From 48f35ee24009c5d6021c1f9647535f1efda4cf4b Mon Sep 17 00:00:00 2001 From: fc36cf74efe3b9424a9acd2417e95c66 Date: Wed, 30 Jun 2021 14:48:15 +0000 Subject: [PATCH] 3eme essai --- module2/exo1/toy_notebook_fr.ipynb | 16 ++++++---------- 1 file changed, 6 insertions(+), 10 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 4dc0de8..fab0ceb 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -38,7 +38,7 @@ "metadata": {}, "source": [ "## En utilisant la méthode des aiguilles de Buffon\n", - "Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**" + "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__" ] }, { @@ -71,7 +71,7 @@ "metadata": {}, "source": [ "## Avec un argument \"fréquentiel\" de surface\n", - "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1]=\\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" ] }, { @@ -95,12 +95,15 @@ "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", + "\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", + "\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", + "\n", "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", @@ -111,7 +114,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :" + "Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :" ] }, { @@ -133,13 +136,6 @@ "source": [ "4*np.mean(accept)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { -- 2.18.1