Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
fa1052534de67443895c02b7c64a08b6
mooc-rr
Commits
c6490a01
Commit
c6490a01
authored
Jul 12, 2023
by
fa1052534de67443895c02b7c64a08b6
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update exercice_fr.ipynb
parent
2ef3fee3
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
163 additions
and
3 deletions
+163
-3
exercice_fr.ipynb
module2/exo4/exercice_fr.ipynb
+163
-3
No files found.
module2/exo4/exercice_fr.ipynb
View file @
c6490a01
{
{
"cells": [],
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Calcul de statistiques basiques"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(\"data.csv\", sep=\";\")\n",
"data = df.value"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Moyenne et écart type"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"14.113000000000007"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.mean(data)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4.3340944553014475"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.std(data, ddof=1)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Minimum et maximum"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.8 , 23.4\n"
]
}
],
"source": [
"print(min(data), ',', max(data))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Médiane"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"14.5"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.median(data)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Histogramme"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdB0lEQVR4nO3df2zc9X348dc5cS7nzqZK3PjHcKJAQ4sKyh+lgqabCZNiEamoNJ1EZzEFaVs7FZBQWjEoqjBbm/JFAiEtGtP2B6NaTfmn0KqjBVe0CV3EBAhSFJkoiFAHyA/ZZHESXy7n3Of7R7/xN8ZJsMPd+3zJ4yGdkvvcx5975T7+nJ8+n/PJZVmWBQBAIk31HgAAuLiIDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASGphvQf4sEqlEu+//360trZGLper9zgAwCxkWRZHjhyJ7u7uaGo692sb8y4+3n///ejp6an3GADAedi7d29ceuml51xn3sVHa2trRPxx+La2tjpPM7+Uy+V4/vnno6+vL5qbm+s9DrNkvzUe+6wx2W/1NT4+Hj09PVNfx89l3sXHqR+1tLW1iY8PKZfL0dLSEm1tbQ6sBmK/NR77rDHZb/PDbN4y4Q2nAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJDXvzmoLMB+NjIzE6OhovceYk/b29li+fHm9x4AZxAfARxgZGYnPfPbKOF6cqPcoc7K40BK73hwWIMw74gPgI4yOjsbx4kQs/fK3o3lpT73HmZXy2N4Y+8XDMTo6Kj6Yd8QHwCw1L+2JfOen6z0GNDxvOAUAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkppTfPzwhz+ML3zhC9Ha2hrLli2Lm2++OXbt2jVtnSzLYmBgILq7u6NQKMTatWtj586dVR0aAGhcc4qPrVu3xu233x4vvfRSDA0NxeTkZPT19cWxY8em1nnooYfikUceiS1btsTLL78cnZ2dsW7dujhy5EjVhwcAGs/Cuaz8q1/9atr1xx9/PJYtWxavvvpq9Pb2RpZl8eijj8Z9990XGzZsiIiIJ554Ijo6OmJwcDC++c1vVm9yAKAhzSk+Puzw4cMREbFkyZKIiNizZ0/s378/+vr6ptbJ5/Nx/fXXx/bt288YH6VSKUql0tT18fHxiIgol8tRLpc/zngXnFOPh8elsdhv07377rsxNjZW7zHOqVKpRETEa6+9Fk1NTbFr164oFAqxeGEuFi3I6jzd7OQW5qJQKESlUrloPvcca/U1l8c9l2XZeR1JWZbFV77ylTh06FC8+OKLERGxffv2+NKXvhTvvfdedHd3T637jW98I/7whz/Ec889N2M7AwMD8cADD8xYPjg4GC0tLeczGgCQ2MTERPT398fhw4ejra3tnOue9ysfd9xxR/z+97+P3/3udzNuy+Vy065nWTZj2Sn33ntvbNq0aer6+Ph49PT0RF9f30cOf7Epl8sxNDQU69ati+bm5nqPwyzZb//fjh07ore3N5bceGc0L/nTeo9zVvmFufg/65fHP/xyJEqTWRTfeS3Gtz8VHf0PxqKOy+o93qycOPB2HBi8J7Zt2xarV6+u9zhJONbq69RPLmbjvOLjzjvvjJ///Oexbdu2uPTSS6eWd3Z2RkTE/v37o6ura2r5wYMHo6Oj44zbyufzkc/nZyxvbm72yXMWHpvGZL9FNDU1RbFYjJNt3bGw/fJ6j3NW2YIsIk5GtnRlZCdzMXlgJIrFYhyfzCI7eeZvpOab0mQWxWIxmpqaLrrPO8dafczlMZ/Tb7tkWRZ33HFH/PSnP40XXnghVq5cOe32lStXRmdnZwwNDU0tO3HiRGzdujXWrFkzl7sCAC5Qc3rl4/bbb4/BwcH42c9+Fq2trbF///6IiLjkkkuiUChELpeLu+66KzZv3hyrVq2KVatWxebNm6OlpSX6+/tr8g8AABrLnOLjsccei4iItWvXTlv++OOPx2233RYREXfffXcUi8X41re+FYcOHYprr702nn/++Whtba3KwABAY5tTfMzmF2NyuVwMDAzEwMDA+c4EAFzAnNsFAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFIL6z0AcP5GRkZidHS03mPM2vDwcL1HAOYB8QENamRkJD7z2SvjeHGi3qMAzIn4gAY1Ojoax4sTsfTL347mpT31HmdWim+/Eodf/M96jwHUmfiABte8tCfynZ+u9xizUh7bW+8RgHnAG04BgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICk5hwf27Zti5tuuim6u7sjl8vFM888M+322267LXK53LTLddddV615AYAGN+f4OHbsWKxevTq2bNly1nVuvPHG2Ldv39Tl2Wef/VhDAgAXjjmf22X9+vWxfv36c66Tz+ejs7PzvIcCAC5cNTmx3G9/+9tYtmxZfPKTn4zrr78+fvCDH8SyZcvOuG6pVIpSqTR1fXx8PCIiyuVylMvlWozXsE49Hh6XxlKr/VapVKJQKMTihblYtCCr6rZrZbJ5QUPMnG/Kpv3ZKHOfLrcwF4VCISqVykXznOE5sr7m8rjnsiw77yMpl8vF008/HTfffPPUsqeeeir+5E/+JFasWBF79uyJ733vezE5ORmvvvpq5PP5GdsYGBiIBx54YMbywcHBaGlpOd/RAICEJiYmor+/Pw4fPhxtbW3nXLfq8fFh+/btixUrVsRPfvKT2LBhw4zbz/TKR09PT4yOjn7k8BebcrkcQ0NDsW7dumhubq73OMxSrfbbjh07ore3Nzr6H4xFHZdVbbu1dGz4xfjgV/8872fON2XxT9dU4nuvNEWpkmuYuU934sDbcWDwnti2bVusXr263uMk4TmyvsbHx6O9vX1W8VGTH7ucrqurK1asWBG7d+8+4+35fP6Mr4g0Nzf75DkLj01jqvZ+a2pqimKxGMcns8hO5qq23Vo6Xj7ZUDOXKrkoncw13NwREaXJLIrFYjQ1NV10zxeeI+tjLo95zf+fj7Gxsdi7d290dXXV+q4AgAYw51c+jh49Gm+99dbU9T179sTrr78eS5YsiSVLlsTAwEB87Wtfi66urnjnnXfiu9/9brS3t8dXv/rVqg4OADSmOcfHK6+8EjfccMPU9U2bNkVExMaNG+Oxxx6LN954I370ox/F//7v/0ZXV1fccMMN8dRTT0Vra2v1pgYAGtac42Pt2rVxrveoPvfccx9rIADgwubcLgBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkNef42LZtW9x0003R3d0duVwunnnmmWm3Z1kWAwMD0d3dHYVCIdauXRs7d+6s1rwAQIObc3wcO3YsVq9eHVu2bDnj7Q899FA88sgjsWXLlnj55Zejs7Mz1q1bF0eOHPnYwwIAjW/hXD9g/fr1sX79+jPelmVZPProo3HffffFhg0bIiLiiSeeiI6OjhgcHIxvfvObH29aAKDhzTk+zmXPnj2xf//+6Ovrm1qWz+fj+uuvj+3bt58xPkqlUpRKpanr4+PjERFRLpejXC5Xc7yGd+rx8Lg0llrtt0qlEoVCIRYvzMWiBVlVt10rk80LGmLmfFM27c9Gmft0uYW5KBQKUalULprnDM+R9TWXxz2XZdl5H0m5XC6efvrpuPnmmyMiYvv27fGlL30p3nvvveju7p5a7xvf+Eb84Q9/iOeee27GNgYGBuKBBx6YsXxwcDBaWlrOdzQAIKGJiYno7++Pw4cPR1tb2znXreorH6fkcrlp17Msm7HslHvvvTc2bdo0dX18fDx6enqir6/vI4e/2JTL5RgaGop169ZFc3Nzvcdhlmq133bs2BG9vb3R0f9gLOq4rGrbraVjwy/GB7/653k/c74pi3+6phLfe6UpSpVcw8x9uhMH3o4Dg/fEtm3bYvXq1fUeJwnPkfV16icXs1HV+Ojs7IyIiP3790dXV9fU8oMHD0ZHR8cZPyafz0c+n5+xvLm52SfPWXhsGlO191tTU1MUi8U4PplFdvLMcT/fHC+fbKiZS5VclE7mGm7uiIjSZBbFYjGampouuucLz5H1MZfHvKr/z8fKlSujs7MzhoaGppadOHEitm7dGmvWrKnmXQEADWrOr3wcPXo03nrrranre/bsiddffz2WLFkSy5cvj7vuuis2b94cq1atilWrVsXmzZujpaUl+vv7qzo4ANCY5hwfr7zyStxwww1T10+9X2Pjxo3xH//xH3H33XdHsViMb33rW3Ho0KG49tpr4/nnn4/W1tbqTQ0ANKw5x8fatWvjXL8gk8vlYmBgIAYGBj7OXADABcq5XQCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkVZOz2kIjGhkZidHR0apvt1KpRMQfz0Lb1FS93h8eHq7atrhwNdrnSXt7eyxfvrzeY1Bj4gPij+Hxmc9eGceLE1XfdqFQiCeffDJ6e3ujWCxWfftwJiePHorI5eLWW2+t9yhzsrjQErveHBYgFzjxARExOjoax4sTsfTL347mpT1V3fbihX88BXtH/4NxfPLspyaYq+Lbr8ThF/+zatvjwlIpHY3Ispp8TtdKeWxvjP3i4RgdHRUfFzjxAadpXtoT+c5PV3WbixZkEXEyFnVcFtnJXNW2Wx7bW7VtceGqxec0fFzecAoAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAknJiOQDmleHh4fP6uEqlEhERO3bsiKamdN9bt7e3OwvvHIkPAOaFk0cPReRyceutt57XxxcKhXjyySejt7c3isVilac7u8WFltj15rAAmQPxAcC8UCkdjciyWPrlb0fz0p45f/zihbmIiOjofzCOT2bVHu+MymN7Y+wXD8fo6Kj4mAPxAcC80ry0J/Kdn57zxy1akEXEyVjUcVlkJ3PVH4yq8YZTACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AIKmqx8fAwEDkcrlpl87OzmrfDQDQoBbWYqOf+9zn4te//vXU9QULFtTibgCABlST+Fi4cKFXOwCAM6pJfOzevTu6u7sjn8/HtddeG5s3b47LLrvsjOuWSqUolUpT18fHxyMiolwuR7lcrsV4DevU49EIj8u7774bY2Nj9R5j1nbt2hWFQiEWL8zFogVZVbedb8qm/Vktk80LajZzrTTKzB/eZ40y9+kuxplrdaydS25hLgqFQlQqlYZ4bq6lufz7c1mWVXUv/fKXv4yJiYm44oor4sCBA/H9738/3nzzzdi5c2csXbp0xvoDAwPxwAMPzFg+ODgYLS0t1RwNAKiRiYmJ6O/vj8OHD0dbW9s51616fHzYsWPH4vLLL4+77747Nm3aNOP2M73y0dPTE6Ojox85/MWmXC7H0NBQrFu3Lpqbm+s9zlnt2LEjent7Y8mNd0bzkj+t9zizUnzntRjf/lR09D8YizrO/Crd+co3ZfFP11Tie680RamSq9p2jw2/GB/86p9rMnOtNMrMH95njTL36S7GmWt1rJ3LiQNvx4HBe2Lbtm2xevXqJPc5X42Pj0d7e/us4qMmP3Y53Sc+8Ym4+uqrY/fu3We8PZ/PRz6fn7G8ubl5Xn+Braf5/tg0NTVFsViMk23dsbD98nqPMyuTB0aiWCzG8cksspO1edIqVXJRquK2j5dP1nzmamu0mU/ts0abO6LxHuuI6s1c7WPtnPc1mUWxWIympqZ5/bycwlz+/TX/fz5KpVIMDw9HV1dXre8KAGgAVY+P73znO7F169bYs2dP/M///E/85V/+ZYyPj8fGjRurfVcAQAOq+o9d3n333firv/qrGB0djU996lNx3XXXxUsvvRQrVqyo9l0BAA2o6vHxk5/8pNqbBAAuIM7tAgAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACCpmp9Ybr4ZGRmJ0dHReo8xJ+3t7bF8+fJ6jwHAWQwPD9d7hDmp99eViyo+RkZG4jOfvTKOFyfqPcqcLC60xK43nZwPYL45efRQRC4Xt956a71HmZNTX1fqFSAXVXyMjo7G8eJELP3yt6N5aU+9x5mV8tjeGPvFwzE6Oio+AOaZSuloRJY17NcV8ZFQ89KeyHd+ut5jAHCB8HVlbrzhFABISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkdVGeWK4RDQ8PR6VSiYiIHTt2RFPT/O3G4eHheo8AwDwmPua5k0cPReRyceutt0ahUIgnn3wyent7o1gs1ns0ADgv4mOeq5SORmRZLP3yt6O1Y3lERHT0PxjHJ7M6T3Z2xbdficMv/me9xwBgnhIfDaJ5aU8s6rgsIk7Goo7LIjuZq/dIZ1Ue21vvEQCYx+bvGwcAgAuS+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkFTN4uNf/uVfYuXKlbF48eL4/Oc/Hy+++GKt7goAaCA1iY+nnnoq7rrrrrjvvvvitddeiz//8z+P9evXx8jISC3uDgBoIDWJj0ceeST+5m/+Jv72b/82rrzyynj00Uejp6cnHnvssVrcHQDQQBZWe4MnTpyIV199Ne65555py/v6+mL79u0z1i+VSlEqlaauHz58OCIiPvjggyiXy1WdbXx8PBYvXhy5sT2RVUof/QHzQNORfVMzV5pKMTHRE5V9eyObrPdkZ3f6zI34OFd75srCqMl+8zjXzof3WaPMfbqLceZaHWvn0oiPc+7Q+7F48eIYHx+PsbGxqm33yJEjERGRZdlHr5xV2XvvvZdFRPbf//3f05b/4Ac/yK644ooZ699///1ZRLi4uLi4uLhcAJe9e/d+ZCtU/ZWPU3K53LTrWZbNWBYRce+998amTZumrlcqlfjggw9i6dKlZ1z/YjY+Ph49PT2xd+/eaGtrq/c4zJL91njss8Zkv9VXlmVx5MiR6O7u/sh1qx4f7e3tsWDBgti/f/+05QcPHoyOjo4Z6+fz+cjn89OWffKTn6z2WBeUtrY2B1YDst8aj33WmOy3+rnkkktmtV7V33C6aNGi+PznPx9DQ0PTlg8NDcWaNWuqfXcAQIOpyY9dNm3aFH/9138d11xzTXzxi1+Mf/u3f4uRkZH4+7//+1rcHQDQQGoSH7fcckuMjY3FP/7jP8a+ffviqquuimeffTZWrFhRi7u7aOTz+bj//vtn/JiK+c1+azz2WWOy3xpHLstm8zsxAADV4dwuAEBS4gMASEp8AABJiQ8AICnx0QAGBgYil8tNu3R2dtZ7LE6zbdu2uOmmm6K7uztyuVw888wz027PsiwGBgaiu7s7CoVCrF27Nnbu3FmfYZnyUfvttttum3HsXXfddfUZloiI+OEPfxhf+MIXorW1NZYtWxY333xz7Nq1a9o6jrf5T3w0iM997nOxb9++qcsbb7xR75E4zbFjx2L16tWxZcuWM97+0EMPxSOPPBJbtmyJl19+OTo7O2PdunVTJ2KiPj5qv0VE3HjjjdOOvWeffTbhhHzY1q1b4/bbb4+XXnophoaGYnJyMvr6+uLYsWNT6zjeGkAVziVHjd1///3Z6tWr6z0GsxQR2dNPPz11vVKpZJ2dndmDDz44tez48ePZJZdckv3rv/5rHSbkTD6837IsyzZu3Jh95Stfqcs8zM7BgweziMi2bt2aZZnjrVF45aNB7N69O7q7u2PlypXx9a9/Pd5+++16j8Qs7dmzJ/bv3x99fX1Ty/L5fFx//fWxffv2Ok7GbPz2t7+NZcuWxRVXXBF/93d/FwcPHqz3SJzm8OHDERGxZMmSiHC8NQrx0QCuvfba+NGPfhTPPfdc/Pu//3vs378/1qxZE2NjY/UejVk4dZLFD59YsaOjY8YJGJlf1q9fHz/+8Y/jhRdeiIcffjhefvnl+Iu/+IsolUr1Ho3443s7Nm3aFH/2Z38WV111VUQ43hpFTf57dapr/fr1U3+/+uqr44tf/GJcfvnl8cQTT8SmTZvqOBlzkcvlpl3PsmzGMuaXW265ZervV111VVxzzTWxYsWK+K//+q/YsGFDHScjIuKOO+6I3//+9/G73/1uxm2Ot/nNKx8N6BOf+ERcffXVsXv37nqPwiyc+s2kD3/XdfDgwRnfnTG/dXV1xYoVKxx788Cdd94ZP//5z+M3v/lNXHrppVPLHW+NQXw0oFKpFMPDw9HV1VXvUZiFlStXRmdnZwwNDU0tO3HiRGzdujXWrFlTx8mYq7Gxsdi7d69jr46yLIs77rgjfvrTn8YLL7wQK1eunHa7460x+LFLA/jOd74TN910UyxfvjwOHjwY3//+92N8fDw2btxY79H4f44ePRpvvfXW1PU9e/bE66+/HkuWLInly5fHXXfdFZs3b45Vq1bFqlWrYvPmzdHS0hL9/f11nJpz7bclS5bEwMBAfO1rX4uurq5455134rvf/W60t7fHV7/61TpOfXG7/fbbY3BwMH72s59Fa2vr1Cscl1xySRQKhcjlco63RlDfX7ZhNm655Zasq6sra25uzrq7u7MNGzZkO3furPdYnOY3v/lNFhEzLhs3bsyy7I+//nf//fdnnZ2dWT6fz3p7e7M33nijvkNzzv02MTGR9fX1ZZ/61Key5ubmbPny5dnGjRuzkZGReo99UTvT/oqI7PHHH59ax/E2/+WyLMvSJw8AcLHyng8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkNT/BRJXVCPU0+1JAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"n, bins, patches = plt.hist(data, histtype='bar', ec='black')\n",
"plt.grid(True)\n",
"plt.show()"
]
}
],
"metadata": {
"metadata": {
"kernelspec": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3",
...
@@ -16,10 +177,9 @@
...
@@ -16,10 +177,9 @@
"name": "python",
"name": "python",
"nbconvert_exporter": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"pygments_lexer": "ipython3",
"version": "3.
6.3
"
"version": "3.
8.5
"
}
}
},
},
"nbformat": 4,
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 2
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment