{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "# CO2 concentration by Donato Tiano" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "#### Loading Dataset" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "As first step, I've downloaded the file and I've put it in the GitLab. I've modified the file .csv removing the header.\n", "Then, I've download the file via Python and printed every row of the dataset. Moreover, I've created a dataframe in order to organize better the information. \n", "The measure extracted from the .csv are converted in Float." ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Smocker Status Age\n", "0 Yes Alive 21.0\n", "1 Yes Alive 19.3\n", "2 No Dead 57.5\n", "3 No Alive 47.1\n", "4 Yes Alive 81.4\n", "5 No Alive 36.8\n", "6 No Alive 23.8\n", "7 Yes Dead 57.5\n", "8 Yes Alive 24.8\n", "9 Yes Alive 49.5\n", "10 Yes Alive 30.0\n", "11 No Dead 66.0\n", "12 Yes Alive 49.2\n", "13 No Alive 58.4\n", "14 No Dead 60.6\n", "15 No Alive 25.1\n", "16 No Alive 43.5\n", "17 No Alive 27.1\n", "18 No Alive 58.3\n", "19 Yes Alive 65.7\n", "20 No Dead 73.2\n", "21 Yes Alive 38.3\n", "22 No Alive 33.4\n", "23 Yes Dead 62.3\n", "24 No Alive 18.0\n", "25 No Alive 56.2\n", "26 Yes Alive 59.2\n", "27 No Alive 25.8\n", "28 No Dead 36.9\n", "29 No Alive 20.2\n", "... ... ... ...\n", "1284 Yes Dead 36.0\n", "1285 Yes Alive 48.3\n", "1286 No Alive 63.1\n", "1287 No Alive 60.8\n", "1288 Yes Dead 39.3\n", "1289 No Alive 36.7\n", "1290 No Alive 63.8\n", "1291 No Dead 71.3\n", "1292 No Alive 57.7\n", "1293 No Alive 63.2\n", "1294 No Alive 46.6\n", "1295 Yes Dead 82.4\n", "1296 Yes Alive 38.3\n", "1297 Yes Alive 32.7\n", "1298 No Alive 39.7\n", "1299 Yes Dead 60.0\n", "1300 No Dead 71.0\n", "1301 No Alive 20.5\n", "1302 No Alive 44.4\n", "1303 Yes Alive 31.2\n", "1304 Yes Alive 47.8\n", "1305 Yes Alive 60.9\n", "1306 No Dead 61.4\n", "1307 Yes Alive 43.0\n", "1308 No Alive 42.1\n", "1309 Yes Alive 35.9\n", "1310 No Alive 22.3\n", "1311 Yes Dead 62.1\n", "1312 No Dead 88.6\n", "1313 No Alive 39.1\n", "\n", "[1314 rows x 3 columns]\n" ] } ], "source": [ "import csv\n", "import requests\n", "import pandas as pd\n", "CSV_URL = 'https://gitlab.inria.fr/learninglab/mooc-rr/mooc-rr-ressources/-/raw/master/module3/Practical_session/Subject6_smoking.csv'\n", "\n", "with requests.Session() as s:\n", " download = s.get(CSV_URL)\n", " decoded_content = download.content.decode('utf-8')\n", " cr = csv.reader(decoded_content.splitlines(), delimiter=',')\n", " my_list = list(cr)\n", " datasetDict = {'Smocker': [],\n", " 'Status': [],\n", " 'Age': []\n", " }\n", " for row in my_list[1:]:\n", " datasetDict['Smocker'].append(row[0])\n", " datasetDict['Status'].append(row[1])\n", " datasetDict['Age'].append(float(row[2]))\n", " \n", "\n", "df = pd.DataFrame(datasetDict, columns = ['Smocker', 'Status','Age'])\n", "print(df)" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "### Computation of Mortality of Smocker and Not Smocker Women" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "I'm going to tabulate the total number of women alive and dead over the period according to their smoking habits." ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "smockerWomen = df[df.Smocker == 'Yes']\n", "noSmockerWomen = df[df.Smocker == 'No']" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "First of all, I will count the number of women for each groups." ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of Smocker Women: 582\n", "Number of No Smocker Women: 732\n" ] } ], "source": [ "print(\"Number of Smocker Women: \" + str(len(list(smockerWomen.Status))))\n", "print(\"Number of No Smocker Women: \" + str(len(list(noSmockerWomen.Status))))" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "I'm going to compute the mortality rate of each table. The computation is very easy, I just count the number of women \"*Dead*\" for each group, subdivided by the number of women of the same group. " ] }, { "cell_type": "code", "execution_count": 101, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mortality rate of Smocker Women: 0.23883161512027493\n", "Mortality rate of No Smocker Women: 0.31420765027322406\n" ] } ], "source": [ "from statistics import mean\n", "\n", "print(\"Mortality rate of Smocker Women: \" + str((list(smockerWomen.Status).count(\"Dead\"))/len(list(smockerWomen.Status))))\n", "print(\"Mortality rate of No Smocker Women: \" + str((list(noSmockerWomen.Status).count(\"Dead\"))/len(list(noSmockerWomen.Status))))\n" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "The Mortality rate of the Smocker Women is lower than the No Smocker Women, but it contains less number of people." ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "### Mortality Rate by Age Group" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "I'm going to compute the mortality rate grouped by the age of the women. First of all, I'm going to subdivide the Smocker and NoSmocker Group by the age." ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "smockerWomen1834 = smockerWomen[smockerWomen.Age < 34]\n", "smockerWomen3454 = smockerWomen[(smockerWomen.Age > 34) & (smockerWomen.Age < 54)]\n", "smockerWomen5564 = smockerWomen[(smockerWomen.Age > 55) & (smockerWomen.Age < 64)]\n", "smockerWomen65 = smockerWomen[smockerWomen.Age > 65]\n", "\n", "noSmockerWomen1834 = noSmockerWomen[noSmockerWomen.Age < 34]\n", "noSmockerWomen3454 = noSmockerWomen[(noSmockerWomen.Age > 34) & (noSmockerWomen.Age < 54)]\n", "noSmockerWomen5564 = noSmockerWomen[(noSmockerWomen.Age > 55) & (noSmockerWomen.Age < 64)]\n", "noSmockerWomen65 = noSmockerWomen[noSmockerWomen.Age > 65]" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "Then, it is possible to show the mortality rate for each group of age and smocker/noSmocker" ] }, { "cell_type": "code", "execution_count": 98, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mortality rate of Smocker Women 18-34: 0.027932960893854747\n", "Mortality rate of Smocker Women 15-54: 0.1729957805907173\n", "Mortality rate of Smocker Women 55-64: 0.43859649122807015\n", "Mortality rate of Smocker Women 65: 0.8571428571428571\n", "\n", "Mortality rate of No Smocker Women 18-34: 0.0273972602739726\n", "Mortality rate of No Smocker Women 15-54: 0.09547738693467336\n", "Mortality rate of No Smocker Women 55-64: 0.3277310924369748\n", "Mortality rate of No Smocker Women 65: 0.859375\n" ] } ], "source": [ "smockerWomen1834Mort = (list(smockerWomen1834.Status).count(\"Dead\"))/len(list(smockerWomen1834.Status))\n", "smockerWomen3454Mort = (list(smockerWomen3454.Status).count(\"Dead\"))/len(list(smockerWomen3454.Status))\n", "smockerWomen5564Mort = (list(smockerWomen5564.Status).count(\"Dead\"))/len(list(smockerWomen5564.Status))\n", "smockerWomen65Mort = (list(smockerWomen65.Status).count(\"Dead\"))/len(list(smockerWomen65.Status))\n", "\n", "noSmockerWomen1834Mort = (list(noSmockerWomen1834.Status).count(\"Dead\"))/len(list(noSmockerWomen1834.Status))\n", "noSmockerWomen3454Mort = (list(noSmockerWomen3454.Status).count(\"Dead\"))/len(list(noSmockerWomen3454.Status))\n", "noSmockerWomen5564Mort = (list(noSmockerWomen5564.Status).count(\"Dead\"))/len(list(noSmockerWomen5564.Status))\n", "noSmockerWomen65Mort = (list(noSmockerWomen65.Status).count(\"Dead\"))/len(list(noSmockerWomen65.Status))\n", "\n", "print(\"Mortality rate of Smocker Women 18-34: \" + str(smockerWomen1834Mort))\n", "print(\"Mortality rate of Smocker Women 35-54: \" + str(smockerWomen3454Mort))\n", "print(\"Mortality rate of Smocker Women 55-64: \" + str(smockerWomen5564Mort))\n", "print(\"Mortality rate of Smocker Women 65: \" + str(smockerWomen65Mort))\n", "print()\n", "print(\"Mortality rate of No Smocker Women 18-34: \" + str(noSmockerWomen1834Mort))\n", "print(\"Mortality rate of No Smocker Women 35-54: \" + str(noSmockerWomen3454Mort))\n", "print(\"Mortality rate of No Smocker Women 55-64: \" + str(noSmockerWomen5564Mort))\n", "print(\"Mortality rate of No Smocker Women 65: \" + str(noSmockerWomen65Mort))" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "In the graph below is shown the difference in terms of rate mortality of each range group. It is notable the high difference of mortality rate on the middle group 35-64. Indeed, in the Smocker group the mortality rate is higher. " ] }, { "cell_type": "code", "execution_count": 100, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD8CAYAAACYebj1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHCtJREFUeJzt3XuYFPWd7/H3h+EWEDHCKCrIYAJukJkhOnBERfEgSogrulkR1MQ1YYmeYOKNhMTEe3IUzTExRtRHvMTFS+IaDyFGzUlA4nUBg1FQELnoiHJTQGARB77nj27LYZjpaWBqemb4vJ6nH7qqf1X17ZqmP123XykiMDMzA2hV6ALMzKzpcCiYmVnCoWBmZgmHgpmZJRwKZmaWcCiYmVnCoWBmZgmHgpmZJRwKZmaWaF3oAnZV165do6SkpNBlmJk1K3Pnzl0TEcX1tWt2oVBSUsKcOXMKXYaZWbMiaXk+7bz7yMzMEg4FMzNLOBTMzCzR7I4p1OaTTz6hsrKSLVu2FLoUA9q3b0/37t1p06ZNoUsxs13UIkKhsrKSTp06UVJSgqRCl7NXiwjWrl1LZWUlvXr1KnQ5ZraLWsTuoy1bttClSxcHQhMgiS5dunirzayZahGhADgQmhD/LcyarxYTCmZmtudaZCh065Y5ttBQj27dSvJa7k9/+lOOOOIIysrK6N+/Py+99FIq72/IkCG+gM/MUtEiDjTXtHLlciAacH717w554YUXmD59Oi+//DLt2rVjzZo1bN26tcFqaCjbtm2jqKio0GWYNQvdupVkv0/2TKsOHdi+efMez+fAnj15f9myPZ5PLi1yS6EQ3nvvPbp27Uq7du0A6Nq1KwcffDAlJSX86Ec/YtCgQVRUVPDyyy9zyimn8IUvfIE77rgDyJyxM2HCBPr160dpaSmPPPJIMt9JkyZRWlpKeXk5EydO3GGZ27dv57zzzuPHP/4xAE8//TSDBg3iyCOP5Mwzz2Tjxo1ApmuQa6+9luOOO47f/e533HrrrfTt25eysjJGjx7dGKvHrFn67Afmnj22b94MEXv8WLl8zwOqXhHRrB5HHXVU1LRgwYIdhjN/iQb4CyQPdlpmTR999FGUl5dH796948ILL4yZM2dGRETPnj3j9ttvj4iIiy++OEpLS2PDhg2xatWqKC4ujoiIRx99NE466aSoqqqK999/P3r06BErVqyIJ554IgYNGhSbNm2KiIi1a9dGRMQJJ5wQL7zwQowePTquv/76iIhYvXp1DB48ODZu3BgRETfccENcc801SQ033nhjUutBBx0UW7ZsiYiIDz/8sN73tjtq/k3MmqOG+y6hYb4A8/guyvFe5uSziBa5+6gQ9tlnH+bOncvf/vY3ZsyYwVlnncUNN9wAwGmnnQZAaWkpGzdupFOnTnTq1In27duzbt06nn32WcaMGUNRUREHHnggJ5xwArNnz+aZZ57h/PPPp0OHDgDsv//+yfK+/e1vM2rUKK644goAXnzxRRYsWMCxxx4LwNatWxk0aFDS/qyzzkqel5WVcc4553D66adz+umnp7tizKxZcSg0oKKiIoYMGcKQIUMoLS3l/vvvB0h2KbVq1Sp5/ulwVVVV9gfAziKiztM7jznmGGbMmMFll11G+/btiQiGDRvGQw89VGv7jh07Js//+Mc/MmvWLKZNm8Z1113H/Pnzad3aHwUz8zGFBrNw4ULefPPNZHjevHn07Nkzr2mPP/54HnnkEbZt28bq1auZNWsWAwcO5OSTT+aee+5hc/YA1QcffJBM861vfYsRI0Zw5plnUlVVxdFHH81zzz3H4sWLAdi8eTOLFi3aaVnbt2/nnXfe4cQTT2TSpEmsW7cuOfZgZtYifx4eeGDPvM4Y2pX51Wfjxo1cdNFFrFu3jtatW/PFL36Ru+66i+nTp9c77RlnnMELL7xAeXk5kpg0aRLdunVj+PDhzJs3j4qKCtq2bcuIESP42c9+lkx36aWXsn79er7+9a8zdepU7rvvPsaMGcPHH38MwPXXX0+fPn12WNa2bds499xzWb9+PRHBJZdcwn777beLa8TMWirVteuiqaqoqIia5+i//vrrfOlLXypQRVYb/02sJcjsvm2I70hljzfv6WxU5+7m+ifV3IioqK+ddx+ZmVnCoWBmZolUQ0HScEkLJS2WNLGW1ztL+oOkVyTNl3R+mvWYmVluqYWCpCLg18BXgL7AGEl9azT7DrAgIsqBIcDPJbVNqyYzM8stzS2FgcDiiFgSEVuBh4GRNdoE0EmZozn7AB8AVSnWZGZmOaQZCocA71QbrsyOq+424EvACuBV4HsRsT3FmszMLIc0Q6G2CwVqnkt1CjAPOBjoD9wmad+dZiSNkzRH0pzVq1fXu+BuJQ3cdXZJSf1vVuKyyy5Lhm+++Wauvvrqeqf71MqVKzn11FMpLy+nb9++jBgxIu9pd9WyZcvo169favM3s+YrzVCoBHpUG+5OZouguvOBx7L9NS0GlgL/VHNGEXFXRFREREVxcXG9C165fHmD9oeXT8+E7dq147HHHmPNmjX1tq3NlVdeybBhw3jllVdYsGBB0m9SU7Nt27ZCl2BmKUozFGYDvSX1yh48Hg1Mq9HmbWAogKQDgcOBJSnWlJrWrVszbtw4brnllp1eW758OUOHDqWsrIyhQ4fy9ttv79Tmvffeo3v37slwWVkZADNnzuSEE05g1KhR9OnTh4kTJzJ16lQGDhxIaWkpb731Vs5lrFy5kjPOOIPy8nLKy8t5/vnnd1jukiVL+PKXv8zs2bPZtm0bEyZMYMCAAZSVlXHnnXcmNZx44omcffbZlJaWsmnTJr761a9SXl5Ov379dujq28yauYbozbXuXl4ZASwC3gKuyI67ALgg+/xg4GkyxxNeA86tb555d53dsG+krt5oEx07doz169dHz549Y926dXHTTTfFVVddFRERp556atx3330RETFlypQYOXLkTtM/+eST0blz5xgyZEhcf/318e6770ZExIwZM6Jz586xYsWK2LJlSxx88MFx5ZVXRkTEL37xi/je976XcxmjRo2KW265JSIiqqqqYt26dbF06dI44ogj4o033oj+/fvH3//+94iIuPPOO+O6666LiIgtW7bEUUcdFUuWLIkZM2ZEhw4dYsmSJRGR6ep77NixSe3r1q3b6f2462xrCdgLu85ONRTSeDTlUIiI+MlPfhLXXnvtDqHQpUuX2Lp1a0REbN26Nbp06VLrPNauXRtTp06Nc889Nw444IBYtWpVzJgxI0466aSkzeDBg+PZZ5+NiIi//OUvyZd/Xcvo2rVrcu+ETy1dujQOOOCAOPzww+O1115Lxn/ta1+L3r17R3l5eZSXl0dJSUk89dRTMWPGjBgyZEjSbuHChVFSUhLf//73Y9asWbW+F4eCtQR7Yyj4iuYGdvHFFzNlyhQ2bdpUZ5u6usPef//9Ofvss3nggQcYMGAAs2bNAtipu+3qXXFXVdV+Bm9dy/hU586d6dGjB88991wyLiL41a9+xbx585g3bx5Lly7l5JNPBnbsertPnz7MnTuX0tJSfvjDH3LttdfmXJaZNR8OhQa2//77M2rUKKZMmZKMO+aYY3j44YcBmDp1Kscdd9xO0/31r39Nusj+6KOPeOuttzj00EPzXm5dyxg6dCiTJ08GMgeJN2zYAEDbtm15/PHH+c1vfsODDz4IwCmnnMLkyZP55JNPAFi0aFGt4bZixQo6dOjAueeey+WXX87LL7+cd51m1rS1zK6ze/ZkZT2/lHd1frvisssu47bbbkuGb731Vr75zW9y0003UVxczL333rvTNHPnzmX8+PG0bt2a7du3M3bsWAYMGMDMmTPzWmZdy/jlL3/JuHHjmDJlCkVFRUyePJmDDjoIyPz6nz59OsOGDaNjx46MHTuWZcuWceSRRxIRFBcX8/jjj++0rFdffZUJEybQqlUr2rRpk4SOmTV/7jrbUuG/ibUE7jrbzMz2ag4FMzNLtJhQaG67wVoy/y3Mmq8WEQrt27dn7dq1/jJqAiKCtWvX0r59+0KXYma7oUWcfdS9e3cqKyvJp7M8S1/79u136LLDzJqPFhEKbdq0oVevXoUuw8ys2WsRu4/MzKxhOBTMzCzhUDAzs4RDwczMEg4FMzNLOBTMzCzhUDAzs4RDwczMEg4FMzNLOBTMzCzhUDAzs4RDwczMEg4FMzNLOBTMzCzhUDAzs4RDwczMEg4FMzNLOBTMzCzhUDAzs4RDwczMEg4FMzNLOBTMzCzhUDAzs4RDwczMEg4FMzNLOBTMzCzhUDAzs4RDwczMEg4FMzNLOBTMzCyRaihIGi5poaTFkibW0WaIpHmS5kt6Js16zMwst9ZpzVhSEfBrYBhQCcyWNC0iFlRrsx9wOzA8It6WdEBa9ZiZWf3S3FIYCCyOiCURsRV4GBhZo83ZwGMR8TZARKxKsR4zM6tHmqFwCPBOteHK7Ljq+gCflzRT0lxJ36htRpLGSZojac7q1atTKtfMzNIMBdUyLmoMtwaOAr4KnAL8RFKfnSaKuCsiKiKiori4uOErNTMzII9jCpKKImLbbsy7EuhRbbg7sKKWNmsiYhOwSdIsoBxYtBvLMzOzPZTPlsJiSTdJ6ruL854N9JbUS1JbYDQwrUab/wsMltRaUgfgfwCv7+JyzMysgeQTCmVkfrnfLenF7P79feubKCKqgPHAU2S+6H8bEfMlXSDpgmyb14EngX8A/wXcHRGv7eZ7MTOzPaSImrv5czSWjgceAvYDHgWui4jFKdVWq4qKipgzZ05jLtLM9lKS2PlQ6G7NCXbhu7bu2Yhd+c7ecVLNjYiK+trVu6UgqUjSaZJ+D/wS+DlwGPAH4Indqs7MzJqkfC5eexOYAdwUEc9XG/9odsvBzMxaiHxC4RsR8Wz1EZKOjYjnIuK7KdVlZmYFkM+B5ltrGferhi7EzMwKr84tBUmDgGOAYkmXVntpX6Ao7cLMzKzx5dp91BbYJ9umU7XxG4B/TbMoMzMrjDpDISKeAZ6RdF9ELG/EmszMrEBy7T76RURcDNwmaacTYyPitFQrMzOzRpdr99ED2X9vboxCzMys8HLtPpqb/dd3QzMz20vk2n30Kjmu746IslQqMjOzgsm1++jURqvCzMyahFy7j3zGkZnZXiafDvGOljRb0kZJWyVtk7ShMYozM7PGlU83F7cBY8h0jPc5YCzu5sLMrEXKp0M8ImJxtdty3ivp+XonMjOzZiefUNicvZ3mPEmTgPeAjumWZWZmhZDP7qOvZ9uNBzYBPYB/SbMoMzMrjHxC4fSI2BIRGyLimoi4FJ+uambWIuUTCufVMu7fGrgOMzNrAnJd0TwGOBs4TNK0ai91AtamXZiZmTW+XAeanydzULkr8PNq4z8C/pFmUWZmVhg5r2iWVAlscqd4ZmZ7h5zHFLLXJWyW1LmR6jEzswLK5zqFLcCrkv5M5pRUACLiu6lVZWZmBZFPKPwx+zAzsxau3lCIiPuzVzT3yY5aGBGfpFuWmZkVQr2hIGkIcD+wDBDQQ9J5ETEr3dLMzKyx5bP76OfAyRGxEEBSH+Ah4Kg0CzMzs8aXzxXNbT4NBICIWAS0Sa8kMzMrlHy2FOZImgI8kB0+B5ibXklmZlYo+YTChcB3gO+SOaYwC7g9zaLMzKww8jn76GPg/2QfZmbWguXqEC9n/0YRUdbw5ZhZPrp1K2HlyuV7PJ8DD+zJ++8v2/OCrMXItaWwHQjgQeAPwH83SkVmVq9MIEQDzEd7Xoy1KHWefRQR/YExwD5kguGnwBHAuxGx5z9RzMysyamvQ7w3IuKqiDiSzNbCb4BLGqUyMzNrdDkPNEs6BBgNnAF8SCYQft8IdZmZWQHkOtD8DJm7rP2WzO03P8i+1FbS/hHxQV3TmplZ85Rr91FP4PPAt4GngTnZx9zsv/WSNFzSQkmLJU3M0W6ApG2S/jX/0s3MrKHluvNayZ7MWFIR8GtgGFAJzJY0LSIW1NLuRuCpPVmemZntuXz6PtpdA4HFEbEkIrYCDwMja2l3EfCfwKoUazEzszykGQqHAO9UG67MjktkD2SfAdyRa0aSxkmaI2nO6tWrG7xQMzPLSDMUarsqpubVNr8AfpC9F3SdIuKuiKiIiIri4uIGK9DMzHaUT4d4SDoO6B0R90oqBvaJiKX1TFYJ9Kg23B1YUaNNBfCwJICuwAhJVRHxeF7Vm5lZg8rnzmtXkfnyPhy4l8y9FP4DOLaeSWcDvSX1At4lc73D2dUbRESvasu5D5juQDAzK5x8thTOAL4MvAwQESskdapvooiokjSezFlFRcA9ETFf0gXZ13MeRzAzs8aXTyhsjYiQFACSOuY784h4AniixrhawyAi/i3f+ZqZWTryOdD8W0l3AvtJ+nfg/wF3p1uWmZkVQj432blZ0jBgA5njCldGxJ9Tr8zMzBpdPgeab4yIHwB/rmWcmZm1IPnsPhpWy7ivNHQhZmZWeLl6Sb0Q+F/AYTVuzdkJeC7twszMrPHl2n30IPAn4H8D1Xs4/cjdZpuZtUy5ekldD6wnc0tOJB0AtAf2kbRPRLzdOCWamVljqfeYgqR/lvQmsBR4BlhGZgvCzMxamHwONF8PHA0synZLMRQfUzAza5HyCYVPImIt0EpSq4iYAfRPuS4zMyuAfLq5WCdpH2AWMFXSKqAq3bLMzKwQ8tlSGAlsBi4BngTeAv45zaLMzKww6g2FiNgUEdsjoioi7idz3+Xh6ZdmZqlr1w5Je/zoVlJS6HdiDaTOUJC0r6QfSrpN0snKGA8sAUY1XolmlpqPP4aIPX6sXL680O/EGkiuYwoPAB8CLwBjgQlAW2BkRMxrhNrMzKyR5QqFwyKiFEDS3cAa4NCI+KhRKjMzs0aX65jCJ58+iYhtwFIHgplZy5ZrS6Fc0obscwGfyw4LiIjYN/XqzMysUeXq+6ioMQsxM7PCy+c6BTMz20s4FMzMLOFQMDOzhEPBzMwSDgUzM0s4FMzMLOFQMDOzhEPBzMwSDgUzM0s4FMzMLOFQMDOzhEPBzMwSDgUzM0s4FMzMLOFQMDOzhEPBzMwSDgUzM0s4FMzMLOFQMDOzhEPBzMwSqYaCpOGSFkpaLGliLa+fI+kf2cfzksrTrMfMzHJLLRQkFQG/Br4C9AXGSOpbo9lS4ISIKAOuA+5Kqx4zM6tfmlsKA4HFEbEkIrYCDwMjqzeIiOcj4sPs4ItA9xTrMTOzeqQZCocA71QbrsyOq8u3gD+lWI+ZmdWjdYrzVi3jotaG0olkQuG4Ol4fB4wDOPTQQxuqPjMzqyHNLYVKoEe14e7AipqNJJUBdwMjI2JtbTOKiLsioiIiKoqLi1Mp1szM0g2F2UBvSb0ktQVGA9OqN5B0KPAY8PWIWJRiLWZmlofUdh9FRJWk8cBTQBFwT0TMl3RB9vU7gCuBLsDtkgCqIqIirZrMzCw3RdS6m7/JqqioiDlz5hS6DLOCyvyIaoj/u4KG+A6QaG7fJfloSetZ0tx8fnT7imYzM0s4FKzBdetWgqQ9fnTrVlLot2K210nzlFTbS61cuZyG2OReubK2s5rNLE3eUjAzs4RDwczMEg4FMzNLOBTMzCzhUDAzs4RDwczMEg4FMzNLOBTMzCzhUDAzs4RDwczMEg4FMzNLOBTMzCzhUDAzs4RDwczMEg4FMzNLOBTMzCzhUDAzs4RDwZqudu0a5raeJSWFfidmzYZvx2lN18cfQzTAbT3l23qa5ctbCmZmlnAomJlZwqFgZmYJh4KZmSUcCmZmlnAomJlZwqFgZmYJh4KZmSUcCmZmlnAomJlZwqFgZmYJh4KZmSUcCmZmlnAomJlZYq8KhW7dShqkf/6ijh3dz7+ZtUh71f0UVq5cDux5//zbN8v9/JtZi7RXbSmYmVluqYaCpOGSFkpaLGliLa9L0q3Z1/8h6cg06zEzs9xSCwVJRcCvga8AfYExkvrWaPYVoHf2MQ6YnFY9ZmZWvzS3FAYCiyNiSURsBR4GRtZoMxL4TWS8COwn6aAUazIzsxzSDIVDgHeqDVdmx+1qGzMzayRpnn1U26k1NU/ZyacNksaR2b0EsFHSwoYta3dmU+98ugJr6p9NSz0Dyes5fV7HjaPFrOee+TRKMxQqgR7VhrsDK3ajDRFxF3BXQxeYJklzIqKi0HW0dF7P6fM6bhxNZT2nuftoNtBbUi9JbYHRwLQabaYB38iehXQ0sD4i3kuxJjMzyyG1LYWIqJI0HngKKALuiYj5ki7Ivn4H8AQwAlgMbAbOT6seMzOrX6pXNEfEE2S++KuPu6Pa8wC+k2YNBdSsdnc1Y17P6fM6bhxNYj0rGqC7BjMzaxnczYWZmSUcCnmQdI+kVZJeqzauv6QXJc2TNEfSwDqmvS7bhcc8SU9LOrjG64dK2ijp8rTfR1Mmqb2k/5L0iqT5kq7Jjr9a0rvZ9TdP0og6ps/Zzuv5M5KWSXr1089ujdculxSSuuaY/qJs9zXzJU3KjiuR9N/V1v8ddU1vIGk/SY9KekPS65IG5ftZT7027z6qn6TjgY1krr7ulx33NHBLRPwp+8f7fkQMqWXafSNiQ/b5d4G+EXFBtdf/E9gOvBQRN6f/bpomZU6+7hgRGyW1AZ4FvgcMBzbWt24kXZ2rndfzZyQtAyoiYk2N8T2Au4F/Ao6q+Xq2zYnAFcBXI+JjSQdExCpJJcD0T/9/WG6S7gf+FhF3Z8/O7ABcTB6f9bR5SyEPETEL+KDmaGDf7PPO1HJ9RXbaDdUGO1Lt4jxJpwNLgPkNVmwzle3qZGN2sE320SC/WLye83YL8H1yr/cLgRsi4mOAiFjVGIW1JJL2BY4HpgBExNaIWFfYqj7jUNh9FwM3SXoHuBn4YV0NJf002+4c4MrsuI7AD4BrGqHWZkFSkaR5wCrgzxHxUval8dldcPdI+nyOWezUzuu5VgE8LWlutrcAJJ0GvBsRr9QzbR9gsKSXJD0jaUC113pJ+nt2/OCUam8JDgNWA/dm19fd2c8p5P9ZT41DYfddCFwSET2AS8imfm0i4opsu6nA+Ozoa8jsftpY13R7m4jYFhH9yVzZPlBSPzI9534B6A+8B/y8jsnrauf1vLNjI+JIMr0Ufye7e/QKsj9Y6tEa+DxwNDAB+G121997wKER8WXgUuDB7C9i21lr4EhgcnZ9bQImkv9nPV0R4UceD6AEeK3a8Ho+OyYjYEP2+b3APOCJWubR89N5AH8DlmUf68jsnhpf6PfZVB7AVcDldf0N6lnPJV7Pea/nq4GfkNk6+3Q9VQFvA91qrmfgSWBItenfAoprme9MMsctCv4em9oju16XVRseDPyxRpsdvm8a87FX3Y6zga0ATiDz4f+fwJsAEbHDVdmSekfEm9nB04A3su0GV2tzNZkDTLelXnUTJakY+CQi1kn6HHAScKOkg+Kzrk/OAF6DWtdzXe28nqvJ7qZoFREfZZ+fDFwbEQdUa7OMzw5E1+xl4HEyn/eZkvoAbYE12b/fBxGxTdJhZO6RsiT9d9T8RMT7kt6RdHhELASGAgvq+gw3NodCHiQ9BAwBukqqJPMr9t+BX0pqDWzhs15ca7pB0uFkznxZDlxQR7u93UHA/crcnKkV8NuImC7pAUn9yewHXwZ8u47pJ+XZbm93IPD7zB4fWgMPRsSTuzD9PcA9ypyevRU4LyIiuwvqWklVwDbggoioeXKGfeYiYGr2zKMlZML31qbwGfYpqWZmlvCBZjMzSzgUzMws4VAwM7OEQ8HMzBIOBTMzSzgUzMws4VAwM7OEQ8HMzBL/H6RoqhwMHZWdAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# libraries\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", " \n", "# width of the bars\n", "barWidth = 0.2\n", "\n", "# Bars of Smocker Women\n", "bars1 = [smockerWomen1834Mort,smockerWomen3454Mort, smockerWomen5564Mort, smockerWomen65Mort]\n", "\n", "\n", "# Bars of No Smocker Women\n", "bars2 =[ noSmockerWomen1834Mort, noSmockerWomen3454Mort, noSmockerWomen5564Mort,noSmockerWomen65Mort]\n", "\n", " \n", "# The x position of bars\n", "r1 = np.arange(len(bars1))\n", "r2 = [x + barWidth for x in r1]\n", " \n", "# Create blue bars\n", "plt.bar(r1, bars1, width = barWidth, color = 'blue', edgecolor = 'black', capsize=7, label='Smockers')\n", " \n", "# Create cyan bars\n", "plt.bar(r2, bars2, width = barWidth, color = 'cyan', edgecolor = 'black', capsize=7, label='No Smockers')\n", " \n", "# general layout\n", "plt.xticks([r + barWidth for r in range(len(bars1))], ['18-34', '35-54', '54-65','65'])\n", "plt.ylabel('Rate Mortality')\n", "plt.legend()\n", " \n", "# Show graphic\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Computation of Logistic Regression" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I've computed the linear regression, but the results appear similar." ] }, { "cell_type": "code", "execution_count": 162, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 162, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlYVGX/x/H3d1hFEFRwX3DfUBSQRXPfe0qzNLWnTStzSdFssfxVWlpamfW0apm2q2W5ZJmZWm6gA+KC+5biintqKOD9+wMyMxVU4MwM39d1cck5c+bMZwA/HO6Zcx8xxqCUUsq12KwOoJRSKu9puSullAvScldKKRek5a6UUi5Iy10ppVyQlrtSSrkgLXellHJBOZa7iHwsIodFZMNVbhcR+Z+IbBeRdSISlvcxlVJKXY/cHLlPBTpe4/ZOQI3sj77A+zcfSyml1M1wz2kDY8xvIhJ8jU26AJ+arFNd40QkQETKGmMOXGu/gYGBJjj4WrtVSil1uYSEhCPGmKCctsux3HOhPLD3kuWU7HXXLPfg4GDsdnsePLxSShUeIvJ7brbLixdU5QrrrjhhjYj0FRG7iNhTU1Pz4KGVUkpdSV6UewpQ8ZLlCsD+K21ojJlkjIkwxkQEBeX4V4VSSqkblBflPge4P/tdM9HAyZzG25VSSuWvHMfcReQroCUQKCIpwAuAB4Ax5gPgB+BWYDtwFuidX2GVUn9LT08nJSWFtLQ0q6OofODt7U2FChXw8PC4ofvn5t0yvXK43QADb+jRlVI3LCUlBT8/P4KDgxG50ktfylkZYzh69CgpKSlUqVLlhvahZ6gq5aTS0tIoWbKkFrsLEhFKlix5U3+Vabkr5cS02F3XzX5v8+J97gXq9y1J7F/2Ge5BNShWoQ5lqobgH1DS6lhKKeVQnK7cj2y3E7lnMm57DSRmrTuKP4c9KnCqaDCZJarhVaomxSvVoXzVunh5+1gbWCkXN2bMGL788kvc3Nyw2WxMnDiRqKiom9rnnDlz2LhxI8OHD7/u+27ZsoVHH32UEydOcO7cOZo1a8akSZNuKg9Ay5Ytef3114mIiLjpfRUEpyv38P88zLk295CyezPH9mzk/KEt2I7twPfM71Q/sZySJ+bBTiAOMo2w11aWVJ/qnCtRC6/yIZSs0pDyVevhfoOvQCul/rZy5Uq+//57EhMT8fLy4siRI5w/fz5X983IyMDd/coV1LlzZzp37nxDmQYPHszQoUPp0qULAOvXr7+h/Tg7pyt3AC9vHyrXDqNy7X9PQHn65DEO7trAyZTNpB/cjOfxrQSd3U7500ux7TUQB+eMB7vdK3KsaHUuBNXBr3IjKtSLwb9kGQuejVLO68CBAwQGBuLl5QVAYGAg8Pf0IoGBgdjtdp544gmWLFnCyJEj2b9/P7t37yYwMJAdO3bw8ccfU69ePSDr6Hj8+PGsX78eu93OmDFjCA0NZefOndhsNs6ePUutWrXYuXMne/bsYeDAgaSmpuLj48OHH35I7dq1OXDgABUqVLiYsX79+gBMnTqVWbNmkZmZyYYNGxg2bBjnz5/ns88+w8vLix9++IESJUqQlJREv379OHv2LNWqVePjjz+mePHiF/d34cIFevfuTcWKFRk9ejQLFizghRde4Ny5c1SrVo0pU6bg6+tbUN+Cq3LKcr8WX/8SVG/YHBo2/8f6tLOnSdmWxIldSWQc2kjR41sIPmWn1KkFsANYBAckiIM+tTkX1ACf4HAq1I2mRKny1jwRpa7DqLnJbNx/Kk/3WbdcMV64vd41t2nfvj0vvvgiNWvWpG3btvTo0YMWLVpc8z4JCQksW7aMIkWKMGHCBGbMmMGoUaM4cOAA+/fvJzw8/OLRtr+/P6Ghofz666+0atWKuXPn0qFDBzw8POjbty8ffPABNWrUID4+ngEDBrBo0SKGDh1K69atadKkCe3bt6d3794EBAQAsGHDBtasWUNaWhrVq1dn3LhxrFmzhqFDh/Lpp58yZMgQ7r//ft5++21atGjB888/z6hRo3jzzTeBrL82/vvf/xISEsKIESM4cuQIo0ePZuHChRQtWpRx48bxxhtv8Pzzz+fBd+DmuFy5X423jy/VQ2+B0Fv+sf74kUPs3RTPmV12PA6vo8yZzVTYvRR2A0vgIIHs963L+bIRBNS8heCQGLyL6Di+UgC+vr4kJCSwdOlSFi9eTI8ePRg7duw179O5c2eKFCkCwN133027du0YNWoUM2bMoHv37v/avkePHkyfPp1WrVoxbdo0BgwYwOnTp1mxYsU/tj937hwAvXv3pkOHDsyfP5/Zs2czceJE1q5dC0CrVq3w8/PDz88Pf39/br/9diDr6H7dunWcPHmSEydOXPwF9cADD/zjMR599FHuvvtuRowYAUBcXBwbN26kadOmAJw/f56YmJgb+lrmtUJT7ldTPLA0xZt1hmZ/j++dPH6ElI1x/LHLjsehtZQ9nUy5bb/Btjc4970Hmzyqc7xkIzyDo6kU2opS5SpZ+AyUIscj7Pzk5uZGy5YtadmyJfXr1+eTTz7B3d2dCxcuAPzrvdpFixa9+Hn58uUpWbIk69atY/r06UycOPFf++/cuTPPPPMMx44dIyEhgdatW3PmzBkCAgJISkq6YqZy5crRp08f+vTpQ0hICBs2ZF1r6K/hIwCbzXZx2WazkZGRkeNzbdKkCYsXL2bYsGF4e3tjjKFdu3Z89dVXOd63oOn73K/Av3gg9ZreRvS9Iwkf9h3lXtjKkb7rWBPzNmvK3o2IEHFwBhHxgyk1qT77R9XE/lYvEua+T+q+XVbHV6rAbNmyhW3btl1cTkpKonLlygQHB5OQkADAzJkzr7mPnj178uqrr3Ly5MmL4+OX8vX1JTIyktjYWG677Tbc3NwoVqwYVapU4euvvwayzuj86+h8/vz5pKenA3Dw4EGOHj1K+fK5G1719/enePHiLF26FIDPPvvsH8NMDz30ELfeeivdu3cnIyOD6Oholi9fzvbt2wE4e/YsW7duzdVj5bdCf+SeW4HlKhNY7n7gfgDOp/3JtuSVHN28FM99q6hx/Ff8E36AhOHslXIcKB6BrVpzKod3IKiMHtkr13T69GkGDRrEiRMncHd3p3r16kyaNIlNmzbx0EMP8fLLL+f4tshu3boRGxvLc889d9VtevToQffu3VmyZMnFdV988QX9+/dn9OjRpKen07NnT0JDQ1mwYAGxsbF4e3sD8Nprr1GmTO7fLPHJJ59cfEG1atWqTJky5R+3P/7445w8eZL77ruPL774gqlTp9KrV6+Lw0KjR4+mZs2auX68/CJZU8MUvIiICONKF+vIzMxk54Z4jqz/mSL7VlDt7Fr85E8Adtkqc6j0LfiF3EqNiLZ4enlbnFa5gk2bNlGnTh2rY6h8dKXvsYgkGGNyfLO9HrnnETc3N2qENqFGaBMAMtLPs3X9So5uWIhfym+E7Z+G54EvOL2gCMlFwzhfpQ2Vo7tQpmJ1i5MrpVyRlns+cffwpGZYCwjLGq87feo4yXHzSN/8E5WOraBM8nJIfpHdtkocLNuako27Ub1BU8SmL4MopW6elnsB8S1WnEbt74X292IuXGDP1kQO2L/Hd88vRKR8ivu+qRycFcTuoFb4NepKrcbt9CxapdQN03K3gNhsVKodQaXaEcBIjh85yLalX+O5bR6NDn+H14IZHFtQjG0BzSgS2pW6TTvj7umV436VUuovWu4OoHhgGSK7DgIGceaPEyQv+w6zaS71ji/C99d5nPjVj62BbSkW2YtaEW0Rm5vVkZVSDk7L3cEU9QsgrFNv6NSbc2lnWbP0OzLXfUP91HkU+eE7DvwYxO9lO1HmlvsIrhtpdVyllIPSV+8cmJe3D43a/ZeIYd+RMWwrqxqN47BXMBH7Pid4Rjt2vhhK3JdjOHHkoNVRVSE2ZswY6tWrR4MGDWjYsCHx8fE3vc85c+bkOI3B1YwcORIfHx8OHz58cV1uJvLKj+exZMkSbrvttpvez43QI3cn4VesOJFd+kGXfhw5tI/tiz+j5PZviN76Kue3vEFCsWZ4NX6Quk1vx+amwzaqYDjilL+QNTvl+PHjGTduXK62v5nn4aj0yN0JBZYuT3TP4dT4Pzs7u/1EYqmuVPtjNSGLHuDQ6FrEffwkh1J2WB1TFQJXmvK3XLlyBAcHc+TIEQDsdjstW7YEso6q+/btS/v27bn//vuJiooiOTn54v5atmxJQkICU6dO5bHHHuPkyZMEBwdfnKfm7NmzVKxYkfT0dHbs2EHHjh0JDw+nWbNmbN68+eJ++vTpw/Tp0zl27Ni/Mr/xxhuEhIQQEhJycbbHqz0PyJq++NlnnyUmJoaIiAgSExPp0KED1apV44MPPgCypj948sknCQkJoX79+kyfPv1fj7t69WoaNWrEzp07OXPmDH369KFx48Y0atSI2bNn39T34Ur0yN3JVQ2JpmpINGl/nsG+6Cu81n1O9J5JZHz4EQm+t+DdtD91ozvq++dd3Y/D4WAeX5SiTH3odO2hEUec8heyhmH69OnDW2+9xahRo/7x2FOmTCE+Ph5jDFFRUbRo0SLH51GxYkVWrlzJ0KFDefDBB1m+fDlpaWnUq1ePfv368e2335KUlMTatWs5cuQIjRs3pnnzv6cdX7FiBYMGDWL27NlUqlSJZ599ltatW/Pxxx9z4sQJIiMjadu27T8mVbtZ+j/eRXgXKUrEfx6m/jNL2Hd/PPZy91D9TAL1FvRi9+hGxH89nj9P5+1830r9NeXvpEmTCAoKokePHkydOvWa97l8yt+/Jv/KacpfgGnTptGjR49/TPnbsGFDHn30UQ4cOPCP+w0ePJhPPvmEU6f+/rlftmwZXbt2pWjRovj6+nLnnXeydOnSHJ/HX0NE9evXJyoqCj8/P4KCgvD29ubEiRMsW7aMXr164ebmRunSpWnRogWrV68GsqYQ6Nu3L3PnzqVSpax5phYsWMDYsWNp2LAhLVu2JC0tjT179lzHVz5neuTugspXrU35R98l7exYVv04mZIbpxKV/CKnkseztnRnKnUaSrngWlbHVHkphyPs/OSIU/4CBAQEcM899/Dee+9dXHetubSu9DwefPBBgH9MDXz5tMEZGRnX3G/ZsmVJS0tjzZo1F4d6jDHMnDmTWrXy7/+hHrm7MG8fPyLvGkLVEYls7PQ1W30jCT84g1JTorG/cRc71q20OqJyco445e+lHn/8cSZOnHhxrvbmzZsza9Yszp49y5kzZ/juu+9o1qzZVZ9HbjVv3pzp06eTmZlJamoqv/32G5GRWW9VDggIYN68eTz77LMXZ7Xs0KEDb7/99sVfCmvWrMn1Y+WWlnshIDYbdaPaE/HELI49sgp7mR7UObmMat92ZP3Y1iQvm43JPspS6nqcPn2aBx54gLp169KgQQM2btzIyJEjeeGFF4iNjaVZs2a45fDurW7dujFt2jTuvvvuq27To0cPPv/8c3r06HFx3RdffMHkyZMJDQ2lXr16V3xRMjAwkK5du16cjjcsLIwHH3yQyMhIoqKiePjhh2nUqNFVn0dude3alQYNGhAaGkrr1q159dVX/zHNcOnSpZk7dy4DBw4kPj6e5557jvT0dBo0aEBISMg1pzu+UTrlbyF18tgRNs6dQI1dnxPICXa4VeNk4yE0bPdffSulk9Apf13fzUz5q0fuhZR/iUBiHhiD79MbiQt5Ac8LfxIWN4jdY8JImP8JFzIzrY6olLoJWu6FnHeRokR3e5xyI9aRED4WD3Oe8LjB7B4TRuL8qVrySjkpLXcFgJu7B+G396fciPUkhI/Dw5wnLC72YsnrmLxjsmpYVeW/m/3earmrf3Bzdyf89n6UG7Eee/iruJNOWFws216OYsOyuVbHU5fw9vbm6NGjWvAuyBjD0aNHL14H9kboC6rqmjIzMkj8/gMqJk2gDEdY692Yov95ier1Y6yOVuilp6eTkpLyr/eRK9fg7e1NhQoV8Ljsoj25fUFVy13lStqfZ1g78zVqb5+EnzlLgn9bynUdQ/kqejKUUgVJ3y2j8pR3kaJE3TsSYtexqvx91D+5hKCpTYifOJDTp/49OZNSylpa7uq6+BcPJLrv25x6ZBVJAW2JOvA5595oRMKst/WdNUo5EC13dUNKVahK5NDpbL59NqnuZQhP+j92vhLJNvtCq6MppdByVzepdnhLaj6zkviGYymWcYwa399F4oS7OHJgt9XRlCrUtNzVTbO52Yi6oz9FHk9kebne1DvxK14fRLPiy5fJSE+3Op5ShVKuyl1EOorIFhHZLiLDr3C7v4jMFZG1IpIsIr3zPqpydH7FitO075scuncxvxepQ5Ot49g5NoZtScusjqZUoZNjuYuIG/Au0AmoC/QSkbqXbTYQ2GiMCQVaAuNFxDOPsyonUalGfeo99QuJjV+nZGYqVb+7jbj3HuGMvqtGqQKTmyP3SGC7MWanMeY8MA3octk2BvATEQF8gWNARp4mVU5FbDbC/vMI7rEJ2AO7EHnoa86+Ec7anz+3OppShUJuyr08sPeS5ZTsdZd6B6gD7AfWA7HGGJ2MROFfPJCoQZ+w5faZnLL5E7p8IKtfv4Ojh/dbHU0pl5abcpcrrLv8tNYOQBJQDmgIvCMixf61I5G+ImIXEXtqaup1h1XOq05EGyo+HU98cD9C//gN3osm4cepVsdSymXlptxTgIqXLFcg6wj9Ur2Bb02W7cAuoPblOzLGTDLGRBhjIoKCgm40s3JSnl5eRD04jgM9fuS4WyDh8bEkvN6F46l6FK9UXstNua8GaohIlewXSXsCcy7bZg/QBkBESgO1gJ15GVS5jsp1owh+eiVxwQOo/8dSzLtRrJk/1epYSrmUHMvdGJMBPAb8BGwCZhhjkkWkn4j0y97sJaCJiKwHfgGeNsYcya/Qyvm5e3oR/eArpPSYz1G3UjSKiyVhfFdOHtMfG6Xygs4KqSyXnn4e++fP0Xj3JFKlBEfbv0NIk05Wx1LKIemskMppeHh4EtN7HLu7zCJTPKj7Uy9WThpE+nmdp1ypG6XlrhxG9bAWlBgWR0KJW4nZ/ym7X21Kyra1VsdSyilpuSuH4uMbQOPYL0mMeZugjIOU+Lwd9pkT9BquSl0nLXflkMI63M+5R5ax3bseEetHYp9wF3+c1OkLlMotLXflsEqXr0LIUwuJqzKQsFOLOfFmU7avX2l1LKWcgpa7cmg2NzeiH3iZrZ2+wsukUfGb24n/+nUdplEqB1ruyinUie6E+4BlbCkSSlTySyROuEuv3arUNWi5K6dRolR5Qp5cwMoqA2l4ajHHJzRl9+ZEq2Mp5ZC03JVTsbm5EfPAy2zu8CU+5gxBX3UiYf4nVsdSyuFouSunVK/JrWQ+vIQUj8qExw1m5cRBZGboJQSU+ouWu3JapSpUJfiJJawq2YWYA5+y8bV2nDhy0OpYSjkELXfl1Ly8fYgc9Cmr64+iVto6/nznFravXW51LKUsp+WuXELju4awu8u32LhAhW+7YJ/zgdWRlLKUlrtyGTXDWuDe/zd2eNUmIvFpVn4Yy4XMTKtjKWUJLXflUkqWrkCNYQuJL347MfumsvaNzpw9fdLqWEoVOC135XI8vbyJHPQpcTWfoMHp5RyY0JKDe7dbHUupAqXlrlyS2GxE3/McG1p8SKmMA3hMbsMW+y9Wx1KqwGi5K5cW2ro7R3vOI028CJ7bA/vciVZHUqpAaLkrlxdcJxyfAb+y3bM2EQlPsXLykzrxmHJ5Wu6qUCgeVJYaTyxkdUBHYvZOYvVb93D+nF7GT7kuLXdVaHh6eRMx+CtWVupL5Mkf2fJGR/44cdTqWErlCy13VaiIzUZMn9dYFTqG2mnrOPK/1hxO2Wl1LKXynJa7KpQiuz7GpjYfE5h5CPmoDbs2xFkdSak8peWuCq0Gze/gUPfZXEAI+voONv72rdWRlMozWu6qUKseEoV5eCGH3MpQ45eHWT37fasjKZUntNxVoVemQlUCBy9ii1d9Gq8ZzvLPX7Q6klI3TctdKcA/oAQ1H5/PGt8WNN0+nuUTB+t74ZVT03JXKpundxFCh3zL6pJdaHrgE1b9714y0s9bHUupG6LlrtQlbO7uRAycSlzFh4k6MY/1E+4g7expq2Mpdd203JW6jNhsRD80nvjawwk9s4Kdb3bklJ7spJyMlrtSVxHV8xkSG79G9XMbSX27DUcO7rE6klK5puWu1DVE3PYIm1p9SJmM/Zyb2Jb9OzdaHUmpXNFyVyoHoS3vYs/t0/ExZ/H49FZ2bUywOpJSOdJyVyoX6kS04mSPWQiGgBld2Ja03OpISl2TlrtSuRRcJ4Jz983jHN6U/q4bm1YttDqSUlel5a7UdShfLQTp8yMnbQFUmncPG5bNsTqSUlek5a7UdSpdqQZFHv2Jw25lqPFzH9YummZ1JKX+RctdqRsQWKYSxQcsYI97Zer+OoDEH6dYHUmpf9ByV+oGBQSWofSgBWzzrE1o3FDss96xOpJSF+Wq3EWko4hsEZHtIjL8Ktu0FJEkEUkWkV/zNqZSjqlYQEmCY39ko3dDIpJGsGrGOKsjKQXkotxFxA14F+gE1AV6iUjdy7YJAN4DOhtj6gHd8yGrUg7Jx9efGkPmsaZIDJEbX2blFy9ZHUmpXB25RwLbjTE7jTHngWlAl8u2uQf41hizB8AYczhvYyrl2LyLFKXekNkk+jYnZtvrrPzsBasjqUIuN+VeHth7yXJK9rpL1QSKi8gSEUkQkfuvtCMR6SsidhGxp6am3lhipRyUp5cXDQZ/Q6JfK2J2vMnKT0ZYHUkVYrkpd7nCOnPZsjsQDvwH6AA8JyI1/3UnYyYZYyKMMRFBQUHXHVYpR+fu6UWDwTOwF2tLzK53WDnlaasjqUIqN+WeAlS8ZLkCsP8K28w3xpwxxhwBfgNC8yaiUs7F3cOTRoOns9q/PTG/f0Dc5CfAXH48pFT+yk25rwZqiEgVEfEEegKXn5Y3G2gmIu4i4gNEAZvyNqpSzsPN3Z2wQV+xKuBWovd+SNzkoXrZPlWgcix3Y0wG8BjwE1mFPcMYkywi/USkX/Y2m4D5wDpgFfCRMWZD/sVWyvG5ubsTMehz4ovfRnTKFFZ9FKsFrwqMGIv+XIyIiDB2u92Sx1aqIF3IzGTVe32IPjqL+DL3ENn3XcSm5w+qGyMiCcaYiJy2058wpfKZzc2NyAFTWBHYjaiDX7J6Yj89glf5TstdqQJgc7MRM+BDVgTdTeSh6cR/oAWv8peWu1IFRGw2YvpPJC7obqIPT2flB/214FW+0XJXqgCJzUZU/4msCupGk8PTWDlxoBa8yhda7koVMLHZaNz/Q1YH3UmTQ1+yctJgLXiV57TclbKA2GxE9J/MqsCuNDn4GSs/GqIFr/KUlrtSFhGbjcYDJrO6ZGea7P+ElZMf14JXeUbLXSkLic2N8AFTWVXidprsm0Lcx09i1bknyrVouStlMZubGxEDP2F1wH+ISfmIuI+fsjqScgFa7ko5AJubG+GDPmN1QCdi9k7S2STVTdNyV8pB2NzcCHvsc1b7d8iaTXLqM1ZHUk5My10pB5I1m+SXrC7Wjujd7xGnF/xQN0jLXSkH4+buTqNBX7Hary3Ru94h/rPnrY6knJCWu1IOyN3Dg0aDv8Lu15qoHW8R//lIqyMpJ6PlrpSDcvfwJHTwdOy+LYnaPoFVX75odSTlRLTclXJgHh6ehMZ+jb1oCyK3jmf1V6OtjqSchJa7Ug7Ow8OTBoO/JqFoMxpveY3V01+xOpJyAlruSjkBTy8v6g+eSYLPLTTeNJbVM8ZZHUk5OC13pZyEp5cXIbHfkFikCY03voz9m9esjqQcmJa7Uk7Ey6sIdWO/ZU2RaCI2jMY+c7zVkZSD0nJXysl4exehzuDvWOMdRcT6F0n4doLVkZQD0nJXygl5F/GhTuwskrwbE75uJAmz/md1JOVgtNyVclLeRXyoNXg2a73CabTmeRJnvW11JOVAtNyVcmJFfIpSM3YuG7wb0XDNcyTOedfqSMpBaLkr5eSK+BSl+uA5bPBqSMOEESTO/cDqSMoBaLkr5QJ8ivpRPXYOyV6hhNqHs2beJKsjKYtpuSvlInyKFqPqoDls8qpPg1VPkfTDR1ZHUhbSclfKhRT18yd40Pds9qxH/fgnSPrxY6sjKYtouSvlYnz9/Kk06Hs2e9YlJG4Ya+dPsTqSsoCWu1IuyK9YcSo+9j1bPWpTb+XjrF3wqdWRVAHTclfKRRXzL0GFQfPY7lGLusuHsO7nz6yOpAqQlrtSLqyYfwnKPvYDOzxqUGdZLOsXfml1JFVAtNyVcnH+ASUoO/AHdnpUo9bSx1i/6CurI6kCoOWuVCHgX7wkZQb8wG73qtT6dSDrF8+wOpLKZ1ruShUS/iWCKDXgB3a7V6HWkv5sWPKN1ZFUPtJyV6oQCShZiqD+P7DHvRI1FvdjvRa8y9JyV6qQKR5YmpL955PiXpGai/uxTodoXJKWu1KFUFbB/8he90rUXtKftb/oi6yuJlflLiIdRWSLiGwXkeHX2K6xiGSKSLe8i6iUyg8BgWUIGjif3e5VqfvbQD3RycXkWO4i4ga8C3QC6gK9RKTuVbYbB/yU1yGVUvnDv0QpSj82nx0eNai3PBb7vMlWR1J5JDdH7pHAdmPMTmPMeWAa0OUK2w0CZgKH8zCfUiqf+RcvSflBP7LNsw6NVg0jbtb7VkdSeSA35V4e2HvJckr2uotEpDzQFbjmVQJEpK+I2EXEnpqaer1ZlVL5xM+/BJVjf2CLdwMi1zzDsq/1mqzOLjflLldYZy5bfhN42hiTea0dGWMmGWMijDERQUFBuc2olCoAPr4BVBsyj80+jWiy4XmWfPm61ZHUTchNuacAFS9ZrgDsv2ybCGCaiOwGugHvicgdeZJQKVVgvIr4UWPIPDb7Nqbl1pdY+OkYjLn8WE45g9yU+2qghohUERFPoCcw59INjDFVjDHBxphg4BtggDFmVp6nVUrlOw8vH2rFzmWjXxPa7nyVhZP/TwveCeVY7saYDOAxst4FswmYYYxJFpF+ItIvvwMqpQqem6c3tQfPIjmgNe1S3mHR+0O4kHnB6ljqOohVv5HoW1kAAAAOjUlEQVQjIiKM3W635LGVUrljMjNY/8GDNEidy6/Fu9F04ETc3d2tjlWoiUiCMSYip+30DFWl1FWJmzsN+n9KUvletDj+DfFv3cv58+lWx1K5oOWulLo2m42GD79PYpW+NP3jR5LevJO0tD+tTqVyoOWulMqZCGEPvEZi7SeIPPsbmybczunTp6xOpa5By10plWthPZ9jTegLhKbZ+f2tTpw8fszqSOoqtNyVUtelUdfHWR/1GjXPb+LQO+05lnrA6kjqCrTclVLXLfTWR9jc4l0qZ+zm5PvtSd3/u9WR1GW03JVSN6R+617saD+F0pmHOPdhe/bt3GR1JHUJLXel1A2r2/R29tz+FX7mD7w+7ci2pOVWR1LZtNyVUjeldkQbTvT8ngzcKfvdXaz99TurIym03JVSeaBy7TDcHllIqlsp6ix6iPg5E62OVOhpuSul8kRQ+SoEDv6FnV51iEp8imWfjdIJxyyk5a6UyjN+AUFUffxn1vo255Ydb7Ds/QFkZl7zMg8qn2i5K6XylKe3D/WHfEdCqbtodvhLVk+4m7S0NKtjFTpa7kqpPGdzdye8/2QSqg0k+vRCNr1xKydO6NmsBUnLXSmVP0QIv+9l1oWNpv65NaT+rw379+60OlWhoeWulMpXDToPYnubDyl3YT9uk9uwY90KqyMVClruSql8V7t5N1K7zwGEsjPvIHnJ11ZHcnla7kqpAhFcLwoe+YV97hWovfgR7NNfsTqSS9NyV0oVmNLlq1AmdhFrfWKI2DSWVe89RGaGXtkpP2i5K6UKlF+xABo8PocVpXoRefgbksffyplTx62O5XK03JVSBc7dw4MmAz4gru7/UfesnUNvteTA71usjuVStNyVUpaJvvtJNraeTFDGIbyntCV5xQ9WR3IZWu5KKUs1aHEnx/87nz9sftT86V7ip4/FXLhgdSynp+WulLJcpZoNCRi8lGSfxkRteoXVb9/LubSzVsdyalruSimHUCygJA2e+IGV5XsTeXweu15vzRG9fN8N03JXSjkMm5sbMY+8SWLUm1RK38mFSS3ZYl9kdSynpOWulHI4YZ16c7D7XDLEnSpzu7Nq5gQdh79OWu5KKYdUNSQKn4FL2eJdn8j1I7H/7x7+PPOH1bGchpa7UsphBQSWoe6TC1lZ8WHCj8/n4Phb2LttrdWxnIKWu1LKobm5uxPz0Hg2tPyIgAtHKf55BxJ/nGJ1LIen5a6UcgoNWnXjXJ/F7POoRFj8EOLee4Tz5/QKT1ej5a6UchplKtWgypO/ERfUnejDM9j1WnP27dxkdSyHpOWulHIqnl7eRA/8iITINymXsYdin7Qibu5HGGOsjuZQtNyVUk4p/NbenOm9hAOelYlOGMaKCf/l5IkTVsdyGFruSimnVaZybao9tZSEir2JOfkDx99qwjr7UqtjOQQtd6WUU3Pz8CT8oTfZdevn+HKW2nO78Nvk4aSnn7c6mqW03JVSLqFa1G0UGbyKTQEtaL73fXaMa8be7eutjmUZLXellMsoWrwUoUO/IylqPOUy9lLyszYkfP1qoZy6IFflLiIdRWSLiGwXkeFXuP2/IrIu+2OFiITmfVSllMqdhp0eJu2R5WzzDiE8eQzJr7Ujdd9Oq2MVqBzLXUTcgHeBTkBdoJeI1L1ss11AC2NMA+AlYFJeB1VKqetRqnwV6j+1kGW1nqXq2fV4fXgLcbPeLzRH8bk5co8EthtjdhpjzgPTgC6XbmCMWWGM+esKt3FAhbyNqZRS18/mZuOWXk9z7L5FHPCoRHTScJJe7cj+37dZHS3f5abcywN7L1lOyV53NQ8BP95MKKWUyksVqodQ4+ll2Gs/Sa0/k/D/+Bbip4/lQmam1dHyTW7KXa6w7oqngolIK7LK/emr3N5XROwiYk9NTc19SqWUukk2d3ciev4fp/r8xs4i9Yja9Apbx97C3i2JVkfLF7kp9xSg4iXLFYD9l28kIg2Aj4AuxpijV9qRMWaSMSbCGBMRFBR0I3mVUuqmlKlcm5CnFrKq4SuUSd9D6S/bsvKjYaT96VrXbM1Nua8GaohIFRHxBHoCcy7dQEQqAd8C9xljtuZ9TKWUyjtisxF5xwDS+8ex3r8VMSkfkfpqGEmLv7E6Wp7JsdyNMRnAY8BPwCZghjEmWUT6iUi/7M2eB0oC74lIkojY8y2xUkrlkaDSFQl/fCYb20xFRGj460MkvvofDvy+xepoN02smkktIiLC2O36O0Ap5RjOp/3Jmhmjqb/jQwTDuioP0ajn83h6+1gd7R9EJMEYE5HTdnqGqlJKAZ7eRYi6fwynHlrORt9oona/z+FxYaxdNA2ccDphLXellLpEmUo1CH9yLkktp3BBbIT+9igbxrZix/o4q6NdFy13pZS6goYt76Ts8ERW1nyKCue2UeWbjsS/2YtD+3ZZHS1XtNyVUuoqPDy9iblnBDI4idVle9Ho+AL8JkWx/MNhnDp5zOp416TlrpRSOfAvEURUv/c52nsZW4rF0HTfR2ROCGXVly9y/s8zVse7Ii13pZTKpbLBdWg0bDY7usxhr1d1IreO5+S4EFZ//Trnz6VZHe8ftNyVUuo6VWvUgvrDF5HU5gtS3cvQOPkljoxtQNy3b5Oenm51PEDLXSmlboiI0LDZbdR5djlrW3zEWZsv0ev+j30vhxI36wPLL/On5a6UUjdBbDZCW3Wn2gg7G5q+jc3mRnTS0xx6uT72mRNIP/enJbm03JVSKg+IzUZIu/upOCKJtU3f5U+bHxHrR3Lilbqs/uol0s6cKtA8Wu5KKZWHxOZGaLt7qT5iFYktpnDQoyKNt7xO5hshsGQcnLnipLl5TstdKaXygdhshLW6k5BnfyW50zeYCo1hycswoR6seCffH9893x9BKaUKMRGhXlQ7iGoHhzfDyncgoGLOd7xJWu5KKVVQStWGLvl/1A46LKOUUi5Jy10ppVyQlrtSSrkgLXellHJBWu5KKeWCtNyVUsoFabkrpZQL0nJXSikXJMaiq3qLSCrwez4+RCBwJB/3n1ecJSc4T1bNmfecJWthyFnZGBOU00aWlXt+ExG7MSbC6hw5cZac4DxZNWfec5asmvNvOiyjlFIuSMtdKaVckCuX+ySrA+SSs+QE58mqOfOes2TVnNlcdsxdKaUKM1c+cldKqULL6ctdRCqKyGIR2SQiySISm72+hIj8LCLbsv8t7gBZvUVklYiszc46ylGzAoiIm4isEZHvs5cdLqeI7BaR9SKSJCJ2R80JICIBIvKNiGzO/nmNcbSsIlIr+2v518cpERniaDmzsw7N/n+0QUS+yv7/5Yg5Y7MzJovIkOx1+Z7T6csdyACGGWPqANHAQBGpCwwHfjHG1AB+yV622jmgtTEmFGgIdBSRaBwzK0AssOmSZUfN2coY0/CSt5Y5as63gPnGmNpAKFlfW4fKaozZkv21bAiEA2eB73CwnCJSHhgMRBhjQgA3oCeOlzMEeASIJOt7fpuI1KAgchpjXOoDmA20A7YAZbPXlQW2WJ3tspw+QCIQ5YhZgQrZP3Stge+z1zlizt1A4GXrHDFnMWAX2a9zOXLWS7K1B5Y7Yk6gPLAXKEHWFeW+z87raDm7Ax9dsvwc8FRB5HSFI/eLRCQYaATEA6WNMQcAsv8tZV2yv2UPdSQBh4GfjTGOmvVNsn4IL1yyzhFzGmCBiCSISN/sdY6YsyqQCkzJHur6SESK4phZ/9IT+Cr7c4fKaYzZB7wO7AEOACeNMQtwsJzABqC5iJQUER/gVqAiBZDTZcpdRHyBmcAQY8wpq/NcjTEm02T9yVsBiMz+s82hiMhtwGFjTILVWXKhqTEmDOhE1pBcc6sDXYU7EAa8b4xpBJzBcYaL/kVEPIHOwNdWZ7mS7DHqLkAVoBxQVETutTbVvxljNgHjgJ+B+cBasoaS851LlLuIeJBV7F8YY77NXn1IRMpm316WrCNlh2GMOQEsATrieFmbAp1FZDcwDWgtIp/jeDkxxuzP/vcwWWPDkThgTiAFSMn+Sw3gG7LK3hGzQtYvy0RjzKHsZUfL2RbYZYxJNcakA98CTXC8nBhjJhtjwowxzYFjwDYKIKfTl7uICDAZ2GSMeeOSm+YAD2R//gBZY/GWEpEgEQnI/rwIWT+gm3GwrMaYZ4wxFYwxwWT9ab7IGHMvDpZTRIqKiN9fn5M15roBB8sJYIw5COwVkVrZq9oAG3HArNl68feQDDhezj1AtIj4ZHdAG7JeoHa0nIhIqex/KwF3kvV1zf+cVr7YkEcvWNxC1rjrOiAp++NWoCRZLwhuy/63hANkbQCsyc66AXg+e73DZb0kc0v+fkHVoXKSNY69NvsjGRjhiDkvydsQsGd//2cBxR0xK1kv9h8F/C9Z54g5R5F1cLQB+AzwctCcS8n6Rb4WaFNQX089Q1UppVyQ0w/LKKWU+jctd6WUckFa7kop5YK03JVSygVpuSullAvScleFkoh0FREjIrWtzqJUftByV4VVL2AZWSdpKeVytNxVoZM9D1FT4CGyy11EbCLyXvac29+LyA8i0i37tnAR+TV7crKf/jptXClHpuWuCqM7yJpXfStwTETCyDotPBioDzwMxMDFeYveBroZY8KBj4ExVoRW6nq4Wx1AKQv0ImtKY8iaGK0X4AF8bYy5ABwUkcXZt9cCQoCfs6YwwY2sKWaVcmha7qpQEZGSZF2AJEREDFllbciaUfKKdwGSjTExBRRRqTyhwzKqsOkGfGqMqWyMCTbGVCTrCklHgLuyx95LkzVhGmRdMSdIRC4O04hIPSuCK3U9tNxVYdOLfx+lzyTrgg8pZM0wOJGsq3mdNMacJ+sXwjgRWUvWrKNNCi6uUjdGZ4VUKpuI+BpjTmcP3awi6ypPB63OpdSN0DF3pf72ffbFVDyBl7TYlTPTI3ellHJBOuaulFIuSMtdKaVckJa7Ukq5IC13pZRyQVruSinlgrTclVLKBf0/KyI23g/VIScAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.metrics import classification_report, confusion_matrix\n", "from sklearn.preprocessing import LabelEncoder\n", "\n", "# print(smockerWomen5564)\n", "labelencoder = LabelEncoder()\n", "smockerWomen['Death'] = labelencoder.fit_transform(smockerWomen['Status'])\n", "noSmockerWomen['Death'] = labelencoder.fit_transform(noSmockerWomen['Status'])\n", "\n", "\n", "listApp = []\n", "\n", "listAppNoSmo = []\n", "\n", "for x in list(smockerWomen['Age']):\n", " listApp.append([x])\n", "\n", "for x in list(noSmockerWomen['Age']):\n", " listAppNoSmo.append([x])\n", "\n", " \n", "\n", "model = LogisticRegression(solver='liblinear', random_state=0).fit(listApp,list(smockerWomen['Death']))\n", "modelNoSm = LogisticRegression(solver='liblinear', random_state=0).fit(listAppNoSmo,list(noSmockerWomen['Death']))\n", "\n", "resSmok = model.predict_proba(listApp)\n", "resNoSmok = model.predict_proba(listAppNoSmo)\n", "\n", "# print(resSmok[0][0])\n", "dictSmokeRate = {'Age':[],'SurviveSmoke':[]}\n", "for x in range(0,len(listApp)):\n", " dictSmokeRate['Age'].append(listApp[x][0])\n", " dictSmokeRate['SurviveSmoke'].append(resSmok[x][0])\n", "\n", " \n", "\n", "dictNoSmokeRate = {'Age':[],'SurviveNoSmoke':[]}\n", "for x in range(0,len(listAppNoSmo)):\n", " dictNoSmokeRate['Age'].append(listAppNoSmo[x][0])\n", " dictNoSmokeRate['SurviveNoSmoke'].append(resNoSmok[x][0])\n", " \n", "dfSmoke = pd.DataFrame(dictSmokeRate, columns = ['Age','SurviveSmoke'])\n", "dfSmoke = dfSmoke.sort_values(by=['Age'])\n", "\n", "# print(dictNoSmokeRate)\n", "\n", "dfNoSmoke = pd.DataFrame(dictNoSmokeRate, columns = ['Age','SurviveNoSmoke'])\n", "dfNoSmoke = dfNoSmoke.sort_values(by=['Age'])\n", "\n", "ax = dfSmoke.plot(x='Age')\n", "dfNoSmoke.plot(x='Age',ax=ax)\n" ] } ], "metadata": { "hide_code_all_hidden": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }