAzAvKv6wJVPOOrzTZPiG0tZ3djjdpUrqUV5zUWqEoXuiAhcOodvf+jg2H+5kNtqtLWH4xJ0nYWEi1sdNqAZV37yCGseiQPHDgl++BAHS56Dxw21FuM0ZVV+q34Orrh6pj5V++jjv3oGaxQC0WWJilqLM8Bd6CpX0FQgnPfeSQCA4/evzyFnHPoecXAsAjZrhUKB0NJUTGWd4sIeA+Mho03chbfOwSPjVQ8vTaRlXRx9FdIPvCwVpun0ETb8y/9GpqelsjBSX9Py2FwsVMVKvvP8FGannXY8SOJQEQID+wXmpPqJX7YXzsftMue3PVpzkTB8gDtsORCZjfoQcdu7lLt9o1hJ+T1iUD8mfAbwyRkT8cfPzcRQJeS6aww/umStIUxMPO0T1/7dWk4j0VUWaC4WQETo31xoaGylPkccXJAyR24QFYmMYiUdnFy4yAWp82zXH5nzDDiozTbNlZ/+jZGfZtwFsToHJlWeC2znHNJBjWqaCMfsIcNrUvRHvs8/gnH6S3uiW1ERK03YI/B1kLtpiVhztEfhxpbpccnglyPRVCh4izubClLu7ZffBEkczGKluNhIVUjPX74BO7vK6N9cxNH7jcDeIwbiux8OODOXExwQ6PJ0JPRNStSBRi7GHDpLlaoymuoQRNGGPkccXH1r5RxCnUN7V8XJgXDzrdkjDpFpn/vnF95OpM1bljxJNXa0qDOOVHqFt60Mn7LslkzpylLRWa6kUvgDQL8iVeNXdUeslDYGFilipbHDBuDeLx+XED2lFSsZdQ6wj/mmInnHm5I+BT5Paxt7kW+CWyFdLMT9is685hkAwF+Vw4U+EIZq93FK265zaHCNV2eRdUVXuVL1Ajc54NYLfY84OPpWKnG5fESEoufuiZurzUwwlqwvu1IR+Pivnkmmp1jw1evZjwRl0lLmr7bB86Q57tCWUlmkPvWspblYjaXjv8An86UlLFX9gAjMbw8aNxT9m4u44hPTEmW+s2lnYhPAEQKbQtrWvEBkEU8z5Y92/LUSK/HX1f40hauJRdole3mmsiX0DaGaxfZu63HKno6AcyiE9fF9US/0OeLg2vfsN3pwmIsRK4V+DkC2nSZ3loJeyrptHYk8HEyLeZpWqXlN4SZsIJPPB9OIH90bxOex9Ru3PnOTYVt7cvenB0zzmbdFihTSvmIlrvmZPY0RX2D2HhFZosgiZ1/xeOI+fRiVyhW8vpZ/f0T2M6SLBUpwXEbFbYrF0NYjaXQOpjGmekZX56THO+SyqLqrRFt6AecQEYde5udARL8hojVE9JKS9j0iels7U1pe+yYRtRLREiI6VUk/kogWhdeupJC3JqIWIro1TJ9LRJNq+4hx+Fv9JNOai1Rd4F3jkBNxdIclbNb0FabFTK3jf59rY/P4tmf0kKR8XUVTwSQDtYmOzOVxk5s7TIjDEXvvYSQIuoz+ts8fjQe/9r6ATQ/TbNE4XUi7m5PZheB3wPIaAGxhCKG+Sv/kb0uwcnN7Mh/cIbubi4UEsTFll2Pa63EtmaTuQh/Dy9ZtR3tXGRUBHDtlJF7+z1MDzoHpYFV/J4mND4HXx/xGR5j1RopxOAQKaalzaIzjnYQP53ADgNlM+uVCiGnh5x4AIKKDAcwBcEh4z9VEJKN7/RLABQCmhh9Z5vkANgohpgC4HMClGZ/FC66uFUJg844ufO225G5iSP/m6rx0vaQlq+N20aVyhbWV9t3qX/C+fWP/fR2IbLBlHdLSlIhDpKNYoPROcCnFSv2bksHh9B3sb86bjguP3897Zztj8p6YMnpILE5WLc7HrkrSPe3tBeJhxonJw0FfzOfbzrJ29MnAfsUE8XSFmeju+tTSHBSkivLau8o44aeP4mu3vQgIgaYiYWC/plDnkCxDFdEWHJyIimsei4cf/8HdyaNvVfS0zqGjVEa/cA40FwsNPQfbSRyEEI8DSGo+eZwO4BYhRIcQYhmAVgAziGgcgKFCiGdEMHNuAnCGcs+N4e/bAcwifbTWED5y+Lc22BzhIkuLJ5by5xlHZUWVLTWIbXzHXou2SJrltZ4FwrEAFfgAgyqaCwV2IbTdl/Yal1vnyiaPHGw8/tQGNU6WL+ewzMNzmnvE/zr9kMR1IeILvco52ImDv8McYB9jA/sVk5yD4YbIPyOZYdyw/lqd5lrlAT1qn0vfoSeWrkNF4aiMYiWFc1BNg+PPkbzvT8/HuemNOxycQw9bK+3oLGNQaO48uH8Tq1CvF7qjc/giES0MxU57hGnjAahuvW1h2vjwt54eu0cIUQKwGcCIbrTLCnf4jPjOdNH3ToldV3UO6xmzOBXqQi13Sd/RrFJ82VZ9V21iodPEBLJVXSA3m14s8mKlPQb2M9dpKc/3TAb9HVYXkpTWSqqZJxc2QUdnqYJ5y937JK6ks4+elMgRPK7COZCeg4e+mNtk7QSyFjagOck5mMZFNR9z/aSDxlR9NmxlAIHFHxD3apfvlBDnqArEj7GiwjlIBb++qfaZWpz+SkVPcw47OssYIIlDS1PSH6aOyEocfglgPwDTAKwEcFmYzs1OYUm33ZMAEV1ARPOJaP7atfZduwk+nIO6MxvSP+4gpO5S+jfbu0/dGcldzaSRcfd3n7HH2aqbFoQnW/lQ1WlBRM7FuqlQYHd1E/c0u/in5hxYziT+X74uo62/oT5V53CQ5mfAwSuYHNwEP+Ic4hZWMeJgtZLROQdzXUHIbnOGAf2KiX4zexKHbWOuFTRlqa0HmiTnoKzm8l7JzUkCaAp0qergJJ3Q863b7jbu2NLeZb3e0zqHHZ0lDOoXWFAO6rcLEAchxGohRFkIUQHwawAzwkttACYqWScAeCdMn8Ckx+4hoiYAw2AQYwkhrhVCTBdCTB81KpsbuZM4QFiP/6MqcXCXpe685cD13aWp4Mz5TNZKPqE9fOr2UX41GXQOaX0Zqvd5btP08jmOwUcwqeocbARNYoch9IgOp15L+W1SSNu6Ysro+AluVnNLJN+z+g6aCoWkn4OhLLlgm8y8fUUwUiTERR3evLMLKzbsgOyZgmJRpqIYs1YK56SW7xyP88ldi21PWyu1d1Wqm9DAIbBxdWciDqEOQeIjAKQl010A5oQWSJMRKJ7nCSFWAthKRDNDfcI5AO5U7jk3/H0mgIdFHcm12zEM2LTDvJuIJohAu0OEU4oRh+A7izKF2z2ZFgRXm1TY+oIMk1JFU5FXFtrusyqkPXUOtTC1DPKnsxvvjqUbd10IGDkH24J/6iFj8cUTpih5zXXph/2UKwI/eygKnxKYssZh7l+zzkFvh20KS2WyqgxW82/tKCmcA/+OVFPWqlhJq9Nk3qvCFfrETnjr7+hQroiqCM2kf6kXkpHZNBDRHwG8H8BIImoD8F0A7yeiaQjG3XIAnwcAIcRiIroNwMsASgAuEkLI1epCBJZPAwDcG34A4HoANxNRKwKOYU4tHswEV9+WKhXM0WKr3PXFY6pHKqoON7agXEBcji0Hf3KX5n7ZRJQY+KYdRM04Bw+dQ2DKmsxjc6hb9PZm4zXvXZFBrJSW9Koep16OXZ47Y5nv7Jn74BNHTUxcj1krIbkDDtoTfDcXKRFxFgAOHR8dK+rSOajP9pcF7+CKB1XiwIxJQ3E2zkHvP7tYKfme9DEjm1Qo8O+mibVWiuehUINxztH7YNrE4awFoilgoYTV8q5OyupSuYJ12zoxdlj/kDgE6QXiOfV6wUkchBCfZJKvt+S/BMAlTPp8AIcy6e0AznK1o1Hg5OyHTYhMOlWFtIuKc2yz70RUUWSUckaxUirOwQyCB3EoFninMMt93//Ly8ZrbH1c+R595rOrU3elPpMuLecwdlj/2CKuX9c5B9W0sxLbTCQrVu/TzaZN+YBgV66iyMRWMhNKfz8HW1+pu/5A75Ic36SIlbh5prc5IKL87qJ/c5GNiQXw4c/Vdll1ZHUS8fzg7ldww9PL8c+zpmLVlvZqGxvNOfQ5D2nXbtk18iOdg3AuUjGFdEVOdq099iKq9+gLrmkBThNAz7ZbLhA5DzMJdA7JTNc9ucy7DSp8B35C5+BQSJugTjZb1a5AcbbyOcg+E1oelbDLutTNxMjBZiswG9Rmd2lilCKRd/gMVaRquw4Ar67izwH504VHx/Ru8nhWfdzKeEK+or8h/ZuxVVcuh9WUK8J4GJJJvyg3draq68U53L0oiBt1ZSj+k2OAI6L1RN8jDjY5O9yLtern4OQcYjvBsI7ETIx+3m7waObkrqa6TRNJmg/65AWkWMm+NSoyHtJd5UrmAbxma9y6pKtcYTk5lzWNL1QzSfsJgO48KqqWN4YWxa2Vojyq/DviHOLtlfB9Vl0hre+uC4VkO7PqdFQRTbtBvHnkPnvG/i9ds5WtUyphCzECropp4+UO7d+UOONZoiKEMfaUKb1kic5sagMAvLJyCxsQU4ctkq9+fGuVc3C0p9boe8TBuiDyrvoqVLGS6zXFj/k0cQ5Rnt/9/U1Du9wHoEiYJrY8SUqr3IhArGS+DgScg17fj+551X5TCkz993vxrTsWJdITIgjXqmUycfXkHOQ1by9qabPvaJYQ8aapZxNwnINJBGKF1gid2LKcg6Go/UYNjrVNh2mh9YG+D5FOn0VFtGN7R4NaGAcxg/hOhalPOy3nfNiCc572syfYgJgq/vRcGw789n14cz3vUKkTgIhz8JM01Ap9jzg4rrsWAFUhnebgIPlT9eT90GHjtPz8asx5K6cNn/GeyUm/Qpe1kkoo38XIzjnO4bm3LKEcaoSkfDpA2tDZcc6BxzFTRrA7V5/26cvOGdP2il0PxEpRroP3GoqLTtgPgPJ+lULUhcxFEA8YMyR2u2w7tyv18XM4772TMHnkIGN967d3ZvJSl5sc3cou4hwi802boQO7cMbESnzb9jQ4bEofDK7KGZMD7sc37peO3z4diF25syWAZIBOeSKkSf9SL/Q94mA1TYtPjH98z97JPJJzqAi8ZlEEArwTnPreB/Vrig0+0+JWZAaFaVefZvDYZMtEQBfTfhWcQtp3fdBt9dPApHPoSqkhjIssTHkiC5G001Jfjz58eEAcVGKjd9eMkIhXNxMGzsHWzdd8+kj830XHxNogn0/fgASRht2sw5D+TZEpK3P9rwtXer97FbIvvqud2S05B5W7s+nTdKusIC1A2SJWGtQiHczi4Wm6LOd8XPnJI9BUIAxoTsb98oG0KGwydNiUUfG5cUd4losuIqw3+h5xsFzTPZFPOGB0Io+qc/jd3+2ns23viHZDnBNcWRNNmawtOKVcWp0DB1PWlqbAa/aNtRHby5VbZByffEUL3ZGdmp5dNflM6wRn6g2VO/LmHAzp1YVayae3U9/pm3QONowa0lINuaBHUtXNYnk/B67tUT4Tx5lFrCQ3RC+siHOcMc5BmBfqqH3mfq9YFNIVIbDvyEF4+puzYuldVbFSstSB/Zpw8F5DM+/iJZEzRSAYZYiGnCuk6wyrzgHxRZizZDC56nN4VonDo8qQv3LSVABBrBR1weEGy/CBzewJUEadQw2slbgY/1zeQiG5kKzdyocs0I/B7A70Oqu74rQRK8lNTIvVzYBwTsxolx5uBLQ+rC7UCreir1lRcLsk1AXOtg7HxU/xa7pYiVvQucWfkORCEnkyEAcTV1D1K1LGmNWAgmlXlcvXFP86hg1sxjDtHO2qtZLpWR3tsaHsIHYmopGbstYd9hGmdj43oEwRIDn8+N5IOauKlb48ayqW/GA2hvRvirVG7qJOO3Qsnvi3E/Dg147HQ187ng0hYB5YKZzgDOkFYhTnTOZAZh+/wEW0PWhccpfF1W3aMekwETWzFZPFUqXKFfB1SfmvEP5iJfkKEsMnwTkkFy394Bp1oThi7z3gA26XLPvs6dfjsbdKleQJejznkOR8dDCn4Doh6bm+ILY0JTmHmIEH4wlpale5YhZ3CsETSMk5/GFeXDogRUnUDYe0KudgECObNn5ZxHbdQZ8jDnbOIT4xuEGjxlZKA1WGTESB6EZrj1zYh/RvwsQ9B2LK6MEYMbiFjWmvDyC5W+S8aU0w9UWgpIw/e3fEWIP6FZN1MfdlFdvI/yrj4DOPdJ2DLncGovDSb27YgV9pZwEk2hU25HdzA6uzPz8fP/eblHyrNrdjxYZkID99fKnv+QdnHKrkM7dDvScSBQV4bXU8pETASbi5xO0dpQTnk2i7Vs6G7Z1Y6tDLlZX+V9GiRCSocg5WnYN902ASeVUYvQ+gEIe5ceLw1MUnBvUx3Lwv5HOYiICRc0CukK4rbF2rv3D+IPewHCXfrAPjuomRg1swblh/HLF35FnNvlTdzLBsEEcw7KQ+fm69YGZQhoUllZCx99/awJvS+cbb8d096YfEm9rpS3BNcfvTTlZ1VyogEhF4gSj653m/nYcHX1ltLy8cHKu3BKeyvaNFcY0WKIFfPf46AGBB26ZYHl00pS4g/T0VoDHi4BAFdZYq3k5wLs5BxymXP46TL08ec6rC5EsTcQ5RX6Q9z1mOYpu1ksnM1bSr33NQv7Bd2eX/pSpXyD+7qU+CUCLZ6syCvkccrJxDfBGzHeSuLmRXf/rdGNyiRiIRmLDHgNgpZqrOwQSTQpobiEmLnaBcTu6uO8DJwfmxX0b22GqzyNNrtuBpPsERBy7Mh7eHtCFuf9pdlaroNy0SMry0T8wquYjJuD/6AhPJwIGl4Q5+R0e8H3Sdg2l3aQsPUooRB1keX87UMYMTJfH7GLJe/68zDo3139TRg73OQ5fDdeKeA2Lp0lpJFalaTVmZdsn2lEVSdCbBifaAaC6a7jOFEnfhjhfaqs6eFSGwraOEL9z8HNZsiY55NRGmnHOoM+xx8uOLPjcwVCe4KC0e16WzVAlM65QJed9LgUu8quTWLVPkJNDr5Q7eef7NuHWHvEcdWNKuHgCO2W9k9XcH453ZrB2eok+YL82aot/irZRrZkxeuWiYLmX60ftKM0+3iMtHN6r2v1D+q5CHu7cwZ3cM1MRQsllRSOr4M0ZiGRiPttTHl/FMDU+xkt42HWOG9vcSIca9uZPXJ+wRLe4jBvXDkP7xsG0nHDAK93/lfYn75Ds/bmo8BL/s70JBFSvxzwBILtYwLiqi+h4T1wTflbLOZkN8jawL9VdvjYL/lcoCd7zwNu5bvApXKJFyjRsCi0VWPdDniAOHv37pWCz+/qkJPwe7ziGeT32h7V2VUEQV3fd/L76TKFNn+btMiijOE/neuCeyLFe19V+xMRJrHDs1Ig7tzML8nQ9HJ9RxYqWjJu0JHQXLhJS46lNHYPjA5kT7xw7tn8irZnmBcaYb1FJM5FOh1iF/dpYqiaMhJVSz5IBzSL7vfuFCz51lfe+Xj9PqD76l/bqJcxBCoMhsMoI8kSgkC/YZMRCHTYgcFm1E8n8+fniQR0vPEp5EHdfNxUJi03Ds1FE4YOyQxH1GnUMxKVYqM+9XbZttXBwwdggOHjc0GUbGwDHKPjB5UOvzOwvUmE9x3WO84L3Ds0ZyU9Y6g+vbwS1NGNTSlOh8blioC0qUFn+hneUkcVDzRuXHRQjyUj9tAPvIN2W56oJkDA1QqiQ4qE/P3Ac3fjY4s6lQYOzvWUIZ7ebau8qYzxyh+aHD9mJjQ00dk1wo1CwfufpppuW8iMQmVrKd3hYPhRLc+4np8RDbUqykvxMA2GdE3GNYllE96Ux7aHXfLWP06/0iCYuLOJgW6sf+9YSY7sQmflKjfapwrT8mnxeJ5qakLorrP0A1GY3f0cxYK1kV0sx8ky2STP0xU0bEiNiOzhLmLd/AHvgj69pvNO8VXgvicOHvn1dCfkSF7eiMt+eqTx0BIE4oG4G+Rxy4ga0EtopxBMziyomV9IVz/PABCbESl1dXPn4wDKfxL6cekKhT1vf62m1Vd3qJwycMqy4CqnhL3yU9dfGJ+MLxQXgGTqwjdyhFSnrNcnRGVUgf+O37cOY1fEwZqVD/xSOt1bTVioxVwsWmyyap5QDRosyJHWw6ntg5AEKy7doiVYwOWnFBNn94aDN/oL5TVnaJUsphsjqTi+bwgUkleRYIAdwbRvvU4ePToupkVjDmyur4CMSI8TJaTGIdgz9Bv6JKHMK8sTmXfIbE2eIal6+Lni4Nue+X3k5GkJV1nnbouMS1qF3dX6gXtAXnm6hFLVsXNxSRxN5XjFsr9D3iwCzY1R22JtvnrZWSCmkVP/rou3D7hUcbLQtckTXHDx8QC8Am75EDcdZlj+Fjv4zvqlWFm7pbbdFEIeOHD6iGfeaIg3x2jiiyR3HCbycjOZ+f3L+kmpaFOMhm3b94NVsvp7C0BatTnaRE+F/X5/dLET9Htmmv4YHI7IcffVfseqRsFhER0CqUxEi+i/ful4yJlQaRhZHAhb9/3ppHwvQaqqJLRmE6YnBLdYQ0F5I6puYmvh/lc+rvPgrZzZt+Jtpo2clXdXnafTc+8yZ/A9MeHU3FgtGAJA3uXrgyUZ/ev7LnfMS4tUSfIw5c3zYpnENMrGQQpQDmwXPKwWMwbtgAo8KKdVAKv8sVwQbzCo7sjP63ronbqlcqqkI6ytiPmZDyWTkWXT1gxuScFU/zk4Fylh2jGYc3165IVSqqeWXRHMGwEYe4zkGw8XlMikwO8k7ZNnkwvESkAI/ESokoqVV/lQq2tnfhxbfipq5podbpC9N7qIouGRZN1Sdwptf9irwZrtC+q/mblHOTpVjJ8gzElCGfXQ1i6NsNVS9mQ6VDWpqc50+nQVU0apmXIJ47rhf6HHHgXnUke/U3Zd20Ix5R8aSDAl+HluYoYBhX13AlCqSukC6VBRuMq2g4KlFir+H92V1dkbG04BTqEnKHFYiV9BuT9XKLAAeOBb/m00fixs/OqIqyADcXoirFb3k2ck4aEXJDabl8dfGQnIPezmaDrJxDRdsF632oBq4z6RakX0W5IvD5m5/DO5sDDuuhrx/PluWCj29CUufAiJWgcg7mGGDyW1/jdJ3Df3zwoKBcEe+zan5GrKTK4hOEgKEOepiKgmlShpihjC/hIEiDW5qwtb2GxCH85uYTF4SxEXCOfCL6DRGtIaKXlLQ9iegBIloafu+hXPsmEbUS0RIiOlVJP5KIFoXXrqRwJBFRCxHdGqbPJaJJtX3EOLgFpMlwgLdNrLSwLX4W8lWfejfuvOiYmL+DWlf/5gL+6djJsRguug16qVKJnY2r1mlahM8/djIu+/i0arvUXR03lArMYjFpRLBATx09GB86bByumDONMaclLPjOKVjwnVPwnQ8djG/MPrBKAF2LOrdYjBjcguP3HxXrDxfnMH1SFD7i3++oDseqTJYTK9mIl+pTIAQv01W5Shd0zkFfwFURj3zu/zojfnJuJG4SePr19dX0/bRInb7LhM2r2WRPb9qdVomD4ez0aaHTZ+ARz4uJJObM2DtsV5hgICZyTq7YsAP/cNVTfMPA6xxKmjhK1Sly/XHmkROqv2UfmMbP4P7M+RHdQDVECKvvSba/ETm2o1QAACAASURBVPDZFt0AYLaWdjGAh4QQUwE8FP4HER0MYA6AQ8J7riYiyU/+EsAFAKaGH1nm+QA2CiGmALgcwKVZH8YHrM6hqCqko3Secwi+9V1D/+YiDp+onjWthHoWAh2lSsIuvtomlXMwiJVMC+fsQ8di2IBm1s/BpEQG4oPs7KMnAQjkqFd96t04aNxQJmhcGKBsYDM+e+xkXPj+/aqclmtRt1lZqG10nZvg8hA+dC/zec0ckjqHJBE2hVXmEDnUGTgHpU0tTQX0by7gkzPiYeGbDZZOOgYYxpIOG+cgNxKJc81NUVfD1cIUGv2nZx6Ov3zxWIwY3M+oYK62K/w2RVxVOQchgNa1cVFqgrFldA6RPkPJo10zoewYi/2aCqlC1ThRFSslL9XCKzsLnMRBCPE4AN1G8XQAN4a/bwRwhpJ+ixCiQwixDEArgBlENA7AUCHEMyLo7Zu0e2RZtwOYRfqWq4bgOYeIHVYHA9cK2bRtDpaSlAVxe2c5WBC0xU0vv1QRVTNIFTZvTEUcCSA4dCW6zywWU4vjdK5epqwAINwTjTNllRimiNmk7N80AVzE4T8+dFAizYtzqEidA3DRCVOq3N+A5qJRfHPMlEBRfNlZh1fDp+giEr3/1YXaFO9Hcg7cCXgqpu/jF4RPgusGubj5KKSFUDmHaAW798vH4Z5/Dvw9BvQr4l0ThrGKU848G1AIqlZfsxI+g3XqSzbRCGm1p+qUbN7WgFus1FwgdJaTJuEStmNA2frCb268jhgc6Od8xbi1QladwxghxEoACL9lcKHxAFYo+drCtPHhbz09do8QogRgM4DumWhYwHVt3JQ1SrdxDlz4BxWqcnvWZY8CSJqW6rvzQKzELBgWsZIcnFxcILZdjEKdU9p6K6ThHrC2Qf1dxfkOCPqMs6Sa+61ZVXm8ik8pBzLp1lmyPBMSR75SEEH2yW+cUL3OPfcfPvce3PTZ9wAAPnbkBFwxZ1rsutz9JYlD8L+9q4yK4MeXL6dCRDFONQvkoqsr3T/08ycBBIcT/fOsqWF9UXtVruagcUMTR9AG7zteV4JzUERsgDm/VEi7ekVXJ2zY3olDwnZddtbhiTwuxS5nPquaJrs4vL8u5M2GTfAhWt2JBJsFtVZIc+9QWNJt9yQLJ7qAiOYT0fy1a9dmaiBr0VJVpLk9pKWZp4vtV22qV28JYqmYdr4uhbR6VKIO2Yyxw5Iex1zPch6ZvOmq/p8jIAjFSnxfzD5kbFhn/MjRwxUPXt1TuiIELr0veQ71mKH9Y45WEqpCm4NdrBSUt2ZrB+5euLL6hPJZC0Qs+9hUKLBHduoiEtOO/Pbn2oIFj3k/ac6J9slJ0SqcgFQsjxzcggJFB+xIfPWkqRjcImMc2U1Z9ToT5yAX9Dxhs0RgYadb6ciNgEmkOueouLOiyhUsX7cd7/6vB7CwbTNOOmgMRodjTN2wsUHvlA7VRVJAoN+rtq8pHj+rs1TBN25fGD1vStnHxh2B75Lb0a/3cw6rQ1ERwu81YXobAPWtTQDwTpg+gUmP3UNETQCGISnGAgAIIa4VQkwXQkwfNWoUl8UJrmujxVE77MeyuPrY5HeVBL58ywvVtBGD4ufV6runktGU1Vzf6KGRSagecloucurOkNM5cItuQqzEHXwUykA5tn/EoH645uwjq2WpzVeVsPpiKAC0bUw6WXF5AfMCKarfNrFS8P2F3z0HIHlQEVFUfvw8cG3h0whuVdSnNU7uZKeMHhwT06iIB3C0w0f4WtVzMP1waki8AeCj756QOE955JCWmHK9qnNw2PdzsnH93UXiTYEp/34v7tYc9OQ4lfoqlZO9+fwZ+Oi7J2j5o3euOpHFzLmVMtjNltJmNVqv3iYg4vA6w754Yula3Do/EpqkIfIA8Nhra9FRKicI4bSYHjO9RV53kJU43AXg3PD3uQDuVNLnhBZIkxEonueFoqetRDQz1Ceco90jyzoTwMOinuTRupOMU2bezyHkHJzKKMKS1Vtx54vvVFP0w2yqE7e6mxGprZVUKxZ9senfXMBXTpqK2y88OpFHLe7EA83Hoept1dNMCmmdA1OzqOIfvZ6KEHjwlTXgwHI4jjlotY0Pb5ZEYUdnudoGWV9bGJ9q8TuRF63+KiQR1kUR+rNJIt2/qRjqHPg2fWP2gfaHqtbrkYfhFGX6RIXrKhIlRBotTZEzG0ERKzmIgxwXKkzjyW3MkGyXLfw2oEcJiMZaNN8EyzkMHZC0NDStRFKHEh0nmmx3WpTKAne+GD8D5NsfisSuvS4qKxH9EcAzAA4gojYiOh/AjwGcTERLAZwc/ocQYjGA2wC8DOA+ABcJIaRw/kIA1yFQUr8O4N4w/XoAI4ioFcDXEFo+1QvqTmDmvnvihW+fXP2vD2qbKasz9g1zr66UUzn+Kx58Da+u3MKLlZjjOH3r/MpJ++PAsZFMOJqUUYGjmSB4elGmIIRCmBx31HvN/ZrgHJjnHBpG+OQ4nA3buxJp8XbYOIegPPleSlVRQrS46/4sQHIXrnOA8qopBEk5FMWZFhCZzAUnjOdzL0AR5xDHdedMj7etQIx3eKH6TERRSJUNTJ/EyqJkfcm+SG5SJKTPkMxXqcR1DsaxCGBh2yb873ORelMVlamEkpPtn3rIWPy/9wfhZaRBgEnMU9U5hJtEfT+blnMAgnH3/b+8HEs7UjE80PUq9YaThxVCfNJwaRaXKIS4BMAlTPp8AIcy6e0AznK1o1ZQ32FLUxF7DIo7pcXDZ3Dy/+DbZe3ADY3k7in4v2VnF654MAjZy4mVJOegD0A1JDeQHJDc2iEZk7TEjbfcCiaFy79A53zURU2fQ9xiLmNNce9j805+oZI7Oh+FtG4oIG9paSqwk5zbhavpNic4KSapCPPiLu87dPwwrGLCjEhwxFKHrEM/VGjWQWPiZRWSfa8GoiSK4kH97u/x09G4Ok2ityhP8M297xMPjNrmI6ICpOWcSPhC3PLsCvzoo4eFeUKCBF6sRET45Iy9cfWjrytcpFZHCLmJS8M5uAQiLiW5rrurN/qeh7RFp0CazoFdXD05B5sZqQ1msVJyAJ4+bXwinwsyT6dLNGAgZPG0yCxTxw2fmREry3gsQUKsZM7DhdY3zbfv3Lk4vO7mHPTFZsSgfvjKSVPxu396D8vJJRZRzdHM5AQn6yxXAkJv2lz6vqMOj9g+sgmLNKdNHUVKnlMOxB2w0nhluxb0yAE0CZUz48y4uYgmpl21YOazSazEtdPEeUpus7O6CXFzDr6+FSZw/VpP+Gu/dhOofcvttIW249Uhk1w6B9uu3ZaH5xyk/b99APos6BKdjLlo/F53WyVHoM6zT8/cG18/+YAYR5Ym1LAtHhW3U3YVa71s6B4iwldO2j+ok6FIep1JhTTPOQCoHl5TqZiJuXyPnQ5z6QUr3HGXZA0uMUehEO1K9xrWH1PCkOrymdLI0LndvmkuucZFtb9cukDwY+FfTtk/lgcIxgR3fjcQX8DfXL8dNzy9nM2ni5X0dd8VGPLMIydg6ZptsXfoDPZXSOpf6ok+yDmYB1mgc1D+11jnYBIDqGVxk1juNk2hHaJ7rU2qlgW4LU78xUrxQa2L6mSdvtywYJol+40V8TiksD46Bxu4PtVLjCzAwjpldFuDWFKa/5rWa5lcSw9c17OqCulCgarRe2PexZ4LUzCPNLGSYVxzReq7/bIQ2K4cp8pb1/ERS7944tRYWbL81jVb2bar3Jp+pohqUKKLlfS6ufVBTWsuMue0OyZJsVBwmtDXEn2POCi/OZmwb+A9E1uqlpW417DTjw0aTqwU7p4WanJjk3lgVH6yXTIP52gWuxf2soPyAyVg7EB7piybh7cOnnOgan06nJyDh87BBpveSf+vO3SxHtCh3NhH5+Di7nwgx5yLiBYLylnNlcjfpqqQRjKcuU0sZuKuVHBEBIiP2yIF/gsX/SEKN27SObjGgmrGPUwz25WQRgDNRcIGJdrADZ85Cu/bPzKfb3ZYK3GLuL4J1F+/zhXoZ3k0FXjRX73Q94hDTOfAyZPt16OwxQ7OgUkzmfOpg0JXHMo6hRCJw3R0EZSfziH4di08CREYk0fuJm2HsARp/jFhWOJgWcVdxXqFz7AUol/68OF7xc7jBhjOQcrpDb4hW9q78OcX2oxmuPJ5a0EcpCmnKViehPqOShWROKmOGJ3ES98/FRyI0xMYNlr6NJo0YiA+pvgwcHnMIiq2ObE8EqZd+qCWJuw7chBOPWRsjDN//wFxc2/pwd1lsFZycQ5NhULiOdTrn3rP3njxO6fErksC3ihHuD5HHBBTdrl0Dsm7I3lwes5BnyBViw1lULy6KsnumvwcdHl4QhTEtiv4dusc3IRHOuWohNKkhPUFN+xt4jK9W37+ySOs11X4NEsdD4NbmvDzTx5h9rcQcqEI05jyCgXCbfPbIASqPhTJsuIii+OmjmTz+aBFiW4qocrhJYqFaJMS4xwUs151DPZrKmBgP15lKTlK1XSb5ZIIKCsc+OETh+PRfz0hFkmA4zo5wwTAHVoiMhywi4Xlme2mo00BRqykFccZE8SJAydWin5ffFrS18X3CNlaoc8RB/UlqiGggeSOh1/ogu8snINpMVI5h6+cNDVxvcDs2gBO5+Be7arErRY6h9ApZ82WDiUtCb1ZiUPeFXBE0HRQDJAUl+hxfuxipfgCyJavyr/NRcX0VXJscJZnXu8o/O4sV3Dc1JG4+fz3OO8xQS5waiwwNUx6tV3KGCuVK9V2qqasrlMSq+0PN1kyFDxg0qWhel6FqUyO6zR59LtDxwffAnHza3l0rlp+uSKqSmcuREtSrBSvmwu8FxMrFXmx0sB+RXzuuMmJ0yBVbNpp9+2pFfoecQi/rz37SJz33kmxa4R4DCObE5w7hEAyLWFdFH6rg2bK6HjcfiDYyXDj3q1zMO/iXZzDE0vXeZQV9OfabRFxOGLvZDA4fac9UZts933luOpulntO6w5fy5/YjVkWDC/OwTO/qhCVHsQmyzMX1HeUJmQ4B0mIVYUu1yPV87QrwqxzcOjjomtIhAfhdQ6EZ5QzK3xEsWpb42W5IfMIEXHrT198YmKXLh0CB4QcDEdMdbGSfq679JNQofbfnKP2TsypwOhE8FwWgL+9vBoA8KN7krHH6oG+RxzC97PPiEFJayWNc7AppLOIlUyLty6LTN7HL3L6wqFXycXpyaLs/PKsJDcT1BcoV9WyZjMHsqvt4ojHgWOHYmQYlpg/CcuyszdecV+vWp75cg4eCyIAdFU5h2wituo7KlfYEO5pIHUO6ilqHIpKX5QqonrGSdWUtUDYf4xyFKilLE4Mylsrxb3A+RDmfPk6OJ2DDCWu5gGkb44sn69TCFENZrlma9IRUT0D/KnWdQnPZo44SLPX/z7zMEweOYjdyAhh3oTIPuTaUw/0PeJQDQeQvBaIBuzEQbLpOx3x2nl5s5YnzKSbuCXuY5RygJlzOH7/UfjWBw7EF0+ckmxXeIvv4egjB/fDV09OyqgltrSXsNOx8Kj9aFpU9Pj+KmwSPF2UoC7gL7+zxUpY5LXVWzqMeeKB18ztUB0oy5VKaI2SlThEGxBuPKSBDDynLlZ7Dkpa6siFp6xxDh87cgL6NRXw4cP2wvjhA3DslJHO55AitrgnPLegU2wcmowZdLBiJcRNWUcNaUmIGOXGq7NUqW4ITBZ9ZSGq5rw6V6A+jwDw3JsbY9cGNBfZOSHHmxoFWkVnqRIQB8MskRFyOcJTD/Q94mBRFhYLFHNu46xNJJu+o8PxgiwiKf1/qWInSJz1B5DkMuSg69dUwAXv248NES4nmzRl/Zl2FoEOm/LriaVB2PRfPvq6tQyVhpl235xyXsJm/23jDD748yesHNLLSjA9Y/meOofOcgXXPBb0gyn0OuAZc0ch4BwnmQYcp/vBdyW5O9muiuQcwnr3GzUYr/3gNOwd6g+i89YtzSdKOG2a9ARZjBm4LtE5Bz38OADsNXwAAODtjTurY8pkRVWuCAwNxUntXckxVA2jUxGJd9pUJKspKyduBIDL/rYEAmb/F4nubRf80eeIgw3NxUJMUcsNzJbmuNu8CSYbdxXy7/0vraqmcYcImWKqFIt8ebaYO3pohlGDW9h83wmjQdqIw+trg9DI67a7ArHZZc9qnidb1yWuTdxzQPX3UZPsJ6CpRFQIYM61fzfm1Sewa5fuGz6iqywSB+hEZbjvV89NMC0kHKYxh//IhUv1a7HtxqXJq4m4qacmmiAXaqeJM+JEi9c5cGkGsZLyvz9z8JMM4Li9s4SrHmkFYBIrBWIxKZL7EsOBFxRiqjfH5I8g00y+Ri+u2BRyXIlbAURiqSxB/bKgzxEH+cq4F9BUjLO53DvQT7T6VXhmgQ5+oMdT5Y7kuieXVdM6Ga/YokGspE/gaqwgy4Iib9kYLugmmba0xvCxmjOdjS0xpH+k+zCxzHI3eMcL8ZDFv/3MUThynz2r/1W5N5CUM6cxAddFax/TzggIylMWOM9yS5WKcVH3mdhqljQKae49+OrI5GL38JJA6Wlqp0y3NUuGaHdGGyhQzJnUNx4ZJ9JVD/sBIi5Brw8AVm7eWQ3TzulCpLWSEAJjhrbg66ccYGyXEMnNWNFAHFaE55TITYjOkRw4dmgYc4vv3O+ffggAfhNQD/Q94lAdQNyOoRATK3ELTVMxitQ5cnC/2IEpKtj36zHPO5iBX2AiZgbtTQ5KwM45yMX5108EBMm0W+5XjGTQLph2yRKjh0RKR6OyLbywRZPvHjwueQSlCr1f0jgI6c8mJ1+sPEvdJnSV+XM5AL9IqurikEYhbdoFA+5jbeUw+OqtC4J6TZxDURIH+wZEPyFQ31QBQf+rXsgmAqJjr2HJhR8a5zB6SJIjrorOlDWZFSuFIfLLFfNCLZtVEUmxkskv6bM3zA/bkTQvBoBZB422es4fOHYoCpQM/V8v9DniIMH1f3OBYqyeafck9Q62XaAt6J0Et5AdNiG5KzBFNU1yDnC2S79kWthluk+gL1mmSX/REnOGspelL9h6fn2y6q2z0TI1Nj4ATNhjQOy3+wxqP+pQNpwFDvgRGDVPs+Vd/scHD4r9t1rXOcSgpo2GqTyXzkFa3qhpOra2l2Lxo0y+EDoGMBwSAbHBYFI0A26TXCnGrQgzEVQNKJau3ha7ZuIcouvBtz615D22IWIiPPVAnyMONoV0U5GwrSOwMrjunOnGM5/lbsOmLDQpzVw4YOyQRJrJlNUUldVKtLRGmMQfkjjYlME3fjYIy91RqmBgv2IihDhXp2uy6cQocTC9sTUBbDGEbvrsjNj/89472dkul9ycQ8miK0jjqAjYOQfdX8Rklgn4i5UkTLG3suocfOASKw1uacL1505P5JHtUWvjzWKTIjZunhYLgbWSEMLgjR2NhQUrNsWOB5V1+xgD6v1T0nQSpnobFV6p7xEH5WQrHepif8j4oYnrEnIi2Sd6/NoHDxuX8Hr0nTtFw24hyc5G+Y2t0i6ZCFw1JLFlJO43ahAAoKOrYmV11TpdYiU9FLq+S0y8txQ6h0Ga34cqUjO9yy8rHuu2t32AogvpKFeMXuBp/BwAM/HmyuqOX44+Zl5ZyVtySZGI1UMalIk4sAH1lKQPH75X4pCiqE57xGUgeka1L4wxnyr20/pk+lsbkuedNxUpFhZEh2ym3j9SB+a2BDNfryX6HnFwcA4SPqIZm7JQv/S54/ZNtsXz0D8iQgdjTqeLhKrKQmu74teMOocmn0UskmdzMmWuTqNCOkzW2fEE56Ddrk+wNAsSETlNM0cP6V89OtI2aY+ZMrLqdNjRVWFFVEA6PweAj9Ib5bP/V8tavj65iMXyaTdvaed9V6qcg4VUBp7zwnmyWfI+e9/Ywq7o1kpsX0guqmwXHUvOwSZWMq0PF7xv3zD8ubGpyrkf8XS5MbIr+9Pp1bqDvkscmBeg7qJ9FIdvrNtuvJbwXvZrHosCUcxC47z3TsLTF5+YIA5yt5SGaBmtlTwUoarc1Zbfh3OQbddDoes7QNcCknbe+Cjxix4LIimTtqNUrpo861DX+m8ywdWCepJ1m+rk2ulK46A//6dm7M3nqyqkzWVJp820ixh7wpvy20YcAHfEZY6LMp/Wx5upRvfx6d/6wEGxg5N820ukcg6Wd45dROdARMuJaBERvUhE88O0PYnoASJaGn7voeT/JhG1EtESIjpVST8yLKeViK4kX4PyDIhslTixkh/nsN3DQ1FddC943744bMKwZFs833FSiUy8qZ4UK6XQOZgUnn7EIfptm7g+TnAmzkGHfvfeI5JB0dJAvnO7nNfOXQT3R7LgjpJZrKQuwhw3qdYH2H0vEoSTU+j6Egcl38x998TsQ3krPF+dQ0UkD6dK0wYJtQgr54B4sDvusWX5PnHRRKhQd4mV1PbN3DcwuTYduSohr6iLfFOBqsp51zjblcRKJwghpgkhpKboYgAPCSGmAngo/A8iOhjAHACHAJgN4Goikrz3LwFcAGBq+Jldg3axqJ6Jaxk8+u8sUEVU3zztQG8HKg76BDcNDjlgXQotFZzlB+BHHNRnspvXRfl0U1UJ1fFLYtmPPpDIpxLm337mKHz95LgNetqJIzky2yLqw0XKwHurt7Rj3rINbOh1mS/6zZel9pFNIa2/Z66dPm0H4s9vG/v+HtLAqi32GECJgHcusZLBQETWqYaV6E7QSWltZDutj2vrdz4UmEIXCvbjPCVR0DkdyTXbzYT9T1XsLuohVjodwI3h7xsBnKGk3yKE6BBCLAPQCmAGEY0DMFQI8YwIVu6blHtqDlu/qu/ENkF82GUpKyYy77J837G+oJoGh2xzGiXmIENMfpsOISpLKYcJ8sfle9Fw7rEUt8gd1+SRycCIAPCeyZFD3AkHjE4QpbQst8xuUsACUfttRUsLnadCD+9NO3giqC6upnGhhpK3iQj1K76moBwKsbFvfvdFnw2IX5Ws85gNLs5BDS5oE7E5oxtUdQ5uPwcVkssrFhwhXxiFdIxzsDWO0o/xrOgucRAA/kZEzxHRBWHaGCHESgAIv+URSuMBqDZfbWHa+PC3np4AEV1ARPOJaP7atWuztxh2O2j9tw6fc1zlAp2GXzDtvm95Nm4qZ2L5yWPiJpSYJrFSCoU0AOxjEe/4cE1R24P/Y4byYT3qJ3A0Qw2VYIK00HHtfqvnYVvyjVYildo4OC9rpQwcsC1ih6/OQcWdFx3D5tOb6+q7UYxjW1SYfopjMovsczVcDQd5lGu5Yh67Mp2zkHKd9XxoaAkZa2+BqqHeXZxDo9Bd4nCMEOLdAE4DcBERvc+Sl3sqYUlPJgpxrRBiuhBi+qhRo7gsTthMWdUk247Nh3BH8fDNOPHA6OjB5iLhtR+c5iz3mk8fiRnK7llFpHMw3+87uNIopAEYrXPUdtkgs8jQ3Vf/Ix+WxNX+Q8cndTsA8N0PH+xuhAGcfDmZJxhbru6V123P0V/ZJNi5wPh/7pV5i5WUfDbOwVfnoOJwQ7iHtKLbkYY4YEBSh8itzfKx5AFDXABC2a6qn4NRrBR8q6bXkSk5v5E4atIeOHrfEZiwR7CRUvtJjevm1m3tApyDEOKd8HsNgDsAzACwOhQVIfxeE2ZvAzBRuX0CgHfC9AlMel1gM2WNT5DuUWgpK7a9x/3HDMGskEDMOYq3DgGAC98fnVSlxinS8eiSgJvizF45/ON7zHX6iJXUqLVWxakH/6QGI9tnxEA2rLSaz4RigXD6tL0S6Z85ZrKzDea2Bd8usZLN9FFtn8xvgqpnkDGA+ErjfzknxFgojgJh7rdmOYuyvXpJOGxP6S/KimfkxLVqkl0XEv/v4xf06Zn7GNtVqQQOmS5T1njIcape4xTSnWVRjVkGAPuODPyErv7Hd2NI/6ZqaHA74d0FrJWIaBARDZG/AZwC4CUAdwE4N8x2LoA7w993AZhDRC1ENBmB4nleKHraSkQzQyulc5R7ao6qtRLT/3GTy24SB88Z8vam4Bxh7lhBCVXOvsdAftFUsdqyoKiDnTt1TiIt55DG5JKDKg9OY4rL1ufOkgrRkZnmSVmgIPDbl/74grUsH6MBFSs3mZW6ahlLfjAbx0xJnjWtMgHDB/bDGEVkpYI836XPuPadOz4iL19FuT5efaIim7gyuTsvlYVx0xMZUCQDdcqQ3yqefn0dFqzYFCP20i+mX7GA4QOaq5u7R5esgQmqVVy9Yd6GujEGwB3hQGgC8AchxH1E9CyA24jofABvATgLAIQQi4noNgAvAygBuEgIIVfECwHcAGAAgHvDT10QcQ6MfLaG8jyfxRVA1arlEcuAUCfFiMFu4mCTGauLhe15fQ6ZUeeqr5/D5Z843JrHdYZBHa2cnXXa7c/9Jq1c7FyHRUnYHCUp9ptvmyrus3o1K9ds40KORZs1ju8r0tvzQHgMZqw+Tz2grq/jneDiibbIs+WKCMaiI/T6grbNifYVC5Qwl5VnnryxNorDJMPzdJQqGKZs+uYvjx8eFK+3cR7SmYmDEOINAImZLoRYD4DlXYUQlwC4hEmfD+DQrG1JA9tJcN2UJMWQVizlYz4I+HEOvh7StiY2e0R+9OYclIVr6uhk7Ci1rM6SOdx1kM/ZrJoTENkcl/mmihFGsVitWhV/z6Zy1UXT7vUfXbOZJUfHY7qtcYDAx8dYltZnnP9QMbaZMRbFEIdkZj2PiQsqFKh66BF3aJCpfJlULBDau+L9s25bEH1W7RtpfdVRKmO4ck61TXQsfTAagb7rIc1cqy3nkK4s22656Dlxufw6YrtN207My88h+m2LHqo+mklhHCcO/hY6bLucOdJBLsK2cvVmXX/eUWw+XwWxhG0dULvc1mdysfG1YrMZF9zxfHDehhSHclimRA741gcOMubzEit5bkD08crl1U1hTeW9s2kn1m3rxHNvbsRTreud7ZKw6RzawrMcVDPakw8OFeut1QAAEotJREFU4kQdMHYIhinE4bKP89w1sAt5SO+KqHarQ+fQXaQ93tGWPS0XYtv1+8qW0+ocbBNdcg6mXVhQVvBdqpiP2AzqcTar5tTBy7lQq9S0+0trWmrbefs+qHQ2s/Vd3PLMnPHNDeaQMRIbHScDcnUCqJ5PraIY4478iMOkEQPxBcWIg8sDmOeolP3bwIqtJOdASSc46U903NToGU971zi8/J+n4pC9hsWcUdXzT7g6diUP6V0L0kOamVhpxRHcYJZIc7wj4OAc0oqoPHeItmL9TiyL8qzabFOcBt/22ETRNavjlxfnUFvqEJmy2hTS8f+mgHkvvb2ZTTfBZjTgOy7Ses6b4kIBwBET7ce0Av76FH3/wfnv+BIHdUP0448dloiADCTHTncsEokIg7ToAtV+LiRDdg/oV8TkkYNwnRZyfGC/JFfnCn+zK3tI92pYrZVSlvWN2XzgNMBfIS3hq3PoblnqBHE5833osHH49Tl8/HxAF2v4LTwmqG1O4/jlg3v++TjjNVPwOxUPvRIoSldvMVuB6c0a1MKLZlZaiChfrvl5fS3iZDbuXGWunrYNZpHRd//B7S8iicO/npo8XjPeLrL+19Ns41o9IjVtv2SF7pRX1TlQMvBeqVLBEROHG0V26sbDvjnKdQ51g03nsNUQpthYlmUnuS1lWfbdfrpR7CtbdrHPV33q3VW5KIf4bt8tyvLdeac5yY6vL/7/4L3MZ3N8/vik+EGH6eCbeJ3xSk3hRD56BH8gUhb4cqeybSOHmI0ZpM09YDerNoVbUbEzVCwfv7/dUTVJHJJ54vHOzGWNU44OzeIVruKiE9xjAgAG66LDcHhLJzoVpXLyOFH9uoTLcKBBjENfJA5mD+m7FqTzvbMRcJ/jNVXYJnpaEZWvh3QthS92a6UwjycBtCnz0yqkhw9Mihd0nHTQaJz33knG63qAOLZOrVkmuf2ZR05g07PAV68l+8y2sKunytmMHnw4Yun5P3aYWXYORHb+EtyrPUQh7DYuaqiyUNvG2QfexYeeUWFzSFWhcwFyznMK6VJFWI0GVNNXl7VeoxTS3fFz2CURhew2Y+KezAHmDCYpuy0daV+gySMYSG/hMsIWZkAp6p8MIaOzwMdM0lfm7WtyaYI6MX367rpzecsiCU5+7WqXcSGrqdFDOvGJLwdqOh4X8LPC+/opB+Czx062hrsAgHHD48SD67N9RgzCuGH9sXJzu/VdNnua7B4+YTjuWWSPraRyHpedZbYc0hXccvevEofNO7qwoG0TSg7nzq5YGI7eoXPoe8TBEnhPwjWJFn3vFBBRYuejwmYHzuHSjx1mvOarczh84nAsWLEJ5x872ZhHTsABzUVjjKYssPsAuPPEwjyk1NfoUMVArvDMPvDh3GSOfsUCPjljoiVf7ahDWoW0b36btZLPuykWyEkYAGBgc3z+TDPEYPJpv7pQ28aZD+ejEqHxe5g3ijqHJblU1UP687+bj7+/sQGAfRyV1DAclrY1UufQ54iDhNVyxnHvEI+dpOtAER02zmHEIPdEA4DbPj8TnaWKQ6EbfHc3dpQOH5GRr3OezWfChyNTiUNHyvfAwYc4VP00LF61Qb7ge8ak7hNmX6MHH+Ks4gsWPcyQlibMPmQszjmaj0uUBmq/tl5ymrHffKRnalm2TZvqZ7DPCJ7zV+uzRRuWRPRzx03G/2/vXIOkqK4A/J3dZYFdQAQBFVwBRQTBqCARxGgZUVErkKhRY9SopTHxHZOKGk0qpalgYjQ+UhorAR+JMWXFBHzFMsZH+UhUIiqIvAwqSolvAaMInvzo22zvzHTPnd2e6Wn2fFVT03v3zp2zZ2f63HvuuedcOH1Me1XBhvbP6dK32k9EJ60cyhW52ixbHk5I55VabeYcO6mNy+9d7N0/6Wa9VUsPpuw0MHZmFdKzqTHxABNEXTzeonlRaehr8euj1/F3A5906dEbQBorh6Q6ziHRPy05cqv85jzAV/ccWtYQ+hr4cBhft1LbgPgbYkODcOMJpTPmVkpUT0kGNZzIJekjaijjbvoAC15rrycSmz4joqdBCSugcOXQ1NhQVCgsvNm/FznzkVTH+7PI57pf7/jJZ1OJ1BzVovsZh6RwJUcaJ6WTZi9RWpsbWb9hU1nf+O2n7dNlmSCSMjpl63DA6PjIlPC9knP7+G1Ib/KoWj9+aD8eW9rJeh8l8HIrdVj5lM8zVW72d/Uxe5R9T99T+J9HNkp9SPuzEYfvhrqPznwMOLTf0GeWyNwbEtVTktHabBwK9BVUaysW9r2Ew4FRt1LSnk9rzybWb6gsErKzdLtopZDEe3FtvhsA/O3Mfbnk8DE1+0KG+G5m+jJhx3g3SfhOSdEmHfcc/EL+4jj/oF3K9qkEr5KpkevElYN7TmMF63uz/9xjny0LfKPwfOpp+BSngvZIqnO+PCr+/Tz1Gu5zFP4fejQ2lFyxJlVLDDekDxozOLYPBHuFTyx/t0OKkmrR7YyDx8IhtRxL08dty3kHxX8IAUYN6Ztq1FA5KnUxpInvye2kGaWPb7arG9qFhMZh7+Hxp4M75JnyyFCbxqZiOHONpmQoRXggK+2T413Fd7Yfhp/2T3C3+O6/zNxzKC9fdigjByWcPPf8bmwuy1tgHHo3N/JJCePQkrAiCOtHfyOhxgrAi+6E/f0LV3vJ2BW6n1spoRJcSNLmcCXc8M10fLNpEt5ca2kcwttg0oSssChNHJWeH0mDxgbh7rOmMnybBF+8p/y7btuP7bbqxQ8OKX92ohw9mxq55+ypjBwU72OH9hn6Rg+XXC3xXTlcMG00p+03kv4JGYn79mqiuamB700rv2pMctuA/4qsfQO6o2Hq3aORDRs/L5rIJNnC8GNdzsiFhn7amPjDqWnR/YxDwsqhpbmRjzdsSoxtzjuhL7TSg3Vdes/PyxtkX1vlG9UxYpvWVJfe44eVziYbEpX/ocVrYk9et/Zs4qmLSldj6wxxWW6jhKklPi6REjtLvM9pNEiiYYDAUC657NBU0rX7TpxedRvMbxZkqO3tjE9hjqmkldvPvzaeGx5ZweSRA5Pf1A2R5KJKi+7nVnLPpf7/oeFIa+VQjwzt35tTp47g5pOTD36lyWZXlufJ7ceXvxPbb6+2wLUzekjpuhAh958bn0+pGkRz6byzLqG0Zwb0diejk9JiQBAhVUvSrruR1ni+K4dHXdDD3AVvdGgPM6x+5Mp+hiSJt33/3lw2c1xZl2gY6FJu9ZMG3W7lMH3ctuwypE/JkM9KozryiIhw6RHlk6f5cucZkzfPlOIIXUFJM7LoRnNLc/x4OwxoYeWsw8vKFX55ti+TwiEtomcr4moTZ8XkkQM5asIwzj5w58R+Vx+zh1eUVJpM2WlgzY1SOXy//qMG92HZmnUcslvHlBzh92HKrH92aE9K1OnLbadOYu6CN9naIy1MV+l2xmHHga2xcdDHTWrj5idXph7JsyWzt8dhrlCfcfWLATZsap/VXj5zfNcFAx7+/gE1+RJBx/MUJ+87vCbv6UtzUwNX1qmrNK0Q7TTxXYHccfo+zF3wZtGBwFJhrMdNauuQv6qz7Dy4LxccnJztNi3qxjiIyKHANUAj8DtVnVVrGX58xFgunL5r6tEu3Z0dBrTwy6N23xxGWIrt+7enKdhlSHwkSSWMSMh9lTbRg3dZ1Lk2as/APj05pUSqmsJ9sYU/PcT73FM9URcSi0gj8BtgGrAKeEZE5qnqS7WUo6FB6NVQfV9ed+ToifH5hiAoerLToFZWvL0+18b5OyUqkBn5467vTvFKT16KzwqMQx4NA9SJcQAmActV9RUAEbkDmAHU1DgY2XLnGVN49d3qH+6pBmHhF/NIbhmEgQ+dYZ8UE1pmSb0Yh6HA65GfVwFfzEgWIyMGtDbnNlLs6xN3YNX7//MqHmRs2Ywa0peVsw7n7bWfls2hVc/Ui3EoNd8q0qqInA6cDtDW5leQwzBqQa8ejVx82JisxTDqiMIyonmjXpy7q4CoU3oYUFSWTVVvUtWJqjpx0KDkEoSGYRhG56kX4/AMMEpERohIM3AsMC9jmQzDMLotdeFWUtWNInIW8ABBKOtsVV2UsViGYRjdlrowDgCqeh9wX9ZyGIZhGPXjVjIMwzDqCDMOhmEYRhFmHAzDMIwizDgYhmEYRUga5QqzQETWAktK/KoNeM1jiK2AD1Pql+ZYacqfply+/epVft+xfOTPQq8mf3Xk8u1Xr/J3ZqzRqppcEAWCWrZ5fADPxrS/7fn6m9Lql/JYqcmfplx5l7+CscrKn5FeTX6TP5Wx4u6dhY8t0a30gWe/u1Psl+ZYacqfply+/epVft+xfOTPQq8mf+VjdQf509bFZvLsVnpWVSf6tucFkz9bTP5sMfmrj6+MeV453FRhe14w+bPF5M8Wk7/6eMmY25WDYRiGUT3yvHIwDMMwqkQujIOIzBaRNSKyMNL2BRF5SkReFJG7RaSfa28WkTmu/XkROSDymgmufbmIXCs1KvabovyPiMgSEVngHvFFmdOTfQcReVhEFovIIhE517UPEJEHRWSZe9468pqLnI6XiMghkfaa6z9l+ete/yIy0PVfJyLXF4xV9/ovI38e9D9NROY7Pc8XkQMjY2Vy/+k0PiFNWT+ALwF7AQsjbc8A+7vrU4DL3PWZwBx3PRiYDzS4n58GJhMUF7ofmJ4z+R8BJtZY99sBe7nrvsBSYCzwC+BC134hcIW7Hgs8D/QERgArgMas9J+y/HnQfyswFTgDuL5grDzoP0n+POh/T2B7dz0OeCNL/XflkYuVg6o+BrxX0DwaeMxdPwgc6a7HAg+5160hCC2bKCLbAf1U9SkN/lO3AjOrLbuTo8vy10DMkqjqalX9j7teCywmKOs6A7jFdbuFdl3OAO5Q1U9V9b/AcmBSVvpPS/5qyxlHpfKr6npVfRz4JDpOXvQfJ39WdEL+51Q1LFS2COglIj2zvP90llwYhxgWAl9x10fTXknueWCGiDSJyAhggvvdUIKKcyGrXFtWVCp/yBy3pL601stSERlOMDP6NzBEVVdD8AUiWOVA6XrgQ6kD/XdR/pB6138cedF/OfKk/yOB51T1U+pA/5WSZ+NwCnCmiMwnWO5tcO2zCRT/LPBr4ElgI551qmtIpfIDHK+q44H93OOEWgkrIn2AvwDnqepHSV1LtGlCe01IQX7Ih/5jhyjRVo/6TyI3+heR3YArgG+HTSW61XWoaG6Ng6q+rKoHq+oE4E8EvmFUdaOqnq+qe6jqDKA/sIzghjssMkTJOtW1ohPyo6pvuOe1wO3UyN0hIj0Ivhh/VNW7XPNbbqkcuizWuPa4euCZ6T8l+fOi/zjyov9Y8qJ/ERkG/BU4UVVXuOa6uv/4kFvjEEYqiEgDcAlwo/u5RURa3fU0YKOqvuSWfmtFZB+3HD0RmJuN9JXL79xM27j2HsARBK6passpwO+Bxap6VeRX84CT3PVJtOtyHnCs87OOAEYBT2el/7Tkz5H+S5Ij/ceNkwv9i0h/4F7gIlV9Iuxcb/cfL7LaCa/kQTCzXg18RmCBTwXOJYgcWArMov1A33CCbK2LgX8AO0bGmUjwgVoBXB++Jg/yE0RxzAdeINjougYXRVNl2acSLH9fABa4x2HAQIKN82XueUDkNT9yOl5CJCIjC/2nJX/O9L+SIABinfu8jc2Z/ovkz4v+CSZ66yN9FwCDs9J/Vx52QtowDMMoIrduJcMwDKN6mHEwDMMwijDjYBiGYRRhxsEwDMMowoyDYRiGUYQZB8OoAiJyhoicWEH/4RLJ2msYWdOUtQCGsaUhIk2qemPWchhGVzDjYBglcEnW/k6QZG1PgsOKJwJjgKuAPsA7wLdUdbWIPEKQB2tfYJ6I9AXWqeqVIrIHwQn4FoIDUKeo6vsiMoEgl9bHwOO1++sMozzmVjKMeEYDN6nq7sBHBLU2rgOO0iAn1mzgZ5H+/VV1f1X9VcE4twI/dOO8CPzEtc8BzlHVydX8IwyjM9jKwTDieV3b8+P8AbiYoIDLgy5bdCNBWpSQPxcOICJbERiNR13TLcCdJdpvA6an/ycYRucw42AY8RTmllkLLEqY6a+vYGwpMb5h1A3mVjKMeNpEJDQExwH/AgaFbSLSw+Xtj0VVPwTeF5H9XNMJwKOq+gHwoYhMde3Hpy++YXQeWzkYRjyLgZNE5LcE2TevAx4ArnVuoSaCgkyLyoxzEnCjiLQArwAnu/aTgdki8rEb1zDqBsvKahglcNFK96jquIxFMYxMMLeSYRiGUYStHAzDMIwibOVgGIZhFGHGwTAMwyjCjINhGIZRhBkHwzAMowgzDoZhGEYRZhwMwzCMIv4P31tlU6neaYUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And a zoom on the last few years." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYI2d97/t9q0pV2lrd6lZv0z0zPft4xrsH7xgb8IIhxxAgMTkcfAnECQc4WchN4CQ5cO+JE8jNiQknBxIT9kDABAg2xiw2xnZs4/GMt9k8+9L7ou7WrpJKeu8fVW+ptHVL3VpK0vt5nn5aXVKpX0ml+tX3txJKKTgcDofDsSI0ewEcDofDsR/cOHA4HA6nCG4cOBwOh1MENw4cDofDKYIbBw6Hw+EUwY0Dh8PhcIrgxoHD4XA4RXDjwOFwOJwiuHHgcDgcThFSsxewVgKBAB0bG2v2MjgcDqelOHjw4AKltH+1x7WscRgbG8OBAweavQwOh8NpKQgh5yt5HHcrcTgcDqcIbhw4HA6HUwQ3DhwOh8MpghsHDofD4RTBjQOHw+FwiuDGgcPhcDhFcOPA4XA4nCK4ceBwOJx1cHo+imdPLzR7GTWHGwcOh8NZB59/4jT++MFXmr2MmsONA4fD4ayDmKohnNSavYyaw40Dh8PhrIOklkFU1ZDN0mYvpaZw48DhcDjrIJnOAABiqfZSD9w4cDgczjpIpLMAgKjKjQOHw+FwDFRDOUTbLO7AjQOHw+GsA+ZWinDlwOFwOBxG0nArRbhy4HA4HA4jqXG3EofD4XAKSKQM46Cm87Y//MoU7vjsU5gNJ5uxrHXDjQOHw+GsEUopVK20W+nQZAivzUTwga+9gHgLprly48DhcDhrhBkGoDiVNapqcIgEhyfD+Oqz5xq8svXDjQOHw+GsEZapBBTHHOKqhuFuFzyyiGA01eilrRtuHDgcDmeNJKzGoUg5ZOBRJCgOEaqWKdzV9nDjwOFwOGuEpbECxXUO8ZQGjyzCKQl5j2sVuHHgcDicNWJ1KxUGpGOqZioH6+NaBW4cOBwOZ43kxxzyU1mjqgaPIkKRhLzAdavAjUMDSKQyePLEfLOXweFwagyLOfS4HUUxh3gqA48swcmVA6ccD78yhXu+vB9zkdYshuFwOKVRjVhCwKsUZStFmVuJKwdOOcKG3Gy33iscTqfDFEG/V8kLSFNKdeWgiHA6RLNz63xENSuq7Q43Dg2AXTW0ykHB4XAqg/VVCnQpiKoaKNWnwalaFpksLVIO7/rHZ/EPT5xs2nqrgRuHBsCuLhIt6HfkcDjlSaT0k36/VwGlepwB0DOVABTFHGZCScxH1OYstkq4cWgA7KohzpUDh9NWsJN+oEsGkCuEi6n6do8iwenQ6xyyWb0PU6vEH7hxaACmcmjB5lscDqc8plvJqwAAIkZ8kc2T9sgiFEmvkGaeA7VFCuK4cWgA3K3E4bQnSTNbSVcOLOnEdCtZlAPzHLRKKw1uHBoAdytxOO1JMp2B0yHA53QAsLiVUsytZFEOpnHgyoFjkHMrcePA4bQTunEQ4XVKAHKdWQuVQ5bmUtrbxjgQQjYSQp4ghBwjhBwhhPy+sb2XEPJzQshJ47ffss8nCCGnCCHHCSG3W7ZfRQg5ZNz3OUIIMbYrhJDvGNufJ4SM1f6lNg8mPblx4HBam2BUxfu/sh8zIb2gNZnOwCmJ8Cq6cWBupWhBthIALMX1tt3t5FbSAHyMUnoRgGsBfJgQsgfAxwE8TindAeBx428Y990NYC+AOwB8nhAiGs/1BQD3Athh/NxhbP8AgCVK6XYA9wP4TA1em21gB0Ocxxw4nJbmJ0dm8MTxeRw8vwRAv/BzOgQzIM26IMQtykGR9NPsUtxQDu0SkKaUTlNKXzRuRwAcAzAC4C4AXzMe9jUAbzdu3wXg25RSlVJ6FsApAFcTQoYB+Cilz1G9UuTrBfuw5/o3AG9iqqId4MqBw2kPnjJ6pC0ndBWQMNxKToeI/i4F44sJAAUxB0M5LBvKIdlGysHEcPdcAeB5AIOU0mlANyAABoyHjQAYt+w2YWwbMW4Xbs/bh1KqAQgB6KtmbXaGxRxacY4sh8PR0TJZPHsqCABYNlQAizkAwEa/CxcW4wD0mIMkEMiikFMOsTZTDgxCiBfA9wD8AaU0vNJDS2yjK2xfaZ/CNdxLCDlACDkwP986XU5TrH1GixwUHA6nmJfHl83+SUsxI35guJUAYGOvG+NLOePgUSQQQkrEHFrjPFCRcSCEOKAbhm9SSr9vbJ41XEUwfs8Z2ycAbLTsPgpgytg+WmJ73j6EEAlAN4DFwnVQSh+glO6jlO7r7++vZOm2gBfBcTitz1Mn5iEQoNvlMOMHSc2qHNyYDiWhZbKIpTLwyPr2tg1IG77/LwE4Rin9O8tdDwG4x7h9D4AfWrbfbWQgbYEeeN5vuJ4ihJBrjed8X8E+7LneBeAXlHWwagOSvM6Bw2l5Xji3hItHujHS4zLjB4lUBi5mHHpdyGQppkNJUzkAKA5Ia1m0wulNquAxNwD4LwAOEUJeNrb9dwCfBvAgIeQDAC4AeDcAUEqPEEIeBHAUeqbThyml7Kz4IQBfBeAC8KjxA+jG5xuEkFPQFcPd63xdtkLlFdIcTsszG07iog0+LMVSWE6UUA69bgDA+GIcsVQGbsM4mMrBcEVRCqQzFLJk75ybVY0DpfQ/UDomAABvKrPPfQDuK7H9AICLS2xPwjAu7UiSt+zmcFqeuYiKm7wKQIFjM3rYNWmNOfh143BhMY6YqsGr6EYhpxxS5nOpWgayZO8aZHuvrg1IZ/S+7kDlbqVQIo23fu5pHJ+J1HNpHA6nQuIpDVFVw4BPQY/bkZetpEi6ERjudkIUCMaXdOPgkfOVA9sHaI2gNDcOdcZ6EFTqVjo9H8WRqTCOTofqtSwOh1MFc2F9BsNAlxN+t4zleArZLEUynYHLCDxLooANPU6MLyYQS+ViDkxZWGdMc+PAMTOVZFGo2K3Egl2tkg/N4bQ7cxFmHHTlkKW6wk9nKJySaD5uo99tKAd9RCgAU1lYUVsg/siNQ51hxsHvcSCe0irKUliMFTfomg4l8PyZYH0WyeFwVoS1xRjwKfC79fbcM2F9G1MGALC5z40TMxGEE2mLW6n4NMuVA8c8CPxuGVla2UGxXCIf+lMPHcG93zhYn0VyOJwVsbqVetx6e+7pkN4qg8UUAOC3b9gCn8sBzZgfDZRWDkmuHDjsIGAHVCUHxVKBWymqanji+DxCiXTLFNBwOO3EfFSFQyTocTnQYyiHaaMzq8tiHHYMduHhj96I39y3EW/crXcUEgUCh6gnfDIVwZUDx2y61+vRD6hKMpZYsUwqo+/7+LFZswUH68/C4XAax1xYRcCrQBAI/MaF3tn5GACYCoER8Cr4zLsuxcUj3eY2FpfocennAW4cOGbgiV1tVGQcYvk9WH58aNq8LxhTa71EDoezCnORJAa69LbcLObw2LFZAMBlG7vL7sdQDMXAPAg8IM2xxBzW4lbSRwv+8vg8Lhr26fdx5cDhNJz5iIr+LicAwOdygBDgXDCOkR4XRo3it5VgcQdmWLhy4OSylapQDsuWHiwLURWqlsVNOwIAuHLgcJrBXETFgE9XDqJA0O3SL/au2dJb0f5FyoEbBw4b7JGLOazemdXa2pcZlxG/S78vliq7H4fDqT0pLYvFWMp0KwFAj2Ecrq7QOJgxB1M5cLdSx8MyjphyWM2tRCm1dG/MmFXVgz4nCAEWuXHgcBoKU+sDhlsJyJ3kKzYOhnLwmzEHrhw6nsJU1tXcSvFUxsxMSmlZM9vJI0vocTkQ5MaBw2kouRqHnHLo88gIeBVsCXgqeo5WjDlU0rKbsw5YR9ZKU1nzOzfm3EpOh4Bej5x3P4fDqT9nFqIAgNFel7ntD2/diXAyjUpH3TPlwGIVreBW4sahzjD5yPKby/VXSqYz+PwvT+P6bX15+yZM4yCi1yMjGOXGgcNpJAfPL8GrSNgx0GVus9YwVAJTDh5FgiwKXDlw9IC0QyRmE65ynVmfP7uIzz1+Eqfm9DbdXkWCqmUsykE3DmcXYo1ZOIfDAQAcPL+MKzb1QBTWPpyHKQe3LEKRBN4+g6MrAqckQhIFyKJQ1q10YVEfTP7Ea/MA9AZfpdxKPCDN4TSOSDKN4zNhXLnJv67nYf2XnA4RikNsCeXAjcM6eGV82QweF/KzIzN48989iUhSg2IcGC5ZRKJMKuuEYRyYshjyOQ3joD+/y1AOS/E0sln7z5/lcNqBl8eXkaXAVZvXZxzYNDimHHi2UhuzGEvhHZ9/Bg+/MlXy/sNTYZyai+K1mXDegVFOOYwvxfP+HvQ5jWwlq1tJQSZLEU7yKmkOpxEcPL8EQoArNvWs63mYcnDLIhSH0BIBaW4c1kg0qSFLy1csR4wT+PGZiOlv7O9SzB7whYwvJsy0uC6nBLcs5tU56MZBz3Tg6awcTmM4eH4Juwa70OV0rOt52AWiSxahSNyt1DI8emgaL48vV7VPKqOftKNq6SuAaFJ3H6Uz1LxqGOvz4FywdEB5fCmO67f1YUO3E70eWT+A0rpbSRYFiAJBr0fPs+ZV0hxOYzgzH8Puoa7VH7gKpmvZYbiVuHFoDf7ykWP4q0eOVbUP+3CZESgkYtnOrhrGAh5MLiWK4hThZBrL8TQ29brxX64bw217Bg3pqbuVWF+WXqOAhisHDqf+ZLIUM+EkNvS4Vn/wKlw62o0rN/Wg2+UwYg72dyvxVFboQeCDF5YQiqfR7a5MPqYzelA4ppYxDmouLsCUw5aAG1mqZyZtH/BiLpLEpx46gvdcvQkAsLHXjTsvGQYA3P/zE0hlsoinNHOYSK9XNw5cOXA49WcukkQmS2tiHF6/ox+v39EPQFcR4YT944ZcOUBvjZ3JUjx9ar7ifdjVf7SccbAoB2YcNvfpMYVzRq3Ci+eX8eNDM/j/fnocgD6cnMHUQjihmfuzviys9xKHw6kfU8t6fHCkBsbBCncrtRCsxQWrMaiEdGZ148Aq65lbaQszDkbcgWUdvToRAgBs6rUYB6OiMpRIm8qBdXZshUwHDqfVmVrWZ0TXQjlY0Y2D/b/DHW8c0pksMkbdwJMn5iquIWDKoaxbKalhp1Fub175e2R0uxw542CRll1OKc+lxQxKKJE2s50EgUAWBbP2gcPh1A9mHIZ7nKs8sjpYsond6XjjwOoILhnpxkI0hUcPz1S0n7qqWymNyzfqudHs5A7oQelzC3pNQziRBiGAzynluZSAfOOgWAaYt8pVB4fT6kyHkuhSJPjWmcZaSKvUOXR8QJqd5H/9yhFkKcWnHj6CG7cHVg1Mr+RWSmlZqFoWG3td2D3Uha0Br3nfWJ8bB84tAQDCSQ1dioT73nEJpIK+LcwghBJpbB/w5m3nyoHDqT+Ty4mau5QA8ArpVoEpB48i4TPvvBSLsRQ+94uTq+63kluJFcB5FQmP/v7r8Ts3bTXvG+vzYCqUgKplEE6k4XM58GuXbcBbjCwlBlMOUVXLUx6tkgbH4bQ6U8sJbKixSwnQ3cw8IN0CsKtwRRJw8Ug3Lt7gw4nZyKr7pVZQDixTqcvpKOr3PhZwg1JgYimBUCJdVrLKUu6jcVncSk5Ha2Q6cDitznQoieE6KYdUJmv7HmncOFjaUwC6gig3c8EKcyulM7TIf5gzDsVeu0Fj1OB8REU4mTaHfxSiWIyDM884iC3R7pfDaWUSqQwWY6map7ECuUxEdoFpVzreOLCr8FxjLAmxCoyDtcq5sEqaFcCV6sfS59VbYASjKYQTGnyu0mEfdgBZ16ZvF5BsgWAWh9PKTIVYGmvt3Ursws/ucQduHJhyyOucWjoDKW8/i3GIqZUrhz6jynkhqiuHcm6llZSD3Q8qDqfVmTYK4DZ010E5GDHEcoO/7MKqxoEQ8mVCyBwh5LBl26cIIZOEkJeNnzst932CEHKKEHKcEHK7ZftVhJBDxn2fI4YznhCiEEK+Y2x/nhAyVtuXuDLsKlwx3Url22pbSVskYWHcYSXj4HfLEAgQjKoIJcq7laxB6PzbIlcOHE6dOTYdBgBs6ffU/LlZ9mK1zT4bTSXK4asA7iix/X5K6eXGz48BgBCyB8DdAPYa+3yeEMIue78A4F4AO4wf9pwfALBEKd0O4H4An1nja1kTLCCdG+MnIV6mdsFKnlupyDiUdyvp3VVlzISTiKcy8JWNOeTUgquwzoErBw6nrjx/dhFbAh4MdNXerbRvzI8uRcIvj8/V/LlryarGgVL6FIDFCp/vLgDfppSqlNKzAE4BuJoQMgzARyl9jlJKAXwdwNst+3zNuP1vAN5EClN86ggLJrPWFB5ZRDydWTWTIJXnVqpcOQBAwKuYs6B9ZR6zYkCaKwcOp25ksxQvnFvE1WO9dXl+hyjg9TsDeOL4HPTToT1ZT8zhI4SQVw23E5uhNwJg3PKYCWPbiHG7cHvePpRSDUAIQN861lUVZiqrgw3jkEApVj0BW91KkQLjwGoTHGLpt7fPK+PMvGEcyigHWSrnVuLtMzicenJiLoJQIo2rt9THOADAzbsGMBtWcWQqXLf/sV7Wahy+AGAbgMsBTAP4X8b2Ulf8dIXtK+1TBCHkXkLIAULIgfn5ypvkrYSZyirlYg4AVo07WNPQipVDGl6lfIV1n0cxZzKUT2Utl60k8iI4DqeO7D+rO0rqaxz09t1PvGZf19KajAOldJZSmqGUZgF8EcDVxl0TADZaHjoKYMrYPlpie94+hBAJQDfKuLEopQ9QSvdRSvf19/evZelF5GIOuVRWAIiXmfDGULWseWIvNA7hpFbWXQTobiVGZcrBYhwcgtlFlsPh1J7nzy5iuNuJUX/tM5UYA11ObOp148RctG7/Y72syTgYMQTGOwCwTKaHANxtZCBtgR543k8pnQYQIYRca8QT3gfgh5Z97jFuvwvAL2gDHXEs5sB8/B5ZPxHHVklnTWcoeoz+S5HCOoekVjbeAOTSWQGUTWUVBQKHqIuqvAppSURKs391JYfTqhyeDOHKTf6i7ga1xi2LSNk4frhq4z1CyL8CuBlAgBAyAeCTAG4mhFwO3f1zDsDvAgCl9Agh5EEARwFoAD5MKWWv/kPQM59cAB41fgDgSwC+QQg5BV0x3F2LF1YpbEazYDS+c8kVupW0DJySCLcslnQrrTSQvD9POZT/CBRJRDqjFSkHQHdrOQWx3K4cDmeNLMfTeRdw9cLuQ39WNQ6U0veU2PylFR5/H4D7Smw/AODiEtuTAN692jrqhXVGM6C3zwCwaiFcOkMhSwI8ilSkMqJJDUO+8ilw1gOvXMwB0A+eqFoQkDZiEcl0Js9ocDic9UMpRWSF4tRaYve5DrxCWsvmnWTdzK20SswhpWXhEAm8ilTSreRVVnIr6cpBEkiey6gQ5upyOYqD03a+4uBwWpVYKoMsLZ+GXkvsPteBG4d0Jq+mwCNXphxSWhayJMCrSFW7lQKGcvC5iru2WmFB6cLeSgB48z1Ox6NqGXzv4IQ5ybEWsOmM5RJFaond3UodbxySWqakcqgklVWWRHgUETNhFe/+x2fx1Il5JNMZxFIZ+FcYFsSylVbKaAJy6ayFRXAAeK0Dp+P5zgvj+Nh3XylbaaxlsiUvopZiKRw8X7qul3kBGuZW4sbBviTT2TyfvrvCmENKy0I23ErHpsN44dwSnj45b86dHVkhDc7pEOFVpBXjDUAu+Fyqz5Kd5SiHU28opfjW8xcAAAfPL5V8zN/+7ATe88VfFW3/+nPn8Z4Hns8rZGWEzdY3DXAr2Xzkb8cbB9XIOmIw//6qMYdMzq3EGF9MYGLJMA6r9IHv88qrSlelpFuJKwcO5+XxZbw2EwEhwIsXcsbhqRPz+NGregnV+FIc44vxon2XEymkMlksGoWoVhrqVnLYu09ax8+QLlQOohEkXq2dbjqjp8D2uGWIAsGWgAfjS3FMVqAcAOB9142h17OacRAhCSSvDQdba7vEHMYX4xj0OfOK/jic1fjX/RfglkXceckwHnl1GulMFpJA8MmHjsAhErzt0g1Q09mS7mE2zGsurGKwIKtwtb5otYS7lWxOMp2vHACUrF1gBKMqKKVGtpKAe2/aim9+8Bpct7UP44txTC4lIApkxVRWAPjAjVvwjitGV3yMIglF6artlK2UTGdw2/1P4bsHx1d/MMckqmr4yx8drWicbbvy4oVl3Lg9gJt29iORzuC16QiOz0ZwdiFmqmpVyyCRzhQ1t2MGYz6aLHpe5lZqTMzB3m4lrhxK1Au4y8x0OD0fxe33P4Wvvv9qM1tpQ48LG3pceHViGeGkhmPTYQz5nJDKNN2rBsVRbBzaKVsplEgjkc5gPqI2eyktw3xExf/1lf04MhWG1ylh52BXs5fUFIJRFddt7cNVm/Weny9eWDL7lbHvhprOgtLidHXTOJQ47hqrHPRsJUpp3aux10LHGwdVy+alsgJ6Omsp5fDk8XloWYrJ5ThSmWyeu2ej3w0A2H9uERcN+2qytm6XXJT11E7KgX0R7T4Ry078nydO4eRsFLIkYKmEz7wT0DJZLMXT6PXI2NDtxJDPiUcOTWMhqp/sTeNgXJUnUvkXgIm0ftxZjcPDr0xhx6AX4UQacgnFXg8UhwhKWUEtNw62I5nOmlPgGG65dMzhuTNBAPpJLVVgVDb2us37Rms0lPyPb9tZVGCntFHMgQ1FSlYweY+jc3wmgr0jPizH01iMp5u9nKawGNeNYsArgxCCe64fw9/89DVQqqeHswsn5l6KpzPwW/YvpRz++/cP4ba9Q5AloSEuJcAyS1rL2DLm1vHGQU1n8gLSgN6ZtVA5ZLIUv7IaByNbiWHt4Firbo59XsWspmYolvYZrQ6boMeVQ+WcWYjixu39OLsQ7VjlwLKM2HfjQzdvw+17B/Gzo7MIRlV88emzoJTmKQcrZkDaMA5aJouIqmE6lIDfI69af1QrcsYhCzs6B+1nrhpMUsvkzU4AdOVQGHM4OhU2r+JDiTQoRZ5bqdvlQJeR1rpaptJ6yNU5tJNbqfVfSyOIqhpmwyq29nvQ65FNH3unEYwaxsGT61G2td+L33vDNviNbaqWNZVDoXEoVA7sOJwOJfWOyg1IYwVyF3p2/S53tHHIZCnSGVqkHDyKVGQcnj29AECvg2BXLlblQAjBqOFaGulx123NsiiAELTFwJ8oMw7crVQRZ43pgVsDunHoVOXAYgulOqeaJ9x0Nqcc0mWMg/E8LENpajmBcCLdOOXALvRs+l3uaONgzo8uEXMorJDef3YRW/s92NDjxJLh85QLMpI2GoqhnsqBEAJFao+BP+xL2Q4uskZwZkEfDLO13wu/R8ZiPGXrGcT1IqcclKL7zDogLZOLORR8lxOp/IB0OKH/rWpZXFiMNyHmYM/vcscah7/80VH86NVpAIBTKow5iEUV0kemwrhstAdep8M8OB0F+23uc0MgwHD3yjUO68XpaI9RoTzmUB1n5mMgRD/Oet0yUloWsQ5UXYuxFESBlGw/Y21pzy7+rBcflFLE03oAOJ7KIKZqCCVygf3FWGrFGSu1xO5upY4NSH9r/wXsMHLEi7OVJCTSGWSzFIJAEIyqmAknsXeDD/MRFadC+hWcUqAcPnDjVlyzpa/uaXBOSWyL9hkR7laqijMLMYz6XXA6RPQavvWlWGrF9vDtSDCmotcjmwO6rLDvXiSpgTVrtV586HUFwKZeN07NRTEXUU0Fy1ipo3ItMZWDTS+OOlI5UEqRSGdwbDoMACViDvoBxg6qo8bj9gz74FUkM+bgKMhNHup24s17Buu6doDNkbbnAVUNLObA3UqVcWY+iq0BLwCYxqFUf6B2ZyGaygtGW2En3LBFDVjjh+z2ZiM+OB9R8x4LrN4tuVbI3K1kP9jVQ8r4UIrbZ+gHB5vwdnTKMA4bfPA6JaSMbo6y2JxJbE6bT5CqlIiqfym5W2l1KKU4uxDDloAHAMysHJbz30kEo2rZMZ5MOVhdRYk846B/pzf15YwDeywrUm6ccrC3W6kjjUPhlapSVOdgzHRQc8phpMeFHrecJ+GbVbjibBPlwCukK+db+y8gnspg95DuCu11G8Yh2nnGYTGWKhmMBnJegHLGIVGkHJIIJ9MQBWLWJzUs5mDz9vsdaRwKT0bllAOToEemwmZLDGvPFYfYnJJ3u8+erRQzIN3hMYdEKoPPPnYC33nhAmbDxc3gHj00jT/7wWHcsqsf77hyBADQa1w5L9VROVBK8f88fARHpkJ1+x9rIRhNVacc0sVupQ09LkgCwayhHHxOyWyz3/BsJZt+lzsrkmVQWMNQGJBmMYdYSkMilcGZ+SjuvGQYAGyhHBSHYJ5YWxmmHFQtawb/O5EnT8zhs4+dBABcv60P3/qda/Puf+TQNAZ9Cr7w3qtMV0SXIkESSF1jDqFEGl955hy6XQ7s3dBdt/9TDcl0BhFVM6cpFsJOuKFVYg5eRcKgz4mZUBKZLIXP5cCGbt04cLeSTmcqhwLjUBiQZgYgqmo4NRdFlgJ7hnU577Uoh8KGfY3C6WiPbKWopW9UO7jJ1gobEHXzrn6cXYgV3R9Jahj0OfOy4Agheq1DHY0Dy/9ftlEPJ/Z6e8sEpNl7tGwxDlY3Mmu655JFDHc7MR1KIJxMo9vlwHCPnoLeuFRW7layHexgYe0uCttnMNdRNKmZsr2/S79SsSoHRw3acq8Fu/eBr5RIMm0WEnaya2liKYEuRcKloz2YCSfNRAlGJJku2UK6r97GwUjxLMzmaSalWmdYUUrEHEopB7csYbjHhelQ0nArObAl4IVAShfX1QPF5q1wOtI4MB/kJaO6VC7VPgPQlQNz33gVXWpav6TNC0i3fswhk6WIpTKm0e3koPTEUhwjfhc2+l2gFJgOJfLujyQ1dCnFrg6/Wy4Zc0imM2a7l/XAjELIRsbhXFBXVoUNKRlMOYRXiTm4ZREbup054+CScNflG/DQR240j8l6wy6M7Ppd7kzjYBwg77xyFG+9ZLhoVCBTBzFVM10fzJ3ktXxJm6UcnA6h5WsDmNENGF/EVn8962FiKYFRvxujxkwQ5mZiRFWtpHIo13zvhy9P4re++DymlhNF91VsFfmmAAAgAElEQVQDUw52MQ7fPTCOjz34Coa7ndg56C35mMKYg8shlsxWYm6llJbFxGIC3S4HHKKAi0caF1uRRAGSQGzrBejIgDS7krh8Uw/eeVXxqE6Pka1knaXADEZeQLppbiV7z56tBGYcBphySLX261krlFJMLCVw7dY+M5VycqmEcigRJPV7HCWb702HksbvBDasY7aIGXOwiXH47GMnsXu4C199/9Vlg8asMSWLk/jdjrLKYdh4b1KZbMMylAph0+DsSEcrB1eZNheCQOCRxQK3km4UumwQkGaNAVv5apsN+ul0t1IokUZU1TDqd2Go2wmB6G4mRiZLyyqHjX43luJpvDy+nLed+eVnwypmQkl85Fsv4tc//wy++fz5qtZmN+UQTqZx5SZ/2WA0oAfqnZJorrnHLRcoB/377JREMzsJAHwNatNdiOIQbascOtM4pFc2DoDuRmJuJY8sQjTSLO0QkL5ysx9ZmptM14owd91AhxsH5kIa9bvhEAUMd7vy3Ers4qSUcfitazZhoEvBn/3gELRM7uqTBannwkk8cXwOP3p1Goenwvj50dmq1ha2zC9pNpTqRrKS1hZOh2AaNr+nWDm4HCIEgZjZSUATjYMk8JiDnTCNg1zeOHgUCRFVQySp5aWvemxQ53Dd1j64ZRGPVflltxPMZWcqhw7NVmIqYdTS7t1qHJjCKmUcupwOfPLX9uLIVBjfe3HC3M7mHcxGVEwuJSAKBHuGfUVZUKvBgropLdt0lRpLZUBpfip5ORRJn80MAD2ufOUQT2fMDgi9btl0DTeqn1Ih3K1kM5KpDAhZ2S3UpUiIJjVD0ueuKmRJMPdrZrbSTTv68dix2Zbt5x8xYw761VuzTz7NIqccXOZvq1uJGdFyPvY7LxlCt8uBw5Nhc1vQVA4qJpcTGPI54VGqj1NZu5U2Wz2YiSElsrYKsWYf9rgdiKc0PHtqAff//AQSqYx5USgIBEPdrLahWcqBu5VsRSKtS0tCylfkMrdSRNWKWiKzqzipiRW9t+4ZxGxYzTsptBI85qAzsZSAV5HM2QSjfjdmwkmkDTdRzjiUvrIlhGCgSzEH1wAWt1IkicmlBEZ6XJBFYQ3KIZeQ0exCuJUUVCEsnVUgulFNprP4zoFxfO4XJxGMpUzlAORmr5SaDdEIFEf1n0uj6EjjwPyOK+GRJURVrWQBkleRIEvCisal3tyyewCE6K0XWpGimEMHu5VG/S7zWBr1u5ClwIyRcRRV2Umx/Mmrv0sxR15qmaxZ+zAbTmJyOYERvwuytAbjkEybnUqbrRyY0qzIrWR8txVJhFsWkcpkcWY+BkqBw5MhuOTcc2xocD+lorVyt5K9SKQzqw7k8TolRJJ6QLrIODilpqWxMno9MgJepSgnvlWIqhoIybVB6FTlMB1K5k0OHDVOVuOGa2k15QDoxoHFGZbiaVCqq9rp5SRmwkmM+l2QJdFsNV8p4UQag4bbr+nGwXgfKokNMLev0yGYKuHEbASArqrcDhspBxunpXekcUhaglLl8CqSmcpa6FZiyqHZDPqUkl08W4FwIo0uRYIiCRBI58YcIkktz9/NKn+ZayhciXHw5txKbL/tA15EVA2ZLF2zWymS1LCxVzdWzTYO1cUccsqB3baegK3f/TfuHsBtewZXTI+tJ3ZuhbPqGY4Q8mVCyBwh5LBlWy8h5OeEkJPGb7/lvk8QQk4RQo4TQm63bL+KEHLIuO9zxNDRhBCFEPIdY/vzhJCx2r7EYqxBqXJ4FSPmkNSKDkiv4mi6cgCAwS4nZsPq6g+0IVOhJIa7dXcKq2INRlXb+l/rRUzV8jLg2BUs8/czX/tKbo/+LsWchxw0FMQeo8U8oGdAKY7qT0LhZBobjbkHy00eKpRzr1UQcyihHKxYv/v7xnrxwPv2manqjUZxtHYq61cB3FGw7eMAHqeU7gDwuPE3CCF7ANwNYK+xz+cJIeyT+AKAewHsMH7Yc34AwBKldDuA+wF8Zq0vplIqdStpZQqQRv0uDPga039lJQZ8TsxFWtM4TCzpvnBA/7JGVQ1v/rsn8ZVnzjZ5ZY0lqmpmA0ggZxzYlXokqUESyIqZdSyoPx9RsWAoh4usxsFQDtW4L7LGsT/a4wIhzW++F0lWHnOwKgdrbJENSlrNa9BIWtqtRCl9CsBiwea7AHzNuP01AG+3bP82pVSllJ4FcArA1YSQYQA+SulzVM+9/HrBPuy5/g3Am0idI72JCgLSVldSoXH40zt24xu/fU1d1lYNgz4FwZhqZra0EpNGIBbQv8wn56JYiqdLtqxuV9KZLFQtm6ccnA4BsihYjIOeELHSV8I0DlEVi4ZysBqHDT0uKFUGpCOqBkr1FM8uRWq6W4kZB49cXczBaTEEtxnz3d0VPEejaGm3UhkGKaXTAGD8HjC2jwAYtzxuwtg2Ytwu3J63D6VUAxAC0FfqnxJC7iWEHCCEHJifn1/j0nOprCthNQ6FMQeXLKLb3ZwAlpVBnxOU5oqe7EAlsYNwMo1wUjMnb7kcIo5N6ym5Cx009jJmZOBYjQMhBD6XI085rDZ8xqocgrEUBALsHPKa9zkdop6tlMlWXBfDlILP5UC322EL4+BVpIrcP1blwILP/V0KLt/UA2Dl4tdG00nZSqU+ObrC9pX2Kd5I6QOU0n2U0n39/f1rXKJuHCoJSDMaNRmqWlgaqF3iDocnQ7j4kz9d9ep/0tIyAtC/rKwhWjBmj9fSCHJ9u/KPxW6XZJ6cIyWy5Qrp91rcStEU/G4ZAY8CSSCmAZZFAZQCWrZC42CJdfS45CLjMLEUb+g0wqiaLrpIKwcrglMcgmkINve6sXPQcCutcmHYSBQbt99fq3GYNVxFMH6zZPsJABstjxsFMGVsHy2xPW8fQogEoBvFbqyakkhl8+RmKfKUQ5NK61eDtRq3S8bS8ZkItCzF+GJ8xcex9NsRi1uJEewo5cBGVuZffHRblEOpVOpC/G4ZokAwH1GxGFPR55UhCAQjfhfG+nQDXO1gGRYQ97n0Aj1rZ1Ytk8V/+odn8L8fP1nRc9WCSowkgw3vYnUOALC5z4ORHhf+8M078RZj5K8dYG4lO3Y6WKtxeAjAPcbtewD80LL9biMDaQv0wPN+w/UUIYRca8QT3lewD3uudwH4Ba3zO5WsxK3kLO9WsgssKD5nE+PAguOrXVFOFvQTsn4WdnKR1Zuo6VYqVA454xBOpldVroJAEPDKulspmjInmX3xffvwiTsvApBrL19p3MGqHKzrAYDDU2EsxlKYaeBxF1W1ii/SmHJwOgTzwmNznxuEEPz+m3dg+0DpWRDNQJEEZKtQdI2kklTWfwXwHIBdhJAJQsgHAHwawK2EkJMAbjX+BqX0CIAHARwF8BMAH6aUMif0hwD8M/Qg9WkAjxrbvwSgjxByCsAfwch8qheU0qpjDpVesTSaPo8CUSC2cSuxXHvrbOhSTCwl4HQI5qhH62cRT2UQTzXOXdFMCtvBM7oLYw4VXJywKulgLIVer/6+7hzsMtWlbFxNV2occkVnDvhcjrxsJTZlLrLK51wtz55ewJ/82yslr6Irib0wrDGHIZ8Td12+AbfvHarpWmsFUzl2jDusetRRSt9T5q43lXn8fQDuK7H9AICLS2xPAnj3auuoFalMFpksrajOgWFX4yAKBP1e+xTCzUX0dUTKKIelWAqRpKa3dOjJtYxgn8XWgAdnFmIIRlNw99rzPa8lpQLSQKFxKD0/upB+r4LXpsOYj6q41cjKscKKNitWDmZAWkKPEZCmlIIQgudOB/MeUyueOrGABw9M4ONvuaioKC2STJvxk9Vg7TOcDgGSKODv776ipuusJexzUdMZ23koml/J1WCSxsSxdnArAUaVtE1qHVZTDp986Aje+r+fxpGpsBmMBnJXeq8b6wWAkqMv25GVlEM4mbYM+ln9irm/S8FUKAlCCN533eai+03jkKksbZK5lbyKhD6PjHSGIpzUkNKyOHBuKe8xtYKldJ4PFic0lBt4VAqWysquyu0MW6sdlUPHGYdKZjkAuvEQCEBIZbnVzWLA57RNzIE1f2PVrFYopXj2dBCRpIYLi3EzGA3kDPXVW3TjsGATY1dvYmWMg8/lAKW6EsvSypQrS2d9//VjeYaXwU5CyQozY8IJfciVJAroM9xUwaiKVyeWkUhn0OuR87q21gK2tvPB4oQGlspaCU6LcrA71SYKNBL7v3s1ppIpcICeb+5RJHhlCUITW3Ovhp36K82HywekzwXjWIiq2GS0Yxi1GIc+rwynQ8CVm/UuLJ2SzlrOrcR6LbGsrkqUw77Nvdi7wYf/evP2kvfnlENlJ6F4SoPbWFfASJVdiKbw4gVdNdyya6BuyuGcoRy0TBZ/9oND+MnhGcRTmcoD0i2kHFwO/TXFGpgWXCn2vSSuE6w19GrtMwB94I/9cgjyGexyYimeRrKCliD1JJHKmLGGUoHKF87q2cmfe88V+MozZ/HG3QPmffdcP4Zb9wyaHTI7pRAuomqQRaGoiSNroXF2Xj9J9lRQcHnL7gHcYnlPC1GqzFaKp3K1QCz7KRhVMR1KwqtI2NTrRjyVgZbJQqpRnzGW73/BUA5/89Pj+ObzF3BoMgSg8nqjVlIOLLayaENXaucZh7R+4qqkv0rhFZ0dYY3RJpbi2D7Q1bR1WIfNlFIO+88twu924LLR7qIAoVeRzAIlryJ1TK1DrEx6JjMOL43rV+lb+z3r/l/VBqStM08ChltpIapiNpzEoE+Bz6WvO5LU4K9RR1NWXX8uGMMTx+fwwFNn0OWU8OqEYRwq/D7mYg72Nw7MZWdH42D/d6/GJFhAugLj4HVKti2AY2w2ipzOLqxceFZv5qO6a4uQ0gHpF84tYt9Y76oDkvq8csfUOsTUTFGNA5AzDgfPL0EgwJZA442Dta09u7pdiKYwG1Yx6HOaXWJr6VpifvfzwTj+7cAE+rsU/M+7cgmOlQakc8rB/m6lPk/O8NoNe5/56kClMQcA+N2bttZ7OeuGnThKZXg0kjkj3jDqdxUph9lwEueDcbz3muIsmkICXqVjYg5RVSuZ7MCMw4nZKLYEPDXxnVebTx9PaeYFlCQK8LsdCMZUzISSuGZLrxkXqWVQmimHYCyFX7w2h7dfMYLrt+farFVeBGfUObSAW8nndEASCFcOdoAZh0quKu64eBh3XGyfUvtS9Lhl9LgdTe9myjKVtgS8RTGHRw9NAwBu3rV6P6w+j9wxbqVomQwc61Sybf21qeatNpVVdyvl1hYwBgrNRZIY7HaaV/GRGisHJiwT6Qxu3TOAgS4nthoXQJXGHLb2e/D+G8Zw4/a1919rFIJA0GvTY77jjEMyVVkqayuxuc9jZng0i7mwCoEAm3qLlcMPX5nCnmEfdgyuHhPp8yq2lNj1IJbSSsa13LIIyciQq1Wrh2rdSoXNKfu8Mk7ORZHOUAx2KXVxKyXTGTObzeUQcf22AIBc/UulqawOUcAnf22vmd5rd3o9si1rezrOOLDWDHbqzLhetvS5ca7ZMYeIioBXQbfLgaiqmS0QLgTjeOnCMu66fENFz9PvlbEYSyFjw14ztaZcvyBCiKkedtTKOFSZrZRIFRoHxVSnQ91OMyBdS7eSqmWxw0iquGlnwFT3d1w8BL/bgUEbDNiqB3Z1pXaccUikKw9ItwpjAQ+mQommzmGej6ro71LgVRzIZKlZ0PTQK5MAgLddVplxGO11I0vRdDdZI4ipGrxlCiyZcai1cqg05lA4Srffq4C1PBrwOXMxhxorhz6PjI+/ZTc++sYd5vZbdg/gxb+41bat89eLXd1KHReQvuf6zXj7FRtaIs2tUsb6PKC0uemsc5GkbhyYL1pNwyWL2H9uCXuGfRX3xblyk14I9+L5JVt1z6wHerZS6a8gO/luq9F7UE2bBkop4gXNKfss6apDPie8slTz8aGqloXTIeD33rCt6L46D4dsKn2GWrYb7XOGrBC3LJmD7duFMSNg18x01mA0hYBXMXPRWTrrfEQ1i9sqYWvAgx63AwfPL9VlnXaBzWguHPTD6HE7MNztrFlfr2rcSqw5pdWtFDD894TorToEgcCrSAjXsDNrsws5m0XAqyCqajgxG8Edn32q6ZmHjI4zDu0IG+jSrIOKUqrPEfDK5smMBaWDUdVsv1AJgkBw5SY/Dl5ob+MQN1yA5dIz771pK/7ibXtq9v8EgcAhkoraZ5jNKS0uL6Yc+jwKHIah8TkdNXMrUUqhatm2UvSVwupIvvfiBF6bieAbz51v8op0Ou+TaEN63DK6nJLZi6cenJmP4v6fnyjZaz+qakhlsgh4cm6laFJDNksRjKUQ6KqugvaqzX6cmotiOW4/qV0ryvVVYly/LYA7azyxTBaFssrhfDBmfrbxEl0E+gwDbw0K63MeaqMcmLtL6UDlwAzvk8fnAQDff2nS7DPVTLhxaBN8TkddZ/o+engGf//4yZJ9j1gwrdeTUw4RVcNyQm87zXrzVAqLO7x0YXmdq7Yv5dp11xNZKm0cTs9HcfPf/hI/PzoLAOY8b2vMgc2pHvLlXIRdTqlmysE0Dh2oHFgLjddmIvC7HViMpfDY0blV9qo/nfdJtCkuWazrBDWWCVWqBoGl4fV5ZbM4KprUzMcGqsw3v2xjN0SBmB1A2xEWk2lkO3jZmFdcyAtnF0EpcGI2AiDXnNJVUOcAAIOW+JHP6ajZNDi1iuLUdsN68fRb12zCSI8LP3hpsokr0uHGoU3wyKI5sL4erGQcmJoIeJW8mAOby8Aat1WKW5bQ71XMlhztiDnLoYG9uxRJLKkcmEK7sKgnNDDlYHUreRQJN24P4PptuXYWPpeEcCKNzz52Aj85PLOutXHloHPpaA+2D3jNjgPNpONSWdsVtyyZV3z1gNUtlFQOhnHo88q5mIOqYcFIz+uvIiDN8ChiXd1kzaZpbqUSAWnW/XV8UY9ZsRYzhZ2L/+WD1+T97XM6MBNO4rOPncTtewdxx8Vrn9Oc7GDl4FUkPR6UyeKSkW44HQLUMI85cGqEWxYRq6NbiZ0wFiKlYg66wej1yFAkEbIoIJK0KofqjYNXkdraOCyzGc0NLOwqFZCOJNM4ORcFAIwv6cohYRxH1t5KpfA5JbOSfSm+vtgDu/joROVACEGfV0afR8ZwtxNOh9jUglYGVw5tglupt3JYKeaQQpdTMjt/ep0SomoaAgEkgeQ1kqsUr1Oy5XSsWpGLx9RmFkIl6DGHfOPw6kQIlAKXjXbj8FQYWiabC0iv0kXAZ/lc15tZxmIhnagcAL31fo9LBiEETkk0L8aaCTcObYKnzsqBGYf5EvOdg7FUnjrwKhKixjD6Pq+8pjGrHllCMNrcflG1JqZqePrkAu64eAjBaApuWYS74QHpfOPwkhH0f9ulG/DKRAjToWTJmEMpdg52IeCVsXdDN45Mhde1NqYcOtU4/NN790EwRJPTIVQ867uedJ6Ga1Ncsoh4XQPS+sE6H1Xx3Okgbrv/SZw0sluCUTWvvQJzCS1EU2tyKQFMfbSXcvj+S5P4vX85iPFFfZ72Wt+btaKUSGU9MhXG1oAHezf4AADji3HzQmA15XDTzn688Gdvxt4NPizHUyVrYCqFKYdOdCsBQLfbYfaOsotbqTM/iTbEI0uIpzPr+oKuhBlziKbw1Ml5nJiN4n1f3o/J5QSC0ZRZ5QnorR9mw2rV1dFW2jHmMLWcMH/rxqFxLiWgtHEIxlLo71LMcbMXFuMl6xzKQQiB3y1DM9qBrJVOVw5WFIcIVcvW7btcKdw4tAkuWUQmSyvuulkt1pjDydko+rsURJIa/uqRYwjGVLOCFgCu29qHQ5MhnJmPrcs4xCytv9uBmZA+SnUmnMRCJJX3njWCUtlK4UQaPpfex0kUCMaXdOPgEInZJmM1etz6Fe/yOoLSna4crDgd1XXQrRf8k2gTPIYLYK1B6aiq4Zq/egxPnZgveT9TDouxFI7PhnH1WC9+7bIN+OXxOSzGUnlXwSylMaJqa7469igS0pn6GbtmwIzDdCiJYKzxbqVS2UqhRBrdLgckUcBwtxPjiwkkUlpFqoHhd+uf8Xo6i3LlkIO99812LXHj0Ca4jXz5tQalJ5cSmA2rOFCmG6pqfHkzWYrxxQR2DHrx5osGEEtlkKX5LZ23D3ixtV/vFLse5QCgrTKWZsK6cZhaTmAxlkJ/g91KpSqkmXEAgE29blM5VBMo9xuf/dI6Mpa4csjhNI0DVw6cGsAyS+JrVA6sVmFiqXSGUDKdyYsr7Bzswg3bA6YEtrpICCG4fa+uHtaaqlnY3bXVoZSayuHoVFg3qA0PSOdXSKeNtFWrcbgQjBeNCF0Nfw3cSlw55GDfKa4cODWB9ehZs3EwXALlOrsm0hmM+nMDe3YMeOF0iLhxuz7nt6/gKviuy/WBSrsGfWtaj6fNjEM4oZmuuaPTetpnw91KBQHpkFGIx4zD5j4PgrEU5iNqVZMSa+FW4sohh9OoF2p2rQP/JNoE9mWOr/FkypTDpGEcDp5fMk/MlFIk0xls9OsZLQ6RmAOGbjMUwobu/Elvu4d8OPr/3oE9G9ZmHFgDv3r2i2ok02H9fe1SJNOANzpbqTAgHS4wDmwuyLHpcFUxB5/LAYGsrxAumc5CFoU11cS0G04ec+DUkvUqB3bVNx1KYCaUxLv/8Vlz6Egqk0WWwlQOWwIeM5PlXVeO4uGP3GgaCyviOr7oOeVQuzGUzYS5lC7d2G1uq7Zb7XqRRQHpDEXWaHlRSjkAQDipVaUcRKMKfj0tNFQtA8XBT0cAzPeBxxw4NcFtjJtca0CaNcnLUuBnR2eQpcDJOb3IjR2k/V0KZFHAjsHcnGpBILhktLv4CddJLubQHsqBGYcrNvrNbYEq51ysF9lw2TD1wIyDz6W/12MBt/nYamIOgO5aWk9AOpnOmu1XOh1TOTR54A9vn9EmrDcgvWgZ4vPoIb398tkFfeyotWL2T+7YhUtHe9az1IrwFsyibnVYptKlhiGVRcE8KTcK5s9XtSycDrFIObhlCQNdCuYiatVtPXrcjnVnKzm5cgCQizmorexWIoScI4QcIoS8TAg5YGzrJYT8nBBy0vjttzz+E4SQU4SQ44SQ2y3brzKe5xQh5HOEEO54rBL3ugPSKkZ6dLfR82eDAIBzBcbBKYn44Ou34uotvetd7qp4mBJqk4D0TCiJgFfGJsOv3+fVm6w1EmYcWFA6bCqHXAO9McO1VG3WUK9HxlJsHW6ldGfOjy6Fs43cSrdQSi+nlO4z/v44gMcppTsAPG78DULIHgB3A9gL4A4AnyeEsCPwCwDuBbDD+LmjBuvqKNzrDUjHUti7wQdCdNcSIXob5uV4ysyaqMYPvV5YDCXSLsYhnMRQtxPDPt0ANzpTCSjvVrJ2zWWupWrdSj1ueZ0B6QxPYzVg37N2DEjfBeBrxu2vAXi7Zfu3KaUqpfQsgFMAriaEDAPwUUqfo3qvhK9b9uFUiEMUIIsC4ms8oILRFIa7neaMYDbx6+xCzJKD3rgrO0EgxnS7NjEOoSSGfE74XBJcDrEo9bcRyAXKIZRIw+kQ8nz9LChdfczBgcV1uZW4cmAwt1KrGwcK4GeEkIOEkHuNbYOU0mkAMH4PGNtHAIxb9p0wto0Ytwu3c6rErYhrUg7pTBahRBq9HsXMSPpPl20AAJwLxvLcSo3E65TaJuYwtZzAULcThBBctdmPS0dqH8RfDVk0fNlGoNNaHc1gbqVqVaLfIyOZzq75hMaVQw72PiRa3K10A6X0SgBvAfBhQshNKzy2lIOVrrC9+AkIuZcQcoAQcmB+vnQPoE7G7RARW0PMYSmWG/O50e+GQIDb9w5BIMDZ+ZjpVnI20K0E6Oms0TrOqGgUS7EUwkkNm3v1E++/fPAa/NFtuxq+DjMgnc4ph8JJdKZbqcoTNSuEW2tQmiuHHOx9aGnlQCmdMn7PAfgBgKsBzBquIhi/54yHTwDYaNl9FMCUsX20xPZS/+8BSuk+Sum+/v7+9Sy9LVnrNLgFNgPaI+O3rtmET7zlIvS4ZYz63TgbjJtZE41WDl1Ke0yDOxvUA/tbStSCNJLRXl0V/u43DuKJ1+ZKKoftA1685eIhXLO1r6rnHurW3ZEsw61auHLIIQgEsiQ0PZV1zcaBEOIhhHSx2wBuA3AYwEMA7jEedg+AHxq3HwJwNyFEIYRsgR543m+4niKEkGuNLKX3WfbhVMFa50gvmspBwb6xXvzOTVsBAGMBD84txJoSkAYM5dAGbiWW9VWqULCR7B7y4V9/51q4ZRH/80dHEU5oRcZBkUR84b1X4aLh6irbr9rshygQPHc6uKa1sfRajo5TEkyF1yzWoxwGAfwHIeQVAPsBPEIp/QmATwO4lRByEsCtxt+glB4B8CCAowB+AuDDlFJmGj8E4J+hB6lPA3h0HevqWNyyuKZU1mBMb51hbawHAFv63Di7EEMi1fiANGAYhxZUDlomi7SlTcW5hRgEoje2azbXbevDb7xuI84sxDC+GF/TfO9S+JwOXDrajf84tVDVfuOLcTzx2hyS6Qx3K1mwwzS4NVfhUErPALisxPYggDeV2ec+APeV2H4AwMVrXQtHxyNLmI0kq94vaHErWdnQ40JU1cy+S9X026kFXS1mHKKqhvc88CscmgxhuNuJp/7kFjhEAWeDcYz4XWa2ULN53ZheehRRtbwah/Vy4/YAPv/L0wgni2MZVk7NRTEXTuL67QE88NQZfPP585AEgSsHC3YwDvY4Wjk1wVWlcshmKb76zFkcOL9o9sexMuDTc/HPL+ptvBv95fW0WMzhm786j0OTIdy+dxDToSRenVgGoCsHlgVkBy4e6TYNVa2UAwDcsD2ATJbi+TOLKz7uH35xEn/04CsAgPmIiizVay+4csjhdAhtUQTHsQkeWUK8il5EL08s41MPH8WPD83A75aLOmIOdOlBxguGcWj0l/UTOmwAABO7SURBVNfrbB3lkExn8MWnz+LG7QF8+tcvBQA8eyoISinOLcSwtcnxBiuKJOIyo41HLY3DFZt64HQIePrkypmEwVgK81EV2SzNa/OtcOVg4nKIrRuQ5tgPt1JdQPrEjN5Y76Nv3I6Pv2V30f0DRtfQ8cU4nA6h4e0evOaoUHs33/v+ixP40L8cxEJUxYdv2Q6/R8aeYR+eOb2AYCyFiKo1PRhdyL4xvQVKLd1KiiTitj1D+M4L4zgzHy37uMVYCpksxXIijYWYig1GphPvrZRDcYhrHvlbK/in0Ua4Zf2A0gvNV+fEbBQuh4g/fPNOvOuq0aL7mXKYDiUbHm8AWqP53nQogT968BW8OhHCB27cgmu36ifdG7b34cXzy3htWjfAdjMOLO7Q66mdcQCAP3/rRZAlAR///iGzNXghrK4mGFWxGEvhTRcN4r53XIy7Lue1rwynQ0SyyfPTuXFoI9yyBC1L8wa6rMTJuQi2D3jLDljxuSTTN92MYCFzeSwn7DvTYdpoxf23774Mf/G2Paa6un57AKlMFv/wxEkAwBYbxRwA4A07B/C/3n0Zbtxe23qhAZ8Tf3LHbuw/u4hXjJhLIWzuw0w4ieV4Gn1eGf/5ms1m40cOS2XlyoFTI3LN9yo7qI7PRLBj0Fv2fkKI6VpqhnLoN/73fERt+P+uFLa2/oLBPVeP9UKRBPzqzCJeN+bPG7FqB0SB4J1XjdYlg+pyo6V7qc8tmc6YdTMnZnXXU6NnabcCdshW4vMc2oit/fqJ/ufHZvEb+zau+NhQPI25iIqdlsE9pRjoUjCxlGhKsJCdcBei9jUOc8YJcKDAOHgUCQ995Ea4ZREbbVDf0Eh63LriK9VKw7rt+Iw+S7swhZrDs5U4NeamHQFcNtqNv3/s5KpB3BPGlLedKygHIBd3cDUhWMjaWttdORBSXEAIALuGujrOMAB6Ez4AeWND73vkKD78rRfzspOOM+XAjUMRTp6txKklhBB87LZdmFxO4MEXxld87IlZ3TjsGFhFORi1Ds2IOfS4HJAEYnPjkESfR4Ek8q8SwyOLkEUhTyX89MgsfnU6mDcQ6KRxDDajfbndsYNbiR/RbcbrdwSwrd+DJ0+UzzVPpjN4/swi3LK4ahCQuUuaYRwEgaDPK9varTQfUYtcSp0OIQQ9bgeWDUOwHE/hwmIcwVgKU6EEAH22BCvY7GvwLO1WwCnpbqVKMw/rAY85tBmEEOwY6MKpMnnmk8sJ3PHZpxBJanjDzv6ymUqMnFupOQVK/V2KrZXDXEQtCkZz9BbebPjPqxMhc/uRSf32tn4vjk2HS1bmc3Lt8ZvZkJArhzZkc8CNC8E4MiXyzE/ORhBJavjrX78E/3zPvhJ759NvuJWUJhUoBbyK2VLcjsyFuXIohd/jMMeGvmpJaT1kGIcdA3qsq1RlPsce0+C4cWhDxvo8SGWymAkXN+FjTfZu2BaAowI/eTNTWQGg32tf5ZDNUixEuXIohd8tmwHpVyZC6HLqToqj02F0OSVz/gMPRpeGqYVmZixx49CGbO7TM2TOlxi8YrbnrjAIyNxKzZK2gS4FwZhattq2lpwPxswOtJWwFE9By1KuHErQ45ZN5XBoIoSbdw3AIRIk01n0emQEjOOPB6NLw1qJcOXAqSmsA+i5YLzovmA0BUUS4KlwcE+fR0aXU2ra1XG/V0E6QxFqQJX0PV/ej7/68WsVP34+ygrgnPVaUsvidzuwFE9jNpzETDiJyzf2YLhbT37occtmELpUCjDHohyamM7KA9JtyJDPCVkScD5YrBwWoikEvErFTfQEgeAnf3BT0+S/tRDOX8c1qFoG5xfj6HZX/j/mwkYBnI8rh0J6PTIyWYr9Z/X23Xs3+DDS48KFxTh63Q4EjM81wKujS5JTDtytxKkhgkCwudeNcyWMQzCmVi3lR3pczXMrNagQbmIpAUqBCaM9eUrLQlulR5XZOoOf4IroMYzsgXO6cdgx4DVbiPjdObcSVw6l4QFpTt3Y3OfB+TJupVYKApr9lepc68BmVgRjKURVDb/91RfwZz84XPS4v/vZcXz8e68CyLXO4AHpYvxGC40Xzi3B73agz6tghBkHj4yRHhcUScAWm3WrtQtsXnukiR2JuXFoU8b6dOVQWEQTjKot1eisv0HK4YLFkJ5biGH/uUUz7ZJBKcW39o/jJ0dmAABzkSQ8sgiPwr2zhTDl8NpMGNuNtFVWcOl3O9DjlvEff/pGvPWS4aat0c7sHOyCQyQ4eH6paWvgxqFN2RzwIJnOYjacO6lSSrEQS7VUhojPJUEWhYYpBwB48sQ8UloWE0v5yuu1mQgWoiqW42ksxlKYXEqYKZmcfJi7KEthGodRv55Fx2JH/V0Kr3Eog0eRcMVGP545tdC0NXDj0KZsM+T6qblcpXRU1ZDSsgi0ULsCQgj6uxQz+FsvLizGMWgEln9qKINwUsvLkvqPk7kv6tmFKI7PRrBraOXeVJ0KcysBejU0AFw03IWt/R5cZrT05qzMDdsDODwVMlOCGw03Dm3KDqMVN2uwB+QK4FpJOQB63cbZEjUbteRCMI5LRnrgc0p57R4mlxLm7adOzsNnFHMdngzjfDCOXYO+uq6rVfE5HWCiYJuhHHrcMn7xsZtx8Uh3E1fWOtywvQ+UAs+dDgLQg/v/7V9fwjs+/4x5AVNPuHFoUwJeGX63AyfnLMbBKIBrpZgDoF95npmP1q0JGaUUFxbj2NTrxiajgJANwWGupWQ6g/1nF/H2K0bgEIn55eTKoTSCQMy4w/b+ldvCc0pz2cYeeGQRz5zWFevf/uw4Hj82C7csQmqAO44bhzaFEIIdg13mtC0AZo+iVspWAoBt/R6Ek1rdeizNR1Uk0hls6nVho+EXv2FbHwA9xRUADpxbgqplccuuAWzqdeNXZ/Srud3cOJSlx+2Ay7F6519OaRyigOu29eGJ1+YRUzUcPL+E9167Gd/84LV400WDdf//3Di0MTsHvTgxGzGvuFvVrcTcEqfLdJpdD9/41Xn805NnAOjpv5uM4TzXbwvALYumcXj61DwcIsE1W3uxJeBFlur9pjZ14DCfSgl4FGwb8PCg8zq485JhTC4n8IVfnkY6Q3HjjkDD/jfPwWtjdg52IZLUcHgyjO+9OGFub7XCIzb+9PR8FNdu7avZ886Fk/gfPzwM5q3a2OvG5LJuDC4a9mHU7zLdSk+fWMBVm/1wyxK29Xvw2DHd+PITX3n+/G0XoQEtsdqa2/YOwek4hH966jQUScDrxnob9r+5cWhj2JS33//2SzizEIMoEHQ5JShSc6qd18qwzwmXQ8TpudoGpR89PANKgc+88xLEUxls6/fAq0g4PBnCvjE/Rv1uTCwlsBBVcXQ6jP/79l0AYBZu8XjDylzKs5LWjVeR8OaLBvGjV6fx+h19De1UwN1KbQybD31mIYY+o9dNK/ayEQSCrf2edbuVtEwWM6FcG/NHDk1j56AXv/m6TXj/DVtACMFQtxOffuelcDpEUzmwXPPXG5KeKZldQzxTiVN/7rp8BABw4/bGuZQAbhzamj6vgj6PDEUS8N3fuw79XYqZy99qbOv35hmH1foeleKPv/sKbvqbJ3BsOoy5cBIvnFvEnStU6G70uxFOavjm8xfQ43Zg7wY9BfPS0W7852s24c5Lhqp/IRxOldyyqx+f/LU9uPvqTQ39v9yt1Ob89o1b4HNK2NrvxXfuvbbZy1kz2/q9ePjVKSRSGRydDuM9X/wV/v2/3oBej4yPffdlfOy2Xbhyk7/s/k+fnMe/vzwFgQB/8O2XsbHXBUqxYvsG1ijuhXOL+KM374RoxBecDhH3veOS2r5ADqcMkijg/Tdsafz/bfh/5DSUD9+y3by9tYXzzXcNeUEp8PL4Mh49PI2UlsW/vzyJLkXCM6eCOD5zEA9/9AZzZoAVLZPF//jhEWwJePDxt+zG737jIM4GY/jEW3abxYKluHnXAD52607ctneIxxc4HQc3DpyW4Kad/fDIIr7/4gSeNtpYPPLqNJwOAdsHvJheTuCj33oJ3/296/DcmSCOz0Rwz3VjEASCXx6fx9mFGP7xvVfi9r1D+NpvX43NvW6MrdIR1CWL+OibdjTi5XE4toMbB05L4JYl3HnJML7/0iQyWYobtvfhmVN6Idp977gYkkDwp987hK89ew73P3YSoUQahyfD+PQ7L8G3XxhHwKuYhUNv2NnfzJfC4bQEtglIE0LuIIQcJ4ScIoR8vNnr4diPd141ikyWQhQI/vodl0IWBUgCwZ0XD+NdV23E7qEufOrho0ikMnjfdZvxvRcn8P6vvIAnjs/hXVeNwiHa5nDncGyPLZQDIUQE8H8A3ApgAsALhJCHKKVHm7syjp24eqwXm/vc2OjXeyC9e98osjTXAvrP37oH7/3S8/hvb9qOj7xxB3YNdeEv/v0wshT4jX2jTV49h9NakHo1M6tqEYRcB+BTlNLbjb8/AQCU0r8ut8++ffvogQMHGrRCjl2YDiUgi0LZ5oFTywkMdzvNGdlPvDaH0/NRfPD1Wxu5TA7HthBCDlJK9632OFsoBwAjAMYtf08AuKZJa+HYmFLZSFY2FDR5u2X3AG7ZPVDPJXE4bYldnLClGtQUSRpCyL2EkAOEkAPz8/MNWBaHw+F0JnYxDhMANlr+HgUwVfggSukDlNJ9lNJ9/f0844TD4XDqhV2MwwsAdhBCthBCZAB3A3ioyWvicDicjsUWMQdKqUYI+QiAnwIQAXyZUnqkycvicDicjsUWxgEAKKU/BvDjZq+Dw+FwOPZxK3E4HA7HRnDjwOFwOJwiuHHgcDgcThG2qJBeC4SQCIDjxp/dAEI1fPoAgIUaPl+t12fn5+Pv3frg79/6qOX7Z/fXWu3zsfdmM6V09VoASmlL/gA4YLn9QL2eu0bPV+v12fb5+HvH3792ef9a4LVW9XzVvjft4lZ6uNkLWIVar8/uz1dL7P5a7fzeAfZ/vXZ+/+z+Wuv63rWyW+kAraB5lN2eu93h79364O/f+uDvX3mqfW9aWTk80KLP3e7w92598PdvffD3rzxVvTctqxw4HA6HUz9aWTlwOBwOp050hHEghGwkhDxBCDlGCDlCCPl9Y3svIeTnhJCTxm+/sb3PeHyUEPIPBc/1m4SQV43n+ZtmvJ5Gsob37lZCyEFCyCHj9xstz3WVsf0UIeRzhE3kaWNq/P7dRwgZJ4REm/V6Gk2t3j9CiJsQ8ggh5DXjeT7dzNfVEtQytcquPwCGAVxp3O76/9u73xCpqjCO49+H1gIzskJjI2LfVSaRVKRkRASBQRDUiyTc1SiwgvBdFkG9qBdKianEKmXYH0SiIisqaiHpD9WbpLTNbCVqYykq8y/0xqcX5xm6zZ1pmt2ZvXf2/j5wmZnnnj2c8zDsuefu3XOA74AFwHpgbcTXAuvi/ZnAUmA1sCVTz3nAj8C8+LwDuLHo/pUsd4uAC+L9QuDnTF1fAEtI+3e8Aywrun89lr/FUd/xovvVa/kDZgM3xPvTgY+q8P2bUu6LbkAhnYY3SPtVHwD6I9YPHKgrt7JucLga+CDzeQXwTNH9KWPuIm7A78AZUebbzLnlwNai+9Mr+auLV2Zw6Eb+4tzTwD1F96fMRyVuK2WZ2QDp6uJz4Hx3nwCI11b7SX4PXGJmA2bWB9zKvzcpmtEmkbvbgC/d/S/SVrDjmXPjEauMKeav8jqVPzObC9wCjHSzvb2uNEt2TwczmwO8Cqxx96Pt3vJ298Nmdi+wCzgFfApUYuf6dnNnZpcB64CbaqEGxSrzqFwH8ldpncpfXNTtBDa5+6EuNXdGqMzMwcxmkb5cL7v7axH+xcz643w/8Guretz9TXe/xt2XkKa2B7vV5rJoN3dmdiHwOjDo7mMRHidt/1rTcCvYmahD+ausDudvG3DQ3Td2v+W9rRKDQzwV8xww6u4bMqd2A0Pxfoh0P7NVXfPj9RzgPuDZzra2XNrNXUzZ3wYecvdPaoVj6n/MzBZHnYP8j3z3uk7lr6o6mT8ze5y0WN2abrd7Rij6jx7TcZCePHLgK2BvHDeTnj4aIV39jwDnZn7mB+AP4DjpqndBxHcC38RxR9F9K1vugEeAE5mye4H5ce4qYB8wBmwh/glzJh8dzt/6+C6eitfHiu5fr+SPNFN1YDQTv7vo/pX50H9Ii4hITiVuK4mISHs0OIiISI4GBxERydHgICIiORocREQkR4ODSBeY2WozG2yj/ICZ7etmm0TaUanlM0Smg5n1uftw0e0QmQoNDiINxCJv75IWeVtEWip6ELgU2ADMAX4DVrr7hJl9SFpr61pgt5mdRVo99UkzuwIYJi0bPQbc5WmdriuB7cBJ4OPp651Ia7qtJNLcxcA2d78cOArcD2wGbnf32i/2JzLl57r79e7+VF09LwAPRj1fA49G/HngAU/rdImUimYOIs395P+sz/MS8DBpA5n3Y1XQ04CJTPld9RWY2dmkQWNPhHYArzSIvwgs63wXRCZHg4NIc/VryxwD9v/Hlf6JNuq2BvWLlIZuK4k0d5GZ1QaC5cBnwLxazMxmxb4BTbn7EeCwmV0XoRXAHnf/EzhiZksjfmfnmy8yeZo5iDQ3CgyZ2VbS6p+bgfeATXFbqA/YCOxvUc8QMGxms4FDwKqIrwK2m9nJqFekNLQqq0gD8bTSW+6+sOCmiBRCt5VERCRHMwcREcnRzEFERHI0OIiISI4GBxERydHgICIiORocREQkR4ODiIjk/A3Yu3ND7kmYMAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Study of the annual incidence" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since the peaks of the epidemic happen in the first half of the year, we define the reference period for the annual incidence from September 1st of year $N$ to September 1st of year $N+1$.\n", "\n", "Our task is a bit complicated by the fact that a year does not have an integer number of weeks. Therefore we modify our reference period a bit: instead of August 1st, we use the first day of the week containing September 1st.\n", "\n", "A final detail: the dataset starts in week 49 of 1990 and it ends in week 38 of 2022, the first and last peaks are thus incomplete." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "first_sept_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1991,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Starting from this list of weeks that contain September 1st, we obtain intervals of approximately one year as the periods between two adjacent weeks in this list. We compute the sums of weekly incidences for all these periods.\n", "\n", "We also check that our periods contain between 51 and 52 weeks, as a safeguard against potential mistakes in our code." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_sept_week[:-1],\n", " first_sept_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And here are the annual incidences." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG61JREFUeJzt3X+MXeV95/H3x4wzA9QmYxgT/wDsKg6KISnEV7a7yXZL3NpmU2GjQjIbGkaLJTfApqRaCezACi24ElSrTWtFYbFCwUD44bpFeLt4yWA2qrd1bI8DKRjiziQQ4+Aww44DJpKnjP3dP+5z6zuT8cy58+vec+fzkq7uud85z3Of4+OZ731+nHMVEZiZmWUxrdoNMDOz/HDSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJrqHYDxtsFF1wQCxYsqHYzzMxy5cCBA+9GRMtI+9Vd0liwYAEdHR3VboaZWa5I+lmW/Tw8ZWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmY1Znu90/wxQf30H38RLWbYnXIScOszmze1cn+N3vZ/EJntZtidajurtMwm6ouvWsnff2n/vX143sP8/jewzQ2TOPQpqur2DKrJ+5plHG33vJs9+1Xcc0Vc2maXvy1bpo+jTVXzGX3HVdVuWVWT5w0yrhbb3k2e2YTMxob6Os/RWPDNPr6TzGjsYHZM5rOWMYflKxSHp7C3XqrH+9+0McNyy7hy0sv5ol9h+kZIRmUf1DadO2nJqmVlmeKiGq3YVwVCoWo9N5T3e+fYNNzr/O9g7/gxIenaJo+jVWXfYw7v/DJYT+lmeXV4A9KJf6gNHVJOhARhZH28/AUo+vWm+WZ5z9stDw8lVTarTfLM39QstFy0kge/MrpXtmmtZdXsSVmk8MflGw0PKdhZmae0zAzs/HnpGFmZpllShqS/lTSQUmvSnpSUpOkWZLaJXWm5+ay/TdK6pJ0SNKqsvgSSa+kn22WpBRvlPR0iu+VtKCsTFt6j05JbeN36GZmVqkRk4akecCfAIWIuBw4C2gFNgC7ImIRsCu9RtLi9PPLgNXAtyWdlap7AFgPLEqP1Sm+DjgWER8Hvgncn+qaBdwNLAOWAneXJyczM5tcWYenGoCzJTUA5wBvA2uArennW4G1aXsN8FRE9EXEG0AXsFTSHGBmROyJ4uz7o4PKlOraDqxIvZBVQHtE9EbEMaCd04nGzMwm2YhJIyJ+Dvw34DBwFHgvIr4HXBgRR9M+R4HZqcg84K2yKo6k2Ly0PTg+oExE9APvAecPU5eZmVVBluGpZoo9gYXAXOBcSX80XJEhYjFMfLRlytu4XlKHpI6enp5hmmZmZmORZXjq94A3IqInIj4E/hb4N8A7aciJ9Nyd9j8CXFRWfj7F4awjaXtwfECZNAR2HtA7TF0DRMSWiChERKGlpSXDIZmZ2WhkSRqHgeWSzknzDCuA14EdQGk1UxvwbNreAbSmFVELKU5470tDWMclLU/13DioTKmu64AX07zH88BKSc2px7MyxczMxsS3hR+dEW8jEhF7JW0Hfgj0Ay8BW4DfALZJWkcxsVyf9j8oaRvwWtr/1og4maq7GXgEOBvYmR4ADwGPSeqi2MNoTXX1SroX2J/2uyciesd0xGZm+Lbwo+XbiNiU1/3+Cf7Tky/xrS9f6Rv2TQG+LfzQfBsRs4z8jY1Ti28LPza+y61NWf7GxqnJt4UfG/c0bMryJ86pq3Rb+Gdu+Sw3LLuEng/6qt2k3HBPw6Ysf+Kcuvz9OaPnpGFTmr+IyKwyXj1ldckroswq49VTNiHyckGUV0SZTQwPT1lFav2CKK+IMptYHp6yTPJyQVT3+yfY9NzrfO/gLzjx4Smapk9j1WUf484vfDL3w1QecrOJ5OEpG1d5WZ5azyuiPORmtcDDU5ZJnv4Y19uKKA+5WS1x0rDM8vLHuN7W4O++/aozDrmZTTYnDcus3v4Y50WeenlW/5w0zHIgL708q39ePWVmZl49ZWZm489Jw8zMMnPSMDOzzJw0zKooL/fyMitx0jCrIl/lbXnjJbdmVeCrvC2v3NMwq4K83MvLbDAnDbMq8FXellcjJg1Jl0p6uezxvqSvS5olqV1SZ3puLiuzUVKXpEOSVpXFl0h6Jf1ssySleKOkp1N8r6QFZWXa0nt0Smob38M3q57SVd7P3PJZblh2CT0f9FW7SWYjquiKcElnAT8HlgG3Ar0RcZ+kDUBzRNwhaTHwJLAUmAu8AHwiIk5K2gfcBvwAeA7YHBE7Jd0CfDoiviqpFbg2Ir4kaRbQARSAAA4ASyLi2Jna6CvCzfLB3w9SWybqivAVwE8i4mfAGmBrim8F1qbtNcBTEdEXEW8AXcBSSXOAmRGxJ4qZ6tFBZUp1bQdWpF7IKqA9InpTomgHVlfYZjOrQV45lk+Vrp5qpdiLALgwIo4CRMRRSbNTfB7FnkTJkRT7MG0PjpfKvJXq6pf0HnB+eXyIMmaWQ145lm+ZexqSPgJcA/z1SLsOEYth4qMtU9629ZI6JHX09PSM0DwzqyavHMu3SoanrgZ+GBHvpNfvpCEn0nN3ih8BLiorNx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlpYJDMrPJNpqVY75yvnZUkjT+A6eHpgB2AKXVTG3As2Xx1rQiaiGwCNiXhrKOS1qe5ituHFSmVNd1wItp3uN5YKWk5rQ6a2WKWQb+RbNaVenKMc9/1I5Mq6cknUNxbuE3I+K9FDsf2AZcDBwGro+I3vSzO4GbgH7g6xGxM8ULwCPA2cBO4GsREZKagMeAKyn2MFoj4qepzE3AN1JT/iwiHh6urV49ddpdz7zCd/cd5oalF7Pp2k9VuzlmFRs8/1Hi+Y/xl3X1lL+EqQ6N5hfNyx+tFnW/f+KM34/u/6fjy1/CNIWNZqLR3X+rRb5yvvb4hoV1qJJfNC9/tFrn70evLU4adSrrL9ru2686Y/ffrBY8+JXTIyab1l5exZYYOGnUray/aO7+m1klPKcxwfKw7NU3zjOzrLx6aoJ52auZ5UHW1VMenpognmA2s3rk4akJUumy1zwMY5mZOWlMkEonmH2dhJnlgYenJlCWZa8exjKzPPFE+CiM5y03fJsEywPfZqb++TYiE2g8h5J8nYTlgYdPrcTDUxWYqKEk3ybBapWHT20wD09VwENJllW9DOf4//zU4eGpCeChpKmtkmXR9TKc4//zNpiHpyrkoaSpqzwRnOnq/noczvH/eSvn4SmzEVTypVYezqmfobmpxsNTlhu1fjV8JVf3ezinfobmbGgenrIJk/UTZ5Zhn2qqNBFM1eGcehyas1/n4SmbMCPd4Xc032VeLX/8WActM5oGJILy7ywxD83lne9ya1WT9RNnnr410N8eNzIPzU0NntOwcZd1DsB/ZOqPv9Cr/rmnYeOukmQwVcf/61W1e2ReuTXxMvU0JH1U0nZJP5b0uqTfljRLUrukzvTcXLb/Rkldkg5JWlUWXyLplfSzzZKU4o2Snk7xvZIWlJVpS+/RKalt/A7dJlLWT5wPfqXAprWXs3juTDatvdzzBDYmXrk18TJNhEvaCuyOiO9I+ghwDvANoDci7pO0AWiOiDskLQaeBJYCc4EXgE9ExElJ+4DbgB8AzwGbI2KnpFuAT0fEVyW1AtdGxJckzQI6gAIQwAFgSUQcO1NbPRFuNvXkaVFFrRq36zQkzQR+B3gIICL+JSJ+CawBtqbdtgJr0/Ya4KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrR2qzmU0tlX5Tpo1eluGp3wR6gIclvSTpO5LOBS6MiKMA6Xl22n8e8FZZ+SMpNi9tD44PKBMR/cB7wPnD1DWApPWSOiR19PT0ZDgkM6snXlQxebIkjQbgM8ADEXEl8CtgwzD7a4hYDBMfbZnTgYgtEVGIiEJLS8swTTOzeuWVW5Mjy+qpI8CRiNibXm+nmDTekTQnIo6moafusv0vKis/H3g7xecPES8vc0RSA3Ae0JvivzuozPczHZmZTSnVXrlViTyv8hqxpxERvwDeknRpCq0AXgN2AKXVTG3As2l7B9CaVkQtBBYB+9IQ1nFJy9N8xY2DypTqug54Mc17PA+slNScVmetTDEzs9zK8yqvrNdpfA34blo59VPgP1JMONskrQMOA9cDRMRBSdsoJpZ+4NaIOJnquRl4BDgb2JkeUJxkf0xSF8UeRmuqq1fSvcD+tN89EdE7ymM1M6uqerg/l+89ZWY2SWr5/ly+NbqZWY2ph1Vevo2Imdkkyvutczw8ZWZmHp6qZ7X+TXdmVr+cNHIoz8v1zCzfPKeRI/WwXM/M8s09jRzxTdnMrNqcNHKkHpbrmeWN5xAHctLIGd+UzWxyeQ5xIC+5NTMbwlT7YicvuTUzG4PRzCFOhaEsJw0zsyGMZg5xKgxlecmtmdkZZL3lx1RaDu85DTOzMarlu9dm5TkNM7NJMpWWw3t4ysxsHOT97rVZeXjKzMw8PGVmZuPPScNyZSqsgzerZU4alitTYR28WS3zRLjlwlRaB29Wy9zTsFzwbeHNaoOThuXCVFoHb1bLMiUNSW9KekXSy5I6UmyWpHZJnem5uWz/jZK6JB2StKosviTV0yVpsySleKOkp1N8r6QFZWXa0nt0SmobrwO3/PFt4c2qL9N1GpLeBAoR8W5Z7M+B3oi4T9IGoDki7pC0GHgSWArMBV4APhERJyXtA24DfgA8B2yOiJ2SbgE+HRFfldQKXBsRX5I0C+gACkAAB4AlEXHsTG31dRpmZpWbjOs01gBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrx9BmMzMbg6xJI4DvSTogaX2KXRgRRwHS8+wUnwe8VVb2SIrNS9uD4wPKREQ/8B5w/jB1DSBpvaQOSR09PT0ZD8nMzCqVdcntZyPibUmzgXZJPx5mXw0Ri2Hioy1zOhCxBdgCxeGpYdpmZmZjkKmnERFvp+du4BmK8xXvpCEn0nN32v0IcFFZ8fnA2yk+f4j4gDKSGoDzgN5h6jIzsyoYMWlIOlfSjNI2sBJ4FdgBlFYztQHPpu0dQGtaEbUQWATsS0NYxyUtT/MVNw4qU6rrOuDFNO/xPLBSUnNanbUyxczMrAqyDE9dCDyTVsc2AE9ExP+WtB/YJmkdcBi4HiAiDkraBrwG9AO3RsTJVNfNwCPA2cDO9AB4CHhMUhfFHkZrqqtX0r3A/rTfPRHRO4bjNTOzMfCt0c3MzLdGNzOz8eekYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpllThqSzpL0kqS/S69nSWqX1Jmem8v23SipS9IhSavK4kskvZJ+tlmSUrxR0tMpvlfSgrIybek9OiW1jcdBm5nZ6FTS07gNeL3s9QZgV0QsAnal10haDLQClwGrgW9LOiuVeQBYDyxKj9Upvg44FhEfB74J3J/qmgXcDSwDlgJ3lycnMzObXJmShqT5wBeA75SF1wBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTEQE8OqhMqa7twIrUC1kFtEdEb0QcA9o5nWjMzGySZe1p/AVwO3CqLHZhRBwFSM+zU3we8FbZfkdSbF7aHhwfUCYi+oH3gPOHqcvMzKpgxKQh6Q+A7og4kLFODRGLYeKjLVPexvWSOiR19PT0ZGymmZlVKktP47PANZLeBJ4CPi/pceCdNOREeu5O+x8BLiorPx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlJcMhmZnZaIyYNCJiY0TMj4gFFCe4X4yIPwJ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruvSewTwPLBSUnOaAF+ZYmZmVgUNYyh7H7BN0jrgMHA9QEQclLQNeA3oB26NiJOpzM3AI8DZwM70AHgIeExSF8UeRmuqq1fSvcD+tN89EdE7hjabmdkYqPiBvn4UCoXo6OiodjPMzHJF0oGIKIy0n68INzOrA93vn+CLD+6h+/iJCX0fJw0zszqweVcn+9/sZfMLnRP6PmOZ0zAzsyq79K6d9PWfvoTu8b2HeXzvYRobpnFo09Xj/n7uaZiZ5dju26/imivm0jS9+Oe8afo01lwxl913XDUh7+ekYWaWY7NnNjGjsYG+/lM0Nkyjr/8UMxobmD2jaULez8NTZmY59+4Hfdyw7BK+vPRinth3mJ4JnAz3klszM/OSWzMzG39OGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmY2YNCQ1Sdon6UeSDkr6ryk+S1K7pM703FxWZqOkLkmHJK0qiy+R9Er62WZJSvFGSU+n+F5JC8rKtKX36JTUNp4Hb2ZmlcnS0+gDPh8RvwVcAayWtBzYAOyKiEXArvQaSYuBVuAyYDXwbUlnpboeANYDi9JjdYqvA45FxMeBbwL3p7pmAXcDy4ClwN3lycnMzCbXiEkjij5IL6enRwBrgK0pvhVYm7bXAE9FRF9EvAF0AUslzQFmRsSeKH7H7KODypTq2g6sSL2QVUB7RPRGxDGgndOJxszMJlmmOQ1JZ0l6Geim+Ed8L3BhRBwFSM+z0+7zgLfKih9JsXlpe3B8QJmI6AfeA84fpi4zM6uCTEkjIk5GxBXAfIq9hsuH2V1DVTFMfLRlTr+htF5Sh6SOnp6eYZpmZmZjUdHqqYj4JfB9ikNE76QhJ9Jzd9rtCHBRWbH5wNspPn+I+IAykhqA84DeYeoa3K4tEVGIiEJLS0slh2RmZhXIsnqqRdJH0/bZwO8BPwZ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruuAF9O8x/PASknNaQJ8ZYqZmVkVNGTYZw6wNa2AmgZsi4i/k7QH2CZpHXAYuB4gIg5K2ga8BvQDt0bEyVTXzcAjwNnAzvQAeAh4TFIXxR5Ga6qrV9K9wP603z0R0TuWAzYzs9FT8QN9/SgUCtHR0VHtZpiZ5YqkAxFRGGk/XxFuZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZ1bDu90/wxQf30H38RLWbAjhpmJnVtM27Otn/Zi+bX+isdlMAaKh2A8zM7NddetdO+vpP/evrx/ce5vG9h2lsmMahTVdXrV3uaZiZ1aDdt1/FNVfMpWl68c900/RprLliLrvvuKqq7XLSMDOrQbNnNjGjsYG+/lM0Nkyjr/8UMxobmD2jqart8vCUmVmNeveDPm5YdglfXnoxT+w7TE8NTIYrIobfQboIeBT4GHAK2BIRfylpFvA0sAB4E/hiRBxLZTYC64CTwJ9ExPMpvgR4BDgbeA64LSJCUmN6jyXA/wO+FBFvpjJtwF2pOZsiYutw7S0UCtHR0ZH9X8DMzJB0ICIKI+2XZXiqH/jPEfFJYDlwq6TFwAZgV0QsAnal16SftQKXAauBb0s6K9X1ALAeWJQeq1N8HXAsIj4OfBO4P9U1C7gbWAYsBe6W1JyhzWZmNgFGTBoRcTQifpi2jwOvA/OANUDpU/9WYG3aXgM8FRF9EfEG0AUslTQHmBkRe6LYvXl0UJlSXduBFZIErALaI6I39WLaOZ1ozMxsklU0ES5pAXAlsBe4MCKOQjGxALPTbvOAt8qKHUmxeWl7cHxAmYjoB94Dzh+mLjMzq4LMSUPSbwB/A3w9It4fbtchYjFMfLRlytu2XlKHpI6enp5hmmZmZmORKWlImk4xYXw3Iv42hd9JQ06k5+4UPwJcVFZ8PvB2is8fIj6gjKQG4Dygd5i6BoiILRFRiIhCS0tLlkMyM7NRGDFppLmFh4DXI+K/l/1oB9CWttuAZ8virZIaJS2kOOG9Lw1hHZe0PNV546AypbquA15M8x7PAyslNacJ8JUpZmZmVZBlye3ngN3AKxSX3AJ8g+K8xjbgYuAwcH1E9KYydwI3UVx59fWI2JniBU4vud0JfC0tuW0CHqM4X9ILtEbET1OZm9L7AfxZRDw8Qnt7gJ9lPP5acwHwbrUbMc7q7Zjq7Xig/o6p3o4HJueYLomIEYdqRkwaNnkkdWRZJ50n9XZM9XY8UH/HVG/HA7V1TL6NiJmZZeakYWZmmTlp1JYt1W7ABKi3Y6q344H6O6Z6Ox6ooWPynIaZmWXmnoaZmWXmpDHBJP2VpG5Jr5bFfkvSHkmvSPqfkmam+EckPZziP5L0u2Vlvi/pkKSX02P2EG834SRdJOn/SHpd0kFJt6X4LEntkjrTc3NZmY2SulL7V5XFl6Rj7ZK0OV2/k+fjyeU5knR+2v8DSd8aVFfuztEIx5PXc/T7kg6kc3FA0ufL6prccxQRfkzgA/gd4DPAq2Wx/cC/S9s3Afem7VuBh9P2bOAAMC29/j5QqIHjmQN8Jm3PAP4ZWAz8ObAhxTcA96ftxcCPgEZgIfAT4Kz0s33Ab1O8XcxO4OqcH09ez9G5wOeArwLfGlRXHs/RcMeT13N0JTA3bV8O/Lxa58g9jQkWEX9P8YLFcpcCf5+224E/TNuLKd5mnojoBn4J1MTa7JKYnLseT5rxOp7JbfXwKj2miPhVRPxfYMA3/OT1HJ3peGrJKI7ppYgo3ULpINCk4l03Jv0cOWlUx6vANWn7ek7fX+tHwBpJDSregmUJA++99XDqUv+XagwTDKaJu+txVYzxeEryeI7OJK/naCR5P0d/CLwUEX1U4Rw5aVTHTRS/zOoAxa7pv6T4X1E86R3AXwD/SPFWLAA3RMSngH+bHl+Z1BYPoom96/GkG4fjgfyeozNWMUQsD+doOLk+R5Iuo/gldX9cCg2x24SeIyeNKoiIH0fEyohYAjxJcVyciOiPiD+NiCsiYg3wUaAz/ezn6fk48ARVHBLRxN/1eFKN0/Hk+RydSV7P0Rnl+RxJmg88A9wYET9J4Uk/R04aVVBasSFpGsXvP/8f6fU5ks5N278P9EfEa2m46oIUnw78AcUhrmq0fTLuejxpxut4cn6OhpTjc3SmenJ7jiR9FPhfwMaI+IfSzlU5RxM5y+5HQLEncRT4kOKngnXAbRRXS/wzcB+nL7JcAByiOCn2AsW7TkJxNcgB4J8oToL9JWnFThWO53MUu7//BLycHv+e4jct7qLYM9oFzCorcyfF3tQhylZ2UJzkfzX97Fulf4c8Hk8dnKM3KS7Y+CD9P12c83P0a8eT53NE8cPlr8r2fRmYXY1z5CvCzcwsMw9PmZlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpn9f/2Yi6a8X2tzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A sorted list makes it easier to find the highest values (at the end)." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2020 221186\n", "2021 376290\n", "2002 516689\n", "2018 542312\n", "2017 551041\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }