{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
" # Evolution de la part de la production d'éléctricité renouvable dans la consommation globale électrique française de 2013 à 2021¶"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## importation des différents modules"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"import json\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"import seaborn as sns\n",
"from matplotlib.backends.backend_pdf import PdfPages"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"_Configuration de l'affichage des données:_ aucun chiffre après la virgule"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"##precision floats\n",
"pd.options.display.float_format = '{:,.0f}'.format"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Origine des données"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Consommation électrique** \n",
"Les données de l'évolution de la consommation d'éléctricité au cours du temps sont disponibles sur : [**data_gouv_conso**](https://www.data.gouv.fr/fr/datasets/consommation-quotidienne-brute-2012-a-2021/#_). \n",
"Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à la consommation électrique quotidienne par demi-heure en MW. L'URL est: https://opendata.reseaux-energies.fr/explore/dataset/consommation-quotidienne-brute/download?format=csv&timezone=Europe/Berlin&use_labels_for_header=false\n",
"\n",
"**Production électrique** \n",
"En parallèle, les données de l'évolution de la production d'électricité hydraulique, solaire, éolienne et bio-énergie au cours du temps sont disponibles sur : [**data_gouv_prod**](https://www.data.gouv.fr/fr/datasets/production-quotidienne-delectricite-par-filiere-depuis-janvier-2013/#_). \n",
"Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à la production électrique quotidienne par demi-heure en MW. L'URL est: https://opendata.reseaux-energies.fr/explore/dataset/production-quotidienne-filiere/download?format=csv&timezone=Europe/Berlin&use_labels_for_header=false"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Téléchargemet et configuration des données\n",
"**NB**: on séléctionne uniquement les colonnes qui nous intéressent pour la suite de l'étude"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Consommation électrique"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"#upload electric consumption:\n",
"conso_elec= pd.read_csv(\"https://opendata.reseaux-energies.fr/explore/dataset/consommation-quotidienne-brute/download?format=csv&timezone=Europe/Berlin&use_labels_for_header=false\", sep=';',\n",
" usecols=[1,2,8])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"date datetime64[ns]\n",
"heure object\n",
"conso_elec float64\n",
"dtype: object\n"
]
},
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" conso_elec prod_totale hydrau solaire eolien bio\n",
"count 2,922 2,922 2,922 2,922 2,922 2,922\n",
"mean 2,586 2,921 348 48 137 47\n",
"std 521 475 106 28 106 7\n",
"min 1,692 1,826 101 3 7 25\n",
"25% 2,208 2,563 261 25 61 42\n",
"50% 2,419 2,803 350 43 104 48\n",
"75% 2,991 3,315 430 66 180 52\n",
"max 4,301 4,211 607 134 588 64"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"elec_df[['conso_elec', 'prod_totale', 'hydrau', 'solaire', 'eolien', 'bio',]].describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Remarques:** \n",
" - la production d'électricité à partir d'énergies renouvelables se caractérise par une forte variabilité annuelle. On observe une forte variabilité (min vs max) de ces productions sur la période considérée. Pour confirmation, on observera l'évolution intra-annuelle.\n",
" - L'évolution du potentiel de production éolien semble avoir ete plus imortant que celui du solaire (différence min-max)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Saisonnalité"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqYAAANsCAYAAACJf2r5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcVPWd7//XB2hAQdBuu4FikbAkc9Ux5krUcfspzLhEJ+TOb8w1ZDGjN851jFkmGpc4M7kZt0dIMpOJGWZIojET0TDZdFCDETRGRRSy4IZXKGUrlqYaaECBXj73jzpNqtteqrtP1Vnq/Xw8+lH1/fY53/ocqun+1Pd8F3N3RERERESiNiTqAEREREREQImpiIiIiMSEElMRERERiQUlpiIiIiISC0pMRURERCQWlJiKiIiISCwoMRURERGRWFBiKiKSUmb2ZTP7YdRxiIiUSompiIiIiMSCElMRERERiQUlpiIivTCzyWb2UzNrNLO8md1lZkPM7BYz22BmO8zsB2Y2Njh+qpm5mV1uZhvNbKeZfamovVPNbJWZNZvZdjP7RtH3PmhmL5vZbjN70sz+WwnxZczsJ0F8b5jZZ3o59nQzezZo//dmdm7R92rN7B4zy5nZLjP7+YD/0UREBkiJqYhID8xsKLAE2ABMBSYCDwCfDL7OA6YBo4G7upx+FvAeYA7w90VJ5jeBb7r7GGA6sDh4rXcD9wOfA+qBR4D/MrPhvcQ3BPgv4PdBbHOAz5nZBd0cOxF4GLgVqAWuA35iZvXBIf8BHAmcADQA/9T7v46ISPiUmIqI9OxUIANc7+773f2Auz8NfBT4hrtn3X0fcBNwmZkNKzr3/7j72+7+ewqJ43uD+hZghpkd6+773P25oP5/Ag+7+y/dvQX4GnAEcEYv8b0fqHf3r7j7IXfPAt8BLuvm2I8Bj7j7I+7e7u6/BFYBHzCzCcBFwP92913u3uLuv+rvP5aIyGApMRUR6dlkYIO7t3apz1DoRe2wARgGjCuq21b0/C0KvaoAVwLvBtaa2Qtmdkl3bbp7O7CJQk9oT44DMsGt+d1mthu4uUscxcde2uXYs4AJwXU2ufuuXl5LRKTshvV9iIhI1doETDGzYV2S0xyFRK/DFKAV2A5M6q1Bd38d+EhwG/4vgB+bWV3Q5h93HGdmRiFh3NJHfG+4+8wSr+U/3P1TXb8R9JjWmtnR7r67hLZERMpCPaYiIj17HtgK3Glmo8xspJmdSWEs6OfN7F1mNhq4HfhRNz2r72BmHzOz+qBHtCMJbKMw1vRiM5tjZjXAF4CDwLN9xNdsZjeY2RFmNtTMTjSz93dz7A+BPzezC4LjRprZuWY2yd23Ao8C/2pmx5hZjZmdU9K/kIhIiJSYioj0wN3bgD8HZgAbgc0UxoLeTWGy0FPAG8AB4NoSm70QeNnM9lGYCHVZMHb1NQrjQL8F7Axe98/d/VAJ8Z0cxLET+C4wtptjNwFzKdzqb6TQg3o9f/g78HEK41/XAjsoTMISEakoc/eoYxARERERUY+piIiIiMSDJj+JiMSYmU0BXunh28e7+8ZKxiMiUk66lS8iIiIisZDaHtNjjz3Wp06dGnUYIiIiIlVv9erVO929vq/jUpuYTp06lVWrVkUdhoiIiEjVM7MNfR+lyU8iIiIiEhNKTEVEREQkFpSYioiIiEgsKDEVERERkVhI7eQngQULFpDNZvs8bsuWLQBMnDixpHanTZvG1VdfPajYRERERLpSYiocOHAg6hBERERElJimWam9mtdffz0A8+fPL2c4IiIiIr3SGFMRERERiQUlpiIiIiISC0pMRURERCQWlJiKiIiISCxo8lMXWmJJREREJBpKTAdISyyJiIiIhEuJaRdaYklE+pLP57njjju4+eabqa2tjTocEZHU0BhTEZF+WrRoES+99BL33Xdf1KGIiKSKElMRkX7I5/M89thjuDuPPfYYTU1NUYckIpIaZU9MzWyomf3WzJYE5Voz+6WZvR48HlN07E1mts7MXjOzC4rqTzGzF4Pv/YuZWbnjFhHpzqJFi2hvbwegvb1dvaYiIiGqRI/pZ4FXi8o3AsvcfSawLChjZscDlwEnABcC/2pmQ4NzFgBXATODrwsrELeIyDssX76c1tZWAFpbW1m+fHnEEYmIpEdZE1MzmwRcDHy3qHoucG/w/F7gQ0X1D7j7QXd/A1gHnGpmE4Ax7r7C3R34QdE5IpIQ+Xye6667LvG3vmfPns2wYYV5o8OGDWP27NkRRyQikh7l7jH9Z+CLQHtR3Th33woQPDYE9ROBTUXHbQ7qJgbPu9aLSIKkZcLQvHnzGDKk8KtzyJAhfPSjH404IhGR9ChbYmpmlwA73H11qad0U+e91Hf3mleZ2SozW9XY2Fjiy4pIuaVpwlBdXR3nnHMOAOecc46WixIRCVE5e0zPBD5oZm8CDwCzzeyHwPbg9jzB447g+M3A5KLzJwG5oH5SN/Xv4O4L3X2Wu8+qr68P81pEIpGW299pnTCkeZgiIuEqW2Lq7je5+yR3n0phUtNyd/8Y8BBweXDY5cCDwfOHgMvMbISZvYvCJKfng9v9e83s9GA2/ieKzhFJtbTc/k7ThKF8Ps9TTz0FwK9+9avEf2gQEYmTKNYxvRP4MzN7HfizoIy7vwwsBl4BfgFc4+5twTlXU5hAtQ5YDzxa6aBFKi2fz7N06VLcnaVLlyY6AUrThKG09f6mpVce0nUtItWqIompuz/p7pcEz/PuPsfdZwaPTUXH3ebu0939Pe7+aFH9Knc/Mfjep4PZ+SKptmjRok69jElOgNI0YShNvb+Qnl55SNe1KMmWaqWdn0RiatmyZXR8BnN3li1bFnFEA1dXV8f555+PmXH++ecnesJQmnp/0zQpLU3XAulKskX6Q4mpSEw1NDT0Wk6aefPmceKJJya6txQK19Ex6cnMEn09aRqWkKZrSVuSLdIfSkxFYmrHjh29liUadXV1ZDIZADKZTKJ7f9M0LCFN15KmJFukv4ZFHYBIKRYsWEA2my3p2C1btgAwcWLf+zBMmzaNq6++elCxlcucOXNYsmRJp3KSFd+avPbaa6MOZ8Dy+Ty5XGHFuq1bt9LU1JTY5HT27Nk8/PDDuDtmluhhCbNnz+YXv/gFra2tiR9i0V2SneT/MyL9oR5TSZ0DBw5w4MCBqMMYtOJbxkmfMJSmW5OLFi06PPY36b1ZF110UadxzBdffHHEEQ1cmibYpWkccwdN5pJSqcdUEqE/vZrXX389APPnzy9XOBVjZqRhEYpFixbR1lZY/a2trS3RvaZp6s169NFHD/+MmRkPP/xwYq+lY4Ldww8/nPgJdvPmzeOxxx4Dkp9kd0jLHRMpP/WYisTUokWLOvUAJblnbvny5Z0S0ySP/0tTb9by5cs79Zgm+X2B9EywS9MqFpCuOyZSfkpMRWIqTZM5zjjjjF7LSZKmW8Zd34czzzwzokjCUVdXx9e+9rXEJ3JQGGZxxBFHJHp4RQdN5pL+0K18kZhK02SOrpK8x3yabhl3lYZhI2nx6KOP8vbbbyd6eEWHNA1/SYpSJwzHcbKwekxFYipNk5+effbZTuVnnnkmokjCkZberK7vQ9Lfl7RMsEnbre+09cynSRwnC6vHVCSm6urqaGhoYMuWLdTX1ye6Zy5NyxIB/OxnP+Ott97ipz/9Kdddd13U4QxYQ0MDGzZs6FROsrRMsEnTZEGAgwcP9lqOiyT3MnZV6mvGcbKwekxFYiqfzx/+Bbhly5ZE95qkaVmifD5/eLzvsmXLEv2+pGkThzT1MqZpsiDAihUrOpW73kFJmjj2MqaJekxFYuruu+/uVP7e9753+NNt0qRpWaK7776700SOu+++O7G9pmeeeSaPP/54p3JSdTfBJqk/Y2eccUan9yXJkwWBw+9LT+W4SHIvY5qox1Qkpp544oley0mSpmWJnnzyyU7lJL8vXSV5UlqaVrHoeqv70KFDEUUSjgkTJvRaFimmxFQkppLSy1CKrmNKkzzGNE3vS9fJTk8//XREkQxemtaXTdtkwXw+32tZpJgSU5GY6tp7leTerK63Is8666yIIhm8NPX+dJ3slOTJT2laX7ZjfGlP5aQZN25cr2WRYmVLTM1spJk9b2a/N7OXzez/BPVfNrMtZva74OsDRefcZGbrzOw1M7ugqP4UM3sx+N6/WJL/QouUKE0J0Le//e1O5bvuuiuiSAav66SaJE+y2b59e6/lJKmrq+O0004D4LTTTkv0KhZDhw7ttZw0aZpkJ+VXzh7Tg8Bsd38vcDJwoZmdHnzvn9z95ODrEQAzOx64DDgBuBD4VzPr+N+4ALgKmBl8XVjGuEViIU0JUMfqAh02b94cUSSDN2fOnF7LSZK2nqyOpX7eeOONiCMZnKOPPrpT+ZhjjokoknCk6f+MlF/ZZuV7YabDvqBYE3z1tq3IXOABdz8IvGFm64BTzexNYIy7rwAwsx8AHwIe7U88pa5PVqr169cDhD5LOqo1zyR+5syZ02ntzyT/Mu+YkV9cTqqLLrqIJUuWHC4neemrNPVkrVu37vAHoM2bN5PNZpk2bVrEUQ1M1zGYO3fujCiScJxxxhmd/s8keSiPlF9Zl4sKejxXAzOAb7v7SjO7CPi0mX0CWAV8wd13AROB54pO3xzUtQTPu9Z393pXUehZZcqUKZ2+l81mWffKq0wZG87tneFthT+yh7aEd+tr457k9ohJ+ObNm8fSpUtpaWmhpqYm0WPmzjrrLH79618fLp999tkRRjM4DzzwQKfy/fffz5e+9KWIohmcNH34+epXv9qpfOedd7Jw4cKIopFi//7v/96pvGDBAr030qOyJqbu3gacbGZHAz8zsxMp3Jb/Rwq9p/8IfB24AuiuC8V7qe/u9RYCCwFmzZr1jmOmjK3llrPPH8CVVMatv34s6hAkRurq6rjgggtSsSf7RRdd1Ckx/cAHPtDL0fHWdeZ68XUlzbx583j44YcPl5P84ad4B6vuykkydOjQThOekj7GNE3vjZRfRWblu/tu4EngQnff7u5t7t4OfAc4NThsMzC56LRJQC6on9RNvUjqnXjiibg7733ve6MOZVDSNPmpeEhCd+WkKV5fVuKhY9mrnspJc+SRR/ZaFilWzln59UFPKWZ2BPCnwFozK55a/D+Al4LnDwGXmdkIM3sXhUlOz7v7VmCvmZ0ezMb/BPBgueIWiZOOBO6b3/xmxJEMTpomP3XdH7uU/bLjqrvdxSR6f/Znf9ZrOWm6bhjQtSxSrJw9phOAJ8xsDfAC8Et3XwJ8NVj6aQ1wHvB5AHd/GVgMvAL8ArgmGAoAcDXwXWAdsJ5+TnwSSaLVq1ezb19h/uC+ffv47W9/G3FEAvDxj3+8U/mTn/xkNIGEIE27i6VJmtb9FemvsiWm7r7G3d/n7ie5+4nu/pWg/uPu/sdB/QeDHtGOc25z9+nu/h53f7SoflXQxnR3/7TrnpNUgdtvv71T+dZbb40oksFL0628+++/v1P5hz/8YUSRDF6adrFKk+4mCyVZmjZykPLTzk8iMdXRW9pTOUneeuutXstJkqaJHGkbL5sWafoZg3Rt5CDlp8RUJKbSNAFi9OjRvZaTJE3vS8cWnj2VJRppGscM6pmX/knub9Qqps0CqkOaerNaW1t7LSdJmq5lwoQJnSamZTKZCKMZnOOOO65Tz+Jxxx0XYTSDM2nSpE7vy+TJk3s5WiRdlJgmUDab5fVX1jB5TDhr29W0Fj69Htj8cijtAWxqbuv7IOlVmhLT97///Z3W+zz11FN7OTreJk6c2ClpmDRpUi9Hx1uadhj64he/yDXXXHO4fOONN0YYzeCsWrWqU/mFF16IKBKRylNimlCTxwzl+j+J7wSS+SuSO4YwLkaMGMHbb7/dqZxUXXv4O3rpk6ihoaFTYlpfXx9hNIMzatQoDhw4cLic5CEWEl+nnXYaK1euPFw+/fTTI4xG4k4DikRiqjgp7a6cJF3XMe1aTpKuy3YleRmvNPWYdrclaVINHz6813LSdI2/pqYmokgkCZSYikjZpWnCkMRTmmayp+lDKcCzzz7ba1mkWNX8dcjlcuzfsyfW+9Fv2NPEKNPYTClI037ZaZowNGzYsE7xK8mOB70v8VXYtLHnspQm7InPUJ7Jz4Od+Kz/uSIVVuovl+KktKPc2y+POK+CcOSRR3ZauzTJC+ynKclOkzS9LxMmTGDr1q2dykl27rnn8vjjjx8un3feeRV77TQlc9lslnWvvMaUMeNDe93hrYUb54c27wmlvY3N2wbdRsmJqZkNBcYVn+PuGwcdQYVkMhkO+VBuOfv8qEPp0a2/fozhmXFRhyExMWTIkE7r/SV5jcniCTbdlZNk9OjRnTY7SPKEITPrtNpDknuy0vS+7N69u9dyXJSa9LW0tHQqb968uWIfsgur2Kxj8pgpobQHUNNaGDN7YPOhUNrb1Fx6KjVlzHhuPv2vQnndcrj9uXsG3UZJiamZXQv8A7Ad6PhL6cBJg45ApMqU+gt39erV3HzzzYfLt99+O+973/vKFVZZpWmB7a5/ZLuWkyRNS5IdOnSo13KSzJkzhyVLlnQqJ1lNTc3hoUlHH310xSc/TR4zhS+cdlNFX7M/vr7yjqhDiJVSe0w/C7zH3fN9HikioTjllFMO95qOHj06sUlp2owfP77TxJrx48O7rSYDV1NT0ykZTfLM74suuqhTYnrxxRdHGE3P+tOr+bnPfY6NGzeyYMECamtryxiVJF2p9wY3AeEMQBCRkk2ZUrj9dMstt0QciXTI5XK9lpOk64S6JE+w279/f6/lJHnggQc6le+///6IIglPTU0N06dPV1Iqfeo1MTWzvzWzvwWywJNmdlNHXVAvImU0ZswYTjrpJPWWxkiaJtmcccYZncpnnnlmRJFIseJd0gCeeuqpiCIRqby+ekyPCr42Ar8EhhfVHVXe0EQkLc4+++xey0mSpnGZXaXpWkQkmfoaY/og8HsfwG8rMxsJPAWMCF7nx+7+D2ZWC/wImAq8CXzY3XcF59wEXAm0AZ9x96VB/SnA94EjgEeAzw4kprTI5XLsb26L9bafm5rbGJXgW5wSrquvvrpTL9Df/M3fRBjN4KRpvUwtfC4icdPXb9TvAu8ys98AzwDPAs+5e3MJbR8EZrv7PjOrAZ42s0eBvwCWufudZnYjcCNwg5kdD1wGnABkgMfN7N3u3gYsAK4CnqOQmF4IPNrfixWR8JW6ZExNTQ0tLS2MHTuWO+7ofRZqnNdk/eM//uNO25CedJIWJxERCUuviam7zzKzI4FTgTOAzwD/YWbbgGfcvcduj6BHs2NRuZrgy4G5wLlB/b3Ak8ANQf0D7n4QeMPM1gGnmtmbwBh3XwFgZj8APkQVJ6aZTIYD7bu4/k/iu0j5/BVvMTKT6fO4NC1+LL0bNmwYbW1tZEr4uYiz1157rVN57dq1EUUyeA0NDZ0Wcm9oaIgwGumQpg0pRPqrz3tQ7v4WhYlPLwArgTOBT1DotexVsCj/amAG8G13X2lm49x9a9D2VjPr+E04kUKPaIfNQV1L8LxrvaRANpvltVfXUH90eG1asERm09Y1obTXGM+1rWOj1IS944PC/PnzyxlO2Z1yyimdhiWccsopEUYzODt27Oi1nCTjx49n27Y/7DqT5N2SipPS7soiadZrYmpm8yj0lJ5M4dZ8R3J6lrv3ue9UcBv+ZDM7GviZmZ3Y28t110Qv9d3FexWFW/6Hl9mR+Ks/Gj58XnyXqVn8RFvfB0nV6NrD/8Ybb0QUyeClaeOD4447rlNietxxx0UYzeBMnDiRLVu2HC5PmjQpwmhEKquvHtOFwFrg34Cn3P3/DuRF3H23mT1JoZd1u5lNCHpLJwAdH9E3A5OLTpsE5IL6Sd3Ud/c6C4OYmTVrVtVOjhKR8ilOGKCwvWJSjRw5krfffrtTOalWr17dqbxq1aqIIhm8SZMmdfo5mzhRNwmlevS1XNRYCj2QI4Evm9lqM1tiZl8ys9m9nWhm9UFPKWZ2BPCnFJLch4DLg8MupzDzn6D+MjMbYWbvAmYCzwe3/fea2elW2Mj5E0XniIhUVJoWpS9OSrsrJ0malvHqmlQnOckW6a++Jj+1Ab8Jvu4ys3HAXwKfB74C9PYbeQJwbzDOdAiw2N2XmNkKYLGZXUlhfdRLg9d62cwWA68ArcA1wesDXM0flot6lCqe+CQi0Wpra+u1LNEYP358p17GJI8xTdMQC5H+6muM6UkUxph2fA2nMEHpWxSWj+qRu68B3rFdjbvngTk9nHMbcFs39auA3saniohIFdu5c2encmNjY0SRDN6QIUM6feAZMqTU3cMlzQprmO/l9ufuiTqUHm1o3sao3OC2A+5rjOn3KSSgjwJ/5+4bBvVqIiIJ19DQ0Gn2epKXWErTZgE1NTUcPHiwUzmpzjjjjE4rP3TdOlZKV0jm9vP1lb2vnRylTc0bGJUbFXUYsdHXb6GvAJPc/X4AM1sJ1Aff+6K7/7icwYmIxM173vOeTonpH/3RH0UYTc9KWSO4OCntKPe2/m+c1/Pdt29fr+UkGTFiRKdykielSXgymQyH2vdw8+l/FXUoPbr9uXsYnhk7qDb6Skyvp7AbU4cRwPuBUcA9gBJTEakqXSeivPDCCxFFMngjRozo1MvYNSFKktGjR3dKRkePHh1hNIPTdWvYZ555huuuuy6iaJKtsCHNIb5w2k1Rh9Kjr6+8g5GZ4VGHERt9JabD3X1TUfnpYIxo3szU7ywiqVJKL2N3E1Pi2MtYymuuW7eOa6655nD5n//5n5k2bVo5wyqbQ4cO9VqOi1J+xkaOHNlpUf0jjjiiz53s4tybLdIffY2oPqa44O6fLirWIyJSZZKSAJVixowZh3tJjzvuuMQmpQDDhw/vtZwk48aNO/zczBI9jlmkv/rqMV1pZp9y9+8UV5rZXwPPly8sqRa5XI7mPfHeXWnHbjjg3e7pIClTSo/Tt771LZYsWQIUkoaLL76Ya6+9ttyhlc3kyZPJZrPceOONUYcyKEkZY1pqr+ZHPvIRmpqaEv/zJdJffSWmnwd+HmxN+pug7hQKY00/VM7ARETiaN68eYcT02HDhvHRj3404ogG58gjj+TEE09MdG8ppGuMKRR6TQ8ePJj4ny+R/uprgf0dwBnBLk8nBNUPu/vyskcmVSGTyTDSdvLh8+K7e87iJ9qonZCJOgyJibq6Ompra2lqauKCCy6gtrY26pBSr5Rxmd31mCZ5XGZNTQ3Tp0/Xz5dUnZIWrQsSUSWjIiKoNyuOOj4sdKirq4swGhEZqOSupiwiEhH1ZlVWKb2a+XyeefPmAYUhFnfddZfeH5EE0j5nIiKSeB1DLAAuvPBCJaUiCaUeUxERSQUNsQhHKWN6+2v9+vUAfY777Y84jxGWgauqxHTjniZu/fVjobS1ff9eAMaNOiqU9qAQ34yJ4/o+UERE3kFDLMKRzWZZu3Yd9bXHhdeoF9aVze9oCaW5xqYNobQj8VM1iWnYS6EcWl+YATo8xERyxsRxiV+ypZqpl0FE0qK+9jgu/cAtUYfRo/985NaoQ4jExuZt3P7cPaG1t31/YcLguFHhfJjb2LyNGYwdVBtVk5iG/Ye4I1GYP39+qO2WalNzG/NXvNX3gSXYsb+wxWLDqPCGHG9qbmNmaK0lQzab5dVX1zD2mL6PLVVbsPtlbtuaUNrbsyuUZkREpMLK0XF1aP1OAIZPGlwy2WEGYwcdZ9UkpmkS9g9nS9ArN3LS9NDanEl5/hPF3dhj4Jzzo46iZ0+FM5JFREQqrBx3uqLuZOtO2RJTM5sM/AAYD7QDC939m2b2ZeBTQGNw6M3u/khwzk3AlUAb8Bl3XxrUnwJ8HzgCeAT4rLt7uWKPu7T1/oqIiIhAeXtMW4EvuPtvzOwoYLWZ/TL43j+5+9eKDzaz44HLKOwwlQEeN7N3u3sbsAC4CniOQmJ6IfBoGWMXERERkQorW2Lq7luBrcHzvWb2KjCxl1PmAg+4+0HgDTNbB5xqZm8CY9x9BYCZ/QD4EEpMRUREpA+bmjfy9ZV3hNbejv3bAWgYFc7k503NG5nJjFDaSoOKjDE1s6nA+4CVwJnAp83sE8AqCr2quygkrc8VnbY5qGsJnnet7+51rqLQs8qUKVNCvQYRERFJlnLMdWhZfwiAkZOGh9LeTGZU5ZyMnpQ9MTWz0cBPgM+5e7OZLQD+EfDg8evAFYB1c7r3Uv/OSveFwEKAWbNmVe0YVJHB0tJXItUrl8vRvOetWC/J1JjfwMHWI/s8rlomDKVJWRNTM6uhkJTe5+4/BXD37UXf/w6wJChuBiYXnT4JyAX1k7qpl5Ro3A2Ln2gLrb3dhSVmOXp0OO017obaCeG0lRTZbJYX166hpi68NluDj4prG8NZ+qolH0ozIiISI+WclW/A94BX3f0bRfUTgvGnAP8DeCl4/hCwyMy+QWHy00zgeXdvM7O9ZnY6haEAnwC+Va64pbLKcftiV9AzVzshnOWvaidU59JXNXVw7NzubljEw84HdVNEpBwymQwjhrXEfoH9uoaaqMOQMihnj+mZwMeBF83sd0HdzcBHzOxkCrfj3wT+GsDdXzazxcArFGb0XxPMyAe4mj8sF/UomviUGrrNIiIiIh3KOSv/abofH/pIL+fcBtzWTf0q4MTwohMJXy6XY/eeeC9iv3sX0F59I2HCHjMb5XjZJFwLVN/4X70vIuHQzk8iknrZbJY1a1+BupAGHnsLAGsaN4bTXn5fyYcWruVVrC6cva079ip5sXF7H0f2o818U2htJUU2m+Wlta8zom5y3weX4JAXblO/3ngglPYADuY3hdaWSLkoMRUJSSaTgSE7Y78laWZ8JuowolE3mmFzZ0UdRbdaH1zVr+OtrpZhl1xQpmgGr3XJ0qhDiMSIuslMmfvFqMPo0cYHvxp1CCJ9GhJ1ACIiIiIioB5TEelGLpejpTneM99b8pBrqb7xsiIiaabEVERSL5fLQfPeft8yr5j83qpMstM0YSiXy3GweX+sb5cfzG8i1zKqpGMbmzaEusD+7uZtABw9Znwo7TU2baCuQdt4ppESUxF5h0wmQ3PNztivY5qpr77xsrktM1KWAAAgAElEQVRcDm/eE+txnJ5vItfS96YZhYlcrzGkriGU1233ws/rS427QmkPoD2/I7S2kqIc6zbv3lvYxjOstUfrGrSNZ1opMRWR1MtkMuysaY315KdqTLIBhtQ1MOKSj0QdRo8OLrm/pOMymQz7aw7EfvJTpn5kn8dpfWmJkhJTEZEEyWQy5GuGxn5WfqZ+XNRhiEgCKTEVCdGeXeEusL9vb+Fx9FHhtLdnF2TCGeIlIiISOiWmIiEpx3in9fsLkzky46eH0l5mfHniFBERCYMSU5GQaFyWiIjI4GiBfRERERGJBfWYiohIJHK5HO3Ne0ue+R6F9vwOci1vRx2GSNVQYioi1SG/L7wF9ve8VXgce2Q47eX3QX04TYmIJJkSUxFJvbAnfK1vLkxKm14/JZwG66tzUlomk6GpZlfs1zHN1B9T2rH5TaHt/HRoT2Fh/+Fjw9l8AArxUT8ztPZEyqFsiamZTQZ+AIwH2oGF7v5NM6sFfgRMBd4EPuzuu4JzbgKuBNqAz7j70qD+FOD7wBHAI8Bn3T2+m3iLpEBLvrC7Ulha9xQeh40Np72WPCX3MoY9MS3qSWmebwpt5yffU1iTzMaGtCYZhfiosnVMw//w0wLA9BIWxC9Z/cyq/AAkyVLOHtNW4Avu/hszOwpYbWa/BD4JLHP3O83sRuBG4AYzOx64DDgByACPm9m73b0NWABcBTxHITG9EHi0jLGLVLWyLH11uJcxnKWvqrWXMfwEaB8A08NMJOvHVd17k7YPPyJRKVti6u5bga3B871m9iowEZgLnBscdi/wJHBDUP+Aux8E3jCzdcCpZvYmMMbdVwCY2Q+AD6HEVKRstPRVfCkBEpE0q8hyUWY2FXgfsBIYFyStHclrxwCaicCmotM2B3UTg+dd60VEREQkRco++cnMRgM/AT7n7s1m1uOh3dR5L/XdvdZVFG75M2VKSJMSRESkbNrzO0JbLqp9zy4AhowtbbJSSW3md0CJk59EZPDKmpiaWQ2FpPQ+d/9pUL3dzCa4+1YzmwDsCOo3A5OLTp8E5IL6Sd3Uv4O7LwQWAsyaNUuTo0REYiz88bJNAEwPM5GsP6bqxsuKRKmcs/IN+B7wqrt/o+hbDwGXA3cGjw8W1S8ys29QmPw0E3je3dvMbK+ZnU5hKMAngG+VK24REakMjZcVka7K2WN6JvBx4EUz+11QdzOFhHSxmV0JbAQuBXD3l81sMfAKhRn91wQz8gGu5g/LRT2KJj6JiIiIpE45Z+U/TffjQwHm9HDObcBt3dSvAk4MLzoRERERiZuKzMoXEREREemLElMRERERiQUlpiIiIiISC2Vfx1Sis2DBArLZbJ/HrV9f2CqyY0ZrX6ZNm1aWnYFERESkuikx7aIak7mRI0dGHUJVKfVnDPr3cxbnn7GkKMf/f70vIiKlU2I6QElI5vTHMPmS8HNWjZLwvijJjqdq7PyQykvy/38lpl3oP3Y8pamXUT9j8VWN700SkuxqpPdFKiGOP2dKTCV14vgfTaTSqjHJToI0vS9p6jCAZPcydpXknzMlppIISf5PJiKDo9vfyZemDoM0XUscKTEVkUFJUy+DJJsShspK2//RtF1PUikxFZGKUNIgA6WEQaR6KDEVkUFR0iAiImHRzk8iIiIiEgtKTEVEREQkFpSYioiIiEgsKDEVERERkVgwd486hrIws0ZgQ5lf5lhgZ5lfo1LSdC2QruvRtcSTriWedC3xlabr0bX033HuXt/XQalNTCvBzFa5+6yo4whDmq4F0nU9upZ40rXEk64lvtJ0PbqW8tGtfBERERGJBSWmIiIiIhILSkwHZ2HUAYQoTdcC6boeXUs86VriSdcSX2m6Hl1LmWiMqYhIgpjZB4Hj3f3OqGMREQmbElMRERERiQXdyhcRqTAzm2pma83su2b2kpndZ2Z/ambPmNnrZnaqmdWa2c/NbI2ZPWdmJwXnftLM7gqeXxqc/3szeyraqxIRGbxhUQcgIlKlZgCXAlcBLwDzgLOADwI3A5uA37r7h8xsNvAD4OQubfw9cIG7bzGzoysWuYhImajHVEQkGm+4+4vu3g68DCzzwtiqF4GpFJLU/wBw9+VAnZmN7dLGM8D3zexTwNCKRS4iUiZKTEVEonGw6Hl7Ubmdwt0s6+acTpMC3P1/A7cAk4HfmVldGeIUEakYJaYiIvH0FPBRADM7F9jp7s3FB5jZdHdf6e5/T2FLwckVj1JEJEQaYyoiEk9fBu4xszXAW8Dl3Rwz38xmUuhdXQb8vnLhiYiET8tFiYiExMzeBP6Xuz8eh3ZERJJGt/JFREREJBaUmIqIJIiZaQiWiKSWElMRkXCdHCyKv8fMfmRmI4NF8P+84wAzqzGznWZ2clD+uJltMLO8mX2puDEz+7KZ/djMfmhmzcAngwX4V5jZbjPbamZ3mdnw4PipZubFCayZPWlm/6tC1y8iMmBKTEVEwvVh4ELgXcBJwCcpLI7/saJjPgBsdfffmdnxwALg40AGqAMmdWlzLvBj4GjgPqAN+DxwLPAnwBzgb8pzOSIilaPEVEQkXP/i7jl3bwL+i8JuTT8EPmBmY4JjPk6weD7wl8ASd3/K3Q8Cf0dhLdNiK9z95+7e7u5vu/tqd3/O3Vvd/U3g34H/r9wXJiJSbkpMRUTCta3o+VvAaHfPUdil6f8Ptg69iELPJxR6STd1nODu+4F8lzY3FRfM7N1mtsTMtgW392+n0HsqIpJoSkxFRCrjXgq38y+l0AO6JajfStHC+GZ2JIXb+cW6ruu3AFgLzHT3McDN/GGnqP3B45FFx48fdPQiIhWgxFREpDJ+Dvx34LMUxpx2+DFwiZmdFUxg+gp9/24+CmgG9pnZHwFXd3zD3RuBLcDHzGyomV0BTA/vMkREykeJqYhIBbj728BPKEyK+mlR/cvANcAiCr2nu4DNfTR3HTAP2At8B/hRl+9/CriewpCAE4BnB38FIiLlp52fREQqxMz+Hni3u3+sz4NFRKqQFmoWEakAM6sFrqQwI19ERLqhW/kiImVmZp+iMLP+UXd/Kup4RETiSrfyRURERCQW1GMqIiIiIrGQ2jGmxx57rE+dOjXqMERERESq3urVq3e6e31fx6U2MZ06dSqrVq2KOgwRERGRqmdmG0o5TrfyRURERCQWlJiKiIiISCwoMRURERGRWIhkjKmZHQ18FzgRcOAK4DUK2+pNBd4EPuzuu4Ljb6KwMHUb8Bl3X1r5qEWkOwsWLCCbzfZ53JYtWwCYOHFin8dOmzaNq6++us/jREQkXaLqMf0m8At3/yPgvcCrwI3AMnefCSwLypjZ8cBlFPZ7vhD4VzMbGknUIjJgBw4c4MCBA1GHISIiMVbxHlMzGwOcA3wSwN0PAYfMbC5wbnDYvcCTwA3AXOABdz8IvGFm64BTgRUVDTyBytGTBerNks5K/Vm4/vrrAZg/f345wxERkQSLosd0GtAI3GNmvzWz75rZKGCcu28FCB4bguMnUtjKr8PmoO4dzOwqM1tlZqsaGxvLdwUpo54sERERiYMoxpgOA/47cK27rzSzbxLctu+BdVPX7T6q7r4QWAgwa9asqt9rVT1ZIiIikiRR9JhuBja7+8qg/GMKiep2M5sAEDzuKDp+ctH5k4BchWIVERERkQqpeGLq7tuATWb2nqBqDvAK8BBweVB3OfBg8Pwh4DIzG2Fm7wJmAs9XMGQRERERqYCotiS9FrjPzIYDWeCvKCTJi83sSmAjcCmAu79sZospJK+twDXu3hZN2CIiIiJSLpEkpu7+O2BWN9+a08PxtwG3lTUoEREREYmUdn4SERERkViI6lZ+bGntTxEREZFoKDEdIK37WVmlfmAAbX0pIiLVLclbRSsx7UJrfyafPjTIQCX5l7mISH/F8e+lElNJhP78YdeHBim3OP4yFxHpkORONiWmIiKBJP8yFxFJA83KFxEREZFYUGIqIiIiIrGgxFREREREYkFjTEUqTEtfiYiIdE+JqUiMafa3iIhUEyWmIhWmpa9ERES6pzGmIiIiIhILSkxFREREJBZ0K19ERESqnrYkjgclpiIiIiIl0qTU8ookMTWzN4G9QBvQ6u6zzKwW+BEwFXgT+LC77wqOvwm4Mjj+M+6+NIKwY6M/yw2VYv369cAfJtqERZ8URUQkKbQlcTxE2WN6nrvvLCrfCCxz9zvN7MagfIOZHQ9cBpwAZIDHzezd7t5W+ZDjIZvN8vora5g8Zmgo7dW0tgNwYPPLobQHsKm5at8eERERGaA43cqfC5wbPL8XeBK4Iah/wN0PAm+Y2TrgVGBFBDHGxuQxQ7n+T46MOowezV/xVtQhiIiISMJENSvfgcfMbLWZXRXUjXP3rQDBY0NQPxHYVHTu5qDuHczsKjNbZWarGhsbyxS6iIiIiJRDVD2mZ7p7zswagF+a2dpejrVu6ry7A919IbAQYNasWd0eIyIiIiLxFEmPqbvngscdwM8o3JrfbmYTAILHHcHhm4HJRadPAnKVi1ZEREREKqHiiamZjTKzozqeA+cDLwEPAZcHh10OPBg8fwi4zMxGmNm7gJnA85WNWkRERETKLYpb+eOAn5lZx+svcvdfmNkLwGIzuxLYCFwK4O4vm9li4BWgFbimmmfki1RC2EuSQXmWJSt1SbIkLLEW9vJqWixcRJKo4ompu2eB93ZTnwfm9HDObcBtZQ5NRALZbJYX166hpi68NluDUd9rG9eE0l5LvvRjs9ksa9a+AnWjQ3ltvAWANY0bw2kvvy+cdgZAi4WLSJzEabkoEYmRmjo4dm53cw/jYeeD/ZzfWDeaYXNnlSeYQWp9cFXobWqxcBFJoqiWixIRERER6USJqYiIiIjEQtXcyk/C5AeovskFaZtkIyIiIgNXNYlpNptl3SuvMmVsbSjtDW8rjG87tGV7KO0BbNzTVNJxuVyO/c1tsd72c1NzG6NyfS83m81mee3VNdQfHd5rW3vhsWlrOJNsGneH0oyIiIj0oWoSU4ApY2u55ezzow6jR7f++rGoQ4hE/dHw4fOGRh1GjxY/odXJREREKqGqEtO0yGQyHGjfxfV/cmTUofRo/oq3GJnJRB2GiIiIJIgSU5GQaLysiIjI4CgxFQlJNpvl1VfXMPaY8NpsC8bL5raFM152z65QmhGJpXw+zx133MHNN99MbW048wlEpLKUmIqEaOwxcE58hzHzVHUOY5YqsWjRIl566SXuu+8+rr322qjDEZEB0DqmIiKSePl8nqVLl+LuLF26lKam0lY5EZF4UWIqIiKJt2jRIlpbWwFobW3lvvvuizgiERkI3cqXSOVyOZr3xHtJph274YD3vSariERn2bJluBfWl3Z3li1bptv5IgmkHlMREUm8hoaGXssikgzqMZVIZTIZRtrO2C+wXzuhutZkzeVytDTDzgc96lB61JKHXIt6sqVgx44dvZZFJBnUYyoiIol35plndiqfddZZEUUiIoNRNT2muVyO/Xv2xHrbzw17mhhl8R1rKdUjk8nQXLOTY+da1KH0aOeDTqa+tJ7sXC4HzXtpfXBVmaMaoPxe9f4O0sGDBzuVDxw4EFEkIuVRLZu4RJaYmtlQYBWwxd0vMbNa4EfAVOBN4MPuvis49ibgSqAN+Iy7L40kaBERiaVnn32217JI0mWzWda98hpTxowPrc3hrYUb54c27wmlvY3N2wbdRpQ9pp8FXgXGBOUbgWXufqeZ3RiUbzCz44HLgBOADPC4mb3b3fvVtZjJZDjkQ7nl7Piufn7rrx9jeGZc1GGIpE4mk2FnTSvD5s6KOpRutT64quTeX+lex4z8nsoiaTBlzHhuPv2vog6jR7c/d8+g24gkMTWzScDFwG3A3wbVc4Fzg+f3Ak8CNwT1D7j7QeANM1sHnAqsqGDIIiISY0cccQT79+/vVJby6s+t5S1btgAwceLEPo8d7K1gSbaoJj/9M/BFoL2obpy7bwUIHjvW+pgIbCo6bnNQ9w5mdpWZrTKzVY2NjeFHLSIisVSclHZXlmgdOHBA436lJBXvMTWzS4Ad7r7azM4t5ZRu6rq9R+PuC4GFALNmzdJ9HKmoXC7H7j3x3o9+9y6gXZNsJH2GDRt2eOenjrKUV396NTsm18yfP79c4UhKDPp/bjCJaVxxW+6+sZdTzgQ+aGYfAEYCY8zsh8B2M5vg7lvNbALQsQjdZmBy0fmTAP1lFRGRw4qT0u7KUp2qZSZ7mgwqMTWza4F/ALbzh9vyDpzU0znufhNwU3D+ucB17v4xM5sPXA7cGTw+GJzyELDIzL5BYfLTTOD5wcSdBpua25i/4q1Q2tqxv/DWNYwKb2THpuY2ZobWWjJkMhkYspNz4ju/jqceg8x4TbKR9Bk6dChtbW2dyiLZbJbXX1nH5DFTQmuzpnU4AAc2HwqlvU3NvfXlVZ/B9ph+FniPu+dDiOVOYLGZXQlsBC4FcPeXzWwx8ArQClzT3xn5aTNt2rRQ22sJPv2NnDQ9tDZnUnqcjbsLuyuFZfe+wuPRo8Npr3E31E4Ipy2RwQq7B6gcvT9Q+R6g4qS0u7JUr8ljpvCF026KOowefX3lHVGHECuDTUw3AQNe/Mrdn6Qw+54guZ3Tw3G3UZjBL/RvXE8pohz7E3aSDbAr+ENbOyGcRLt2QnnijLuWfLhbkrYGvymGjQ2nvZY8UB9OW0mSzWZZs/ZVrK42lPY6llV6sXF7KO0BeL4ptLZEpLoMKDE1s44lnrLAk2b2MHB42w13/0YIsUkVKEePigbZD145EvH1zYUPDNPrQ+qZr6/ODwwAVlfLsEsuiDqMHrUuCXcPlIH2EvfVC6xxfSLxM9Ae06OCx43B1/DgS0RSQB8YJGnGjBlDc3Pz4fLYsSF1zYtIRQ00MX0Q+L1raw0RESmzUj4o5fN55s2bd7j8b//2b9TWhjPcQUQqZ6CJ6XeBd5nZb4BngGeB59y9uffTREQikt9H64OrwmlrT7Aixtgjw2kvv68qx8uGqa6u7nCv6TnnnKOkVCShBpSYuvssMzuSwtagZwCfAf7DzLYBz7j734QYo4jIoIQ9FvUP42VDWoKmisfLhmnixIm0tbVp3KhIgg14Vr67v0Vh4tMLwEoKC+d/ArgwpNhEREKRppUspGc1NTVMnz5dvaUiCTbQWfnzKPSUnkxhNn5HcnqWu28LLzwRERERyeVy7G/ey+3P3RN1KD3a0LyNUbn9g2pjoD2mC4G1wL8BT7n7/x1UFBWycU8Tt/46nI3Mt+/fC8C4UUf1cWTpNu5pYsbEcaG1JyIi8VLq0ldbtmwBCsMTSqGlryQtBpqYjgXeS6HX9Mtm9h5gK7ACWOHuy0OKLzRhj986tL6wvdDwEBPJGRPHaZyZiIhw4MCBqEOQmMlkMhxq38PNp/9V1KH06Pbn7mF4ZnBLtQ108lMb8Jvg6y4zGwf8JfB54CtA7DYp1hgzERGJWql/i/Q3RqrVQMeYnkSht7TjazjwHPAtCstHiYiIiIj0y0Bv5X+fQgL6KPB37r4htIhEREREpCoNGeB5XwFec/f73X2Dma00s2zw9ZdhBigiIiIi1WGgien1FLYl7TACeD9wLqBpgSIiIiLSbwO9lT/c3TcVlZ929zyQN7NRIcQlkkh7dsFT4axIBsC+wqpkjA5pVbI9uyAzPpy2JBq5XA5v3kPrkqVRh9IjzzeRa2mLOgwRSaCBJqbHFBfc/dNFRe34LFWpHEt9rd9f2PoyM356KO1lxmvrSxERia+BJqYrzexT7v6d4koz+2vg+d5ONLORwFMUbv8PA37s7v9gZrXAj4CpwJvAh919V3DOTcCVQBvwGXePb1eBVK1yLG6tJWOkq0wmQ75mKMMuuSDqUHrUumQpmXptFiLRK+yWtJ+vr7wj6lB6tKl5A6NyutncYaCJ6eeBnwdbk/4mqDuFQrL5oT7OPQjMdvd9ZlYDPG1mjwJ/ASxz9zvN7EbgRuAGMzseuAw4AcgAj5vZu4O1VEVEREQkJQa6wP4O4Awzm00hYQR4uJQdn9zdgX1BsSb4cmAuhclTAPcCTwI3BPUPuPtB4A0zWwecSmGXKREREZFuZTIZDrQf4gun3RR1KD36+so7GJkZHnUYsTHQHlMAgkS039uPmtlQYDUwA/i2u680s3HuvjVod6uZNQSHT6SweH+HzUFdd+1eBVwFMGXKlP6GJSIiUvUWLFhANpsNtc316wvj5TuGJ4Vh2rRpZRlCFWcbm7dx+3P3hNbe9v1NAIwbVRtKexubtzGDCLYkHazgNvzJZnY08DMzO7GXw627JnpodyGwEGDWrFndHiMiIiI9y2azrF27jvra48Jr1As9gvkdLaE019hUffv6lGPi6qH1OwEYPmlwyWSHGYwddJyRJKYd3H23mT0JXAhsN7MJQW/pBGBHcNhmYHLRaZOAXGUjFRERqR71tcdx6QduiTqMHv3nI7dGHULFVcsE24EusD9gZlYf9JRiZkcAfwqsBR4CLg8Ou5w/LOD/EHCZmY0ws3cBM+lj5r+IiIiIJE8UPaYTgHuDcaZDgMXuvsTMVgCLzexKYCNwKYC7v2xmi4FXgFbgGs3IFxFJvrDHMpZjHCNU51hGkahUPDF19zXA+7qpzwNzejjnNuC2MocmIiIVlM1mWbP2NYbUNfR9cAnavTAl4aXGXaG0B9Ce39H3QSISmkjHmIqISHUbUtfAiEs+EnUYPTq45P6oQxCpKkpMRUQSxvNNtC4JZwM837MXABt7VCjtQSE+tPOTiAyAElNJnZaWFjZu3EhTUxO1teGszSYSF2EvGbO+ubDfyfQwE8n6cWVZ2kZE0k+JqSRCfyZJvP7667S2tvLpT3+aiRO73YvhME1qkKQJ++c1jsvFiEj1UmIqqdLS0kJraysATU1NNDQ0UFNTE3FUIpJ2WmFAJBxKTCURSv1F+q1vfYu1a9fiXtj4a/r06Vx77bXlDE1EhGw2y0trX2dE3eS+Dy7BIS98oH698UAo7QEczG8KrS2RclFiKqmybNmyw0mpu7Ns2TIlpiIxlcvlaG/eG+uZ7+35HeRa3i7p2BF1k5ky94tljmjgNj741ahDEOlTxXd+EimnhoaGXssiIiISX+oxlVTZtm1br2WR3pQ6TrA/4/80pq9nmUyGpppdsV/HNFN/TNRhyCBsat7I11feEVp7O/ZvB6BhVDgrWWxq3shMZoTSVhooMZVUGTp0aK9lkTCMHDky6hBEyiaXy9G85y3+85Fbow6lR435DRxsPbLP48qxbFnL+kMAjJw0PJT2ZjJDy6sVUWIqqfLWW2/1WhbpjXo2RdKlHP+ntcRaeSkxlVQxs8OTnzrKUl66/S2SLplMhhHDWrj0A7dEHUqP/vORW6lr0FKAaaTJT5IqZ511Vqfy2WefHVEk0tXIkSN1C1xERHqlHlNJlauvvpqnn34ad8fM1OtWAfo3lsFoz+8Ibbmo9j27ABgyNrzJSu35HVDC5KdcLsfB5v2xXpLpYH4TuZZRUYch0islppIqdXV1nHrqqaxcuZLTTjuN2traqEMSkR6EPeFjfXMTANPDnEVff4wmpohUkBJTSZ2jjjqq06OIxFPYve1RTkrJZDLsrzkQ+wX2M/UaTiPxVvExpmY22cyeMLNXzexlM/tsUF9rZr80s9eDx2OKzrnJzNaZ2WtmdkGlY5bkyOfzPPXUUwD86le/oqmpKeKIREREpFRR9Ji2Al9w99+Y2VHAajP7JfBJYJm732lmNwI3AjeY2fHAZcAJQAZ43Mze7e5tEcSeKOWYLQ3xnjG9aNEi2tvbAWhvb+e+++7TlqQiIiIJUfEeU3ff6u6/CZ7vBV4FJgJzgXuDw+4FPhQ8nws84O4H3f0NYB1wamWjTrc0zZZevnw5ra2tALS2trJ8+fKIIxIREZFSRTrG1MymAu8DVgLj3H0rFJJXM+vY5Hwi8FzRaZuDuu7auwq4CmDKlCnlCTpB4tqrWU6zZ8/mF7/4Ba2trQwbNozZs2dHHZKIiIiUKLJ1TM1sNPAT4HPu3tzbod3UeTd1uPtCd5/l7rPq6+vDCFMSZt68eQwZUvixHjJkCB/96EcjjkhERERKFUmPqZnVUEhK73P3nwbV281sQtBbOgHYEdRvBiYXnT4JyFUuWkmSuro6zj//fB5++GHOP/98LRclIhVzML8ptHVMD+0p/AkcPrahjyNLdzC/CepnlnRsY9MG/vORW0N77d3N2wA4esz4UNprbNpAXcOMUNqSeKl4YmqFPSK/B7zq7t8o+tZDwOXAncHjg0X1i8zsGxQmP80Enq9cxJI08+bNY8OGDeotFZGKCX9N1hYApoe5vFP9zJLiLMe6rbv3HgIIbRvRuoYZWl82paLoMT0T+Djwopn9Lqi7mUJCutjMrgQ2ApcCuPvLZrYYeIXCjP5rNCNfelNXV8fXvva1qMMQkSqSpjVZyzE/IcrrkWSpeGLq7k/T/bhRgDk9nHMbcFvZghKpoFKX8YL+LeUV52W8pPLKsVycfsZEpNy081MX1bj2p8RXWpbxkvjSz5iIxIkS0wHSL3MZKH1AkUrQz5mIJJES0y70y1xEREQkGpGtYyoiIiIiUkyJ6QDl83muu+46mpqaog5FREREJBWUmA7Q3XffzYsvvsjdd98ddSgiIiIiqaAxpgOQz+dZvnw5AMuWLeOKK67QDkMiImWi1VJEqod6TAfg7rvvpr29HYD29nb1moqIxMDIkSO1YopIwqnHdACefPLJTuUnnniC6667LppgRERSTr2aItVDiekAuHuvZREREZGoJHnnN93KH4Dzzjuv17KIiIhI3MVx+It6TAfgiiuuYPny5bS3tzNkyBCuvPLKqEMSERERAZI9/EU9pgNQV1fH7NmzAZg9e7Zm5IuIiIiEQD2mA3TFFVewfft29ZaKiIiIhESJ6QDV1dXxta99LeowREQkQbQma3wlecJQmigxFRERiZm4TUiRP9B7U03+ti8AACAASURBVF6RJKZmdjdwCbDD3U8M6mqBHwFTgTeBD7v7ruB7NwFXAm3AZ9x9aQRhi4iIDIp6z+JL7008RDX56fvAhV3qbgSWuftMYFlQxsyOBy4DTgjO+VczG1q5UEVERESkEiLpMXX3p8xsapfqucC5wfN7gSeBG4L6B9z9IPCGma0DTgVWVCJWEREReadSx2SCxmVK6eK0XNQ4d98KEDw2BPUTgU1Fx20O6t7BzK4ys1VmtqqxsbGswYqIiEhp4riQu8RTEiY/WTd13e4B6u4LgYUAs2bN0j6hIiIiZaJeTSmHOPWYbjezCQDB446gfjMwuei4SUCuwrGJiIiISJnFKTF9CLg8eH458GBR/WVmNsLM3gXMBJ6PID4RERERKaOolou6n8JEp2PNbDPwD8CdwGIzuxLYCFwK4O4vm9li4BWgFbjG3duiiFtEREREyieqWfkf6eFbc3o4/jbgtvJFJCIiIiJRi9OtfBERERGpYuaezsnrZtYIbCjzyxwL7Czza1RKmq4F0nU9upZ40rXEk64lvtJ0PbqW/jvO3ev7Oii1iWklmNkqd58VdRxhSNO1QLquR9cST7qWeNK1xFearkfXUj66lS8iIiIisaDEVERERERiQYnp4CyMOoAQpelaIF3Xo2uJp0iuxcw+aGY3htys3pd4StO1QLquR9dSJhpjKiIiIiKxoB5TEZEKM7OpZrbWzL5r/4+9ew+vqrzz/v/+AgGEKpgYkM2xAaa/p1pbn0ltq9bRMKVa+1SdGXtp/HWc4lU6jrXTmRaL1ulptPJA7bTXOKVDK62dIbZ2+jj4kypY0Got2mIP4PExRMMhHMIOEAWBhHx/f6ydNIkJSXbW3uuwP6/rypV9L9a+813ksL/7Xvf9vc2eNbNVZvbnZvakmb1sZueYWbmZ/beZbTazp8zsrNxz/8bM7so9vjL3/D+Y2ePRXpWIyPBFUmBfRESYQ7DD3ULgN0AtcD7wEeAWYDvwO3e/3MxqgB8C7+rVxxeBD7r7TjObWLTIRUQKRCOmIiLReMXdt7h7B/AcsN6DuVVbgFkESep/ALj7BqDCzCb06uNJ4Adm9glgZNEiFxEpECWmIiLRONrtcUe3dgfB3Szr4zk9FgW4+98CtwLTgd+bWUUB4hQRKRolpiIi8fQ4cA2AmV0I7HP31u4nmNlsd3/a3b9IsHPL9KJHKSISIs0xFRGJpy8D3zezzcBh4No+zllmZnMJRlfXA38oXngiIuFTuSgRERERiQXdyhcRiZiZXWhmOwZ57jVmtq7QMYmIREGJqYhIgrj7KnefH3UcIiKFoMRURCQlzEzrBkQk0ZSYioiEzMw+b2Y7zew1M3vJzOaZ2Rgz+6aZNeU+vmlmY/p5/mIz25p7/vNmdkW3f/sbM/tlt7ab2Q1m9jLwcu7Y/2Nmj5hZS+7rf7TgFy0iEgIlpiIiITKztwGfAt7t7icDHwReBb4AvJdg96Z3AucQ1CDty1bg/cAE4CvAf5rZlBN82cuB9wBvN7PxwCNAHTAJuBr4tpmdMbwrExEpPCWmIiLhOg6MIUgSy9z9VXffSlCT9KvuvtfdmwkSzo/11YG7/8Tdm9y9w91/TDASes4JvuYd7t7i7m8AHwZedffvu3u7u/8W+CnwVyFeo4hIQSgxFREJkbvXA58hqEO618x+ZGYZIAM0dju1MXfsTczsr83s92Z2wMwOAGcCp53gy27v9ngm8J7O5+aefw1wet4XJSJSJEpMRURC5u517n4+QZLowP8GmnLtTjNyx3ows5nAdwmmA1S4+0TgWfreorTrS3Z7vB34hbtP7PbxFne/flgXJSJSBEpMRURCZGZvM7Oa3MKmI8AbBLf37wVuNbNKMzsN+CLwn310MZ4g0WzO9fdxghHTwXoQ+BMz+5iZleU+3m1m/2MYlyUiUhRKTEVEwjUGWEKwd/1uggVItwC3AZuAzcAW4Le5Yz24+/PAncBGYA/wDuDJwX5xd38NmA9cRTAiu5tgxLbPCgAiInGiLUlFREREJBY0YioiIiIisaDEVERERERiQYmpiIiIiMSCElMRERERiYVRUQdQKKeddprPmjUr6jBERERESt4zzzyzz90rBzovtYnprFmz2LRpU9RhiIiIiJQ8M2sc+CzdyhcRERGRmFBiKiIiIiKxoMRURERERGIhtXNMRUSGavny5TQ0NAx43s6dOwGYOnXqgOdWVVVx/fXXDzs2EZFSoMRURGSIjhw5EnUIIiKppMRURCRnsCObixYtAmDZsmWFDEdEpOQoMRURSSFNSxCRJFJiKiJSwjQtQUTiRImpiAyLRubiSdMSRCSJlJiKSFFoZE5ERAYSSWJqZiuBDwN73f3M3LFlwP8CjgFbgY+7+wEzmwW8ALyUe/pT7v63RQ9aRPqkkTkptEKMyoNG5kXiKKoC+z8ALu517BHgTHc/C/i/wM3d/m2ru78r96GkVERE3uTIkSMamRdJuEhGTN398dxIaPdj67o1nwL+qpgxiYhIPGlUXqR0xHWO6QLgx93abzWz3wGtwK3u/kRfTzKzhcBCgBkzZhQ8SJF8DPa2JGjBkIiIlJaobuX3y8y+ALQDq3KHdgEz3P1s4B+BOjM7pa/nuvsKd6929+rKysriBCxSQLo1KSIipSRWI6Zmdi3Boqh57u4A7n4UOJp7/IyZbQX+BNgUWaAiwzCUUU3dmhQRkVISmxFTM7sY+DzwEXc/3O14pZmNzD2uAuYCg7sPKiIiIiKJEVW5qHuBC4HTzGwH8CWCVfhjgEfMDP5YFuoC4Ktm1g4cB/7W3VuiiFtERERECieqVflX93H47n7O/Snw08JGJCIiIiJRi82tfBEREREpbUpMRURERCQWlJiKiIiISCwoMRURERGRWFBiKiIiIiKxoMRURERERGIhVjs/iYiIpNny5ctpaBh4j5idO3cCMHXq1EH1W1VVNaRd5UTiSompiIhIzBw5ciTqEEQiocRURESkSAY7qrlo0SIAli1bVshwRGJHc0xFREREJBaUmIqIiIhILCgxFREREZFYUGIqqZPNZvnc5z5HS0tL1KGIiIjIECgxldRZvnw5W7Zs4dvf/nbUoYiIiMgQKDGVVMlmszzxxBMAPPHEExo1FRERSZBIElMzW2lme83s2W7Hys3sETN7Off51G7/drOZ1ZvZS2b2wShilmRYvnx5j7ZGTUVERJIjqhHTHwAX9zq2GFjv7nOB9bk2ZvZ24CrgjNxzvm1mI4sXqiRJ52hpf20RERGJr0gSU3d/HOh9j/Uy4J7c43uAy7sd/5G7H3X3V4B64JyiBCoiIiIiRROnOaaT3X0XQO7zpNzxqcD2buftyB17EzNbaGabzGxTc3NzQYMVERERkXDFKTHtj/VxzPs60d1XuHu1u1dXVlYWOCwRERERCdOoqAPoZo+ZTXH3XWY2BdibO74DmN7tvGlAU9Gjk0gtX76choaGAc8zM9y9R7tzz+m+VFVVDXrvahERESmsOI2YPgBcm3t8LbC62/GrzGyMmb0VmAv8OoL4JAFmzpzZoz1r1qxoAhEREZEhi2TE1MzuBS4ETjOzHcCXgCXAfWZ2HbANuBLA3Z8zs/uA54F24AZ3Px5F3BKdoYxqXnzxxbg7J510Et/5zncKGJVI8Q327sFgbd26FeCEdxbyobsRIpKPSBJTd7+6n3+a18/5twO3Fy4iSZOZM2fy6quv8qUvfSnqUERC19DQwOYXX8AqykPpr3Pqy5bmPaH0B+BZbWwhIvmJ0xxTkVCccsopnHXWWZx99tlRhyJSEFZRzqgPx3evkfYH10YdgogkVJzmmIqIiIhICVNiKiIiIiKxoFv5IpJ6SVgwpMVCkmb19fUsWrSIO++8k6qqqqjDkRhTYioiqRcsGHoeKt4STofeBsDm5m3h9Jd9PZx+RGJq6dKlHD58mCVLlrBixYqow5EYU2IqIqWh4i2Muqw66ij61L56U9QhiBRMfX09jY2NADQ2NtLQ0KBRU+mX5piKiIhIwSxdurRHe8mSJRFFIkmgEVMREREZssHO3e4cLe3e1lbR0h8lpiIiEokkLEoDJUrDNWbMGI4ePdqjLdIfJaZCNpvljjvu4JZbbqG8PJzdZEREBhIsSnuJERWTQumvww2AZ5v3h9IfQEd2b2h9pc1gk/X6+npuuOGGrvY3v/lNzTGVfikxFerq6nj22WdZtWoVN954Y9ThiEgJGVExiTEf7m+X6ugdffDeqENIvDlz5nSNms6cOVNJqZyQFj+VuGw2y9q1a3F31q1bR0uL9rgWEZFwTZ8+nREjRrB48eKoQ5GY04hpiaurq6O9vR2AtrY2jZoKEP7cP1BRepFSNm7cOM4880yNlsqAlJiWuPXr1+PuALg769evV2IqNDQ0sOXFzZRVhNdne/BjxovNm0Ppry0bSjciIhIjSkxL3MSJE3njjTd6tEUAyirgtMss6jD6tW+1Rx2CiIiELFaJqZm9Dfhxt0NVwBeBicAngObc8Vvc/WdFDi+Vdu3adcK2iIiISLEMOzE1s5HA5O59uXteG0i7+0vAu7r1uxO4H/g48C/u/vXhxisiIiIi8TSsxNTMbgS+BOwBOnKHHThrmHEBzAO2unujWXxvJybd+PHjOXToUI+25EcLhkRERIZnuCOmfw+8zd0LsQzhKqB7AblPmdlfA5uAz7p7eBWUS1j33Tj6asvgNTQ08MILm5lwanh9Hs+93WvaHc6CoYP6rRERkRgbbmK6HTgYRiDdmdlo4CPAzblDy4F/JhiN/WfgTmBBH89bCCwEmDFjRthhpVJnqaj+2jI0E06FC+ZHHUX/Hl8XdQQiIiL9yysxNbN/zD1sAB4zszVA11Cbu39jmHFdAvzW3ffk+tvT7Wt/F3iwrye5+wpgBUB1dbWW7IqISFGEPZWnENN4QFN5JP7yHTE9Ofd5W+5jdO4jLFfT7Ta+mU1x987l4lcAz4b4tURERIaloaGBZ198mTEV00Pp75iXAfBy85FQ+gM4mt0eWl8ihZJvYroa+IN3VmYPkZmNAz4AfLLb4aVm9i6CW/mv9vo3ERGRyI2pmM6My26KOox+bVu9NOoQRAaUb2L6PeCtZvZb4EngV8BT7t463IDc/TBQ0evYx4bbr4iIiIjE24h8nuTu1cB04HbgGPBp4GUz+4OZfTvE+KTApk6desK2iIiISLHkvSo/N7L5mJn9BngaOA/4a+DikGKTYRrMZPyTTjqpR3vcuHEDTrbX5HlJmqamJmh9jfbVm6IOpW/Z12hqaxrUqU1NTXjrQdofXFvgoPLn2Raa2o4PeF5TUxMdra9x9MF7Bzw3Kh3ZvTS1vTHwiSISinxX5dcC5xLs0nQU6ExOz3f33eGFJ4U2bty4rsejR49+U6IqIiIiUiz5jpiuAF4EvgM87u7/N7yQJCyDHdW84YYbaGho4Fvf+hZVVVUFjkqk+DKZDPvK2hl1WXXUofSpffUmMpWZQZ2byWTIlo1k1Ic/WOCo8tf+4FoylZMHPC+TydBStp8xH766CFHl5+iD95KpDHHXDEm8bDbLHXfcwS233EJ5eXnU4aROXnNMgQkEhezHAl82s2fM7EEz+4KZ1YQXnhTDuHHjOPPMM5WUioiIDKCuro5nn32WVatWRR1KKuW7+Om4u//W3e9y91rgQ8BDwMeBR8IMUERERCQOstks69atw91Zt24dLS0tUYeUOvnOMT2LYI5p58do4CngXwnKR4lIgjU1NdHWCvtWx3cDtbYsg14wJCIShrq6Ojo6OgDo6Ohg1apV3HjjjRFHlS753sr/AXAGwSjpPHef4e4fdfdvuXtMl72KiIiI5G/Dhg20t7cD0N7ezoYNGyKOKH3yXfz0VWCau98LYGZPA5W5f7vJ3f8rjOBEJBqZTIbWsn2cdplFHUq/9q32QS8YEhEJQ01NDQ8//DDt7e2MGjWKmhotqwlbviOmiwi2Je00Bng3cCGgApciIiKSOrW1tYwYEaROI0aM4Jprrok4ovTJNzEd7e7bu7V/6e5Zd98GjA8hLhEREZFYqaioYP78+ZgZ8+fPV7moAsj3Vn6Pom7u/qluzUpEBmkwu1MN1datWwEG3MFqKLTblYhIug329Wj79u2MHDmSrVu3aqfEAsg3MX3azD7h7t/tftDMPgn8evhhSaloaGjgpRc2UzkxvD4tWDBJy67NofTXfCCUbkREJAWOHTvGmDFjKCsrizqUVMo3Mf0H4L9zW5P+NnfsTwnmml4eRmBSOionwkcvGhl1GP2679GB9/yGoMTSgYPw+LoCBzQMB/YDHSqxJCLS22BHNjtHSZctW1bIcEpWXompu+8Fzs3t8nRG7vAad1fdBBERKTlNTU0cbT3EttVLow6lX0ez22lq0zIQibd8R0wByCWiSkZFCEosMWIfF8yPOpL+Pb4OMqerxJKIiMTTsBLTQjCzV4HXgONAu7tXm1k58GNgFvAq8FF33x9VjCIiIt1lMhkOlR1hxmU3RR1Kv7atXkqmcmzUYYicUOwS05yL3H1ft/ZiYL27LzGzxbn256MJTUQSKfs67atD2pju4OHg84Rx4fSXfV31TCQ2VC1FohTXxLS3ywiK9wPcAzyGElMRGaSqqqpQ+9vaGrzIzq6cEU6HlUOL0bMttD+4NpQv7QdfA8AmnBxKfxDER+Xk0PqT4mpoaODFF+upLJ8ZXqc+GoDs3rZQumtuaQylH4mfOCamDqwzMwf+3d1XAJPdfReAu+8ys0l9PdHMFgILAWbMCOkFQ0QSL+xRlShX5YafZL8OwOwwE8nKyaHHKcVVWT6TKz90a9Rh9OsnP7st6hCkQOKYmJ7n7k255PMRM3txsE/MJbErAKqrq71QAYqIRCVNSbaIRKu+vp5FixZx5513xubNZL5bkhaMuzflPu8F7gfOAfaY2RSA3Oe90UUoIiIiknxLly7l8OHDLFmyJOpQusRqxNTMxgMj3P213OP5wFeBB4BrgSW5z6uji1JERMLSkd3L0QfvDaevg0GxlhETTh3gzCH0md0LleH1JxIX9fX1NDYGc3UbGxtpaGiIxahprBJTYDJwv5lBEFuduz9sZr8B7jOz64BtwJURxigiIiEIf75sCwCzw0wkK0+NxYu1SNiWLu25GcSSJUtYsWJFRNH8UawSU3dvAN7Zx/EsMK/4EYmISKFovqxIdDpHS/trRyVWiWkcDLZ+286dOwGYOnXqoPpVvTVJmrYs7Fsd3hrC9oPB51ETwumvLYtqf0qsHM1uD21L0mMHg6UUoyf0WYQmL0ez26Fybmj9SbJNnTq1K5fpbMeBEtM8HTlyJOoQUqGpqYnWg3Dfo8ejDqVfew/AkWBNXskoxK3LP9b+nB1Oh0Os/SlSSOFPSwjqfc4Oc6emyrn6nZEuVVVVPRLT2bND+ts8TEpMexnsqKZuGUmaFWJ0X78zkmaaliBJ88wzz/Rob9oU0s54w6TEVCKVyWQYa/v46EUjow6lX/c9epzyKZmowxAREQlNTU0NDz30EMePH2fkyJHU1NREHRKgxDSRwt7HuBB7GENpzqs9uB8eXxdef68Hu0XylpB2izy4HzKnh9OXiKRTMMXqcKx3V2rONnK0fVzUYSRabW0t69at60pMr7nmmqhDApSYJlJDQwMvP7+Z6aeEM8pY1t4BwJEdz4XSH8D21vjOGS2UgszLPBS8acicHs7cn8zpmpcpIiJQUVHB/PnzWbNmDfPnz6e8vDzqkAAlpok1/ZSRLHpffN8tLtt4OOoQik7zMkUkDTKZDGNGtXHlh26NOpR+/eRnt1ExqSzqMGJrsHdWt2/fzsiRI9m6deuAd02LdRc0dluSioiIiEjhHTt2jDFjxlBWFp8kXyOmIiIikkphr8mAwqzLCHs0MskVhpSYioiISCoFazLqmX7KjND6LGsfDcCRHcdC6W9767ZQ+kkLJaYiIiKSWtNPmcFn33Nz1GH0686n74g6hFjRHFMRERERiQUlpiIiIiISC7qVL5FrPhDsrhSWA68Hnye+JZz+mg9A+ZRw+hIREZH+KTFNoKamJg61Ho91rdDtrccZ39Q04HmFKPa+P7disnxKOEXpy6eoKL2IiEgxxCoxNbPpwA+B04EOYIW7f8vMvgx8AmjOnXqLu/8smiglTCpKLyISP80tjaFuSXqgdTcAE08JZ0/k5pZGKibNCaUviZdYJaZAO/BZd/+tmZ0MPGNmj+T+7V/c/esRxhYbmUyGIx37Y7/z09hMJuowRERkiApxh+jAa0FppbB2a6qYNGdQcQZ3GA/FeuX79tZGxjeNjzqM2IhVYuruu4BducevmdkLwNQw+g67yG4hCuxC8bb8EhER6YvuZEmUYpWYdmdms4CzgaeB84BPmdlfA5sIRlX39/GchcBCgBkzehbTbWhooP75F5gxoTyU+EYfdwCO7dwTSn8A2w62hNaXiAzdYN/ADuWNqd5sikQnuMN4LPZ1TMdmRg94XqnsYhXLxNTM3gL8FPiMu7ea2XLgnwHPfb4TWND7ee6+AlgBUF1d7b3/fcaEcm59//xChj4stz2xLuoQRGQQxo4dG3UIIlJiggG2l5gR0jxdgNHtQdXQYzsOhtLfttxc4uGIXWJqZmUESekqd/8/AO6+p9u/fxd4MKLwRCTFNLIpInE245TTueW9H486jH597anvD7uPWBXYNzMD7gZecPdvdDvevYrkFcCzxY5NRERERAorbiOm5wEfA7aY2e9zx24BrjazdxHcyn8V+GQ04YmIJEOa5ssW4lpA839F4ihWiam7/xKwPv5JNUt72R5igf29hzoAmDQ+vAH07a3HmRtabxJnaUqASlGa5sum6VpESlWsElMZnLBrzLXlEoax08LZKQlgLtotSXpS0lBcaUrs03QtIvkKarK+Fso8zkJpbN3N+KZDw+qjZBLTpqYmDh08GOuV740HWxhvA+8ZH/YfadWXk+FQ0iAyeJqWUHzbW7eFWmB/76FgPfak8ZND6W976zbmol2sOpVMYioiIpIUusMQjkLcuWvbGuxiNXbawLVHB2Mug9vFKpPJcKzjYOxX5Y/OTBhWHyWTmGYyGY75yNjXMR2dCecdmIiIxI9GNYtLu1glT8kkpiIiIiJJtq11d6hzTPccCnacnDw+nF0xt7XuZg4aMRURERFJtUJMSzi2dR8Ao6cNL5nsNIcJw46zpBLTbQdbQlv8tOfQawBMHn9yKP1BEN+cqbqVLyIiIj2VyrSEkklMw36ncWzr6wCMDjGRnDN1skosiYiISMkqmcRUJZaSbbAlViD+hdzTdC0iIiJhKpnEVEpHmsqspOlaRCRd9CZbCkGJqSRCmv5IpelaREQGQ2+yZbCUmKaYdhgREZFC0euAFIISU9E7WREREYkFJaYppnezIiIig1OIu4y6wzh0SkxFREREBikJdxmTnGQnJjE1s4uBbwEjge+5+5JCfB3NyxQRESk9pfgaHcckOxGJqZmNBP4N+ACwA/iNmT3g7s9HFVMcv5kiIiIiSU6yE5GYAucA9e7eAGBmPwIuA0JPTJP8zRQRERFJshFRBzBIU4Ht3do7csdEREREJCWSkphaH8f8TSeZLTSzTWa2qbm5uQhhiYiIiEhYkpKY7gCmd2tPA5p6n+TuK9y92t2rKysrixaciIiIiAxfUhLT3wBzzeytZjYauAp4IOKYRERERCRE5v6mO+KxZGYfAr5JUC5qpbvfPsD5zUBjgcM6DdhX4K9RLGm6FkjX9eha4knXEk+6lvhK0/XoWoZuprsPeDs7MYlpHJnZJnevjjqOMKTpWiBd16NriSddSzzpWuIrTdejaymcpNzKFxEREZGUU2IqIiIiIrGgxHR4VkQdQIjSdC2QruvRtcSTriWedC3xlabr0bUUiOaYiogkiJl9BHi7uy+JOhYRkbApMRURERGRWNCtfBGRIjOzWWb2opl9z8yeNbNVZvbnZvakmb1sZueYWbmZ/beZbTazp8zsrNxz/8bM7so9vjL3/D+Y2ePRXpWIyPCNijoAEZESNQe4ElhIsIlILXA+8BHgFmA78Dt3v9zMaoAfAu/q1ccXgQ+6+04zm1i0yEVECkQjpiIi0XjF3be4ewfwHLDeg7lVW4BZBEnqfwC4+wagwswm9OrjSeAHZvYJgs1HREQSTYmpiEg0jnZ73NGt3UFwN8v6eE6PRQHu/rfArcB04PdmVlGAOEVEikaJqYhIPD0OXANgZhcC+9y9tfsJZjbb3Z929y8SbCk4vehRioiESHNMRUTi6cvA981sM3AYuLaPc5aZ2VyC0dX1wB+KF56ISPhULkpEJEZyo6P/6e7Tcu3ngBvc/bEo4xIRKQaNmIqIxJi7nxF1DCIixaI5piIiIiISC0pMRUQKxMwyZvZTM2s2s1fM7NO542PM7Jtm1pT7+KaZjemnj1fN7M9zj0eY2WIz22pmWTO7z8zKc/82y8zczK41s21mts/MvlC8qxURGT4lpiIiBWBmI4D/j2BB0lRgHvAZM/sg8AXgvQQF898JnENQ9mkgnwYuB/4MyAD7gX/rdc75wNtyX++LZvY/hn0xIiJFosRURKQw3g1UuvtX3f2YuzcA3wWuIigD9VV33+vuzcBXgI8Nos9PAl9w9x3ufpRg5f5fmVn39QJfcfc33P0PBEnxO0O8JhGRgtLiJxGRwpgJZMzsQLdjI4EnCEY7G7sdb8wdG0yf95tZR7djx4HJ3dq7uz0+DLxlKEGLiERJiamISGFsJ9h2dG7vfzCzrQRJ5nO5QzOApkH2ucDdn+yjz1l5RyoiEhO6lS8iUhi/BlrN7PNmdpKZjTSzM83s3cC9wK1mVmlmpwFfBP5zEH1+B7jdzGYC5J5/WcGuQESkyJSYiogUgLsfB/4XwQKnVwi2DP0eMAG4DdgEbAa2AL/NHRvIt4AHgHVm9hrwFPCe0IMXEYmIdn4SERERkVjQiKmIiIiIxIISUxERERGJBSWmIiIiPAhBcgAAIABJREFUIhILSkxFREREJBaUmIqIiIhILERSYN/MJhKUTTkTcGAB8BLwY2AW8CrwUXffnzv/ZuA6gh1OPu3uawf6GqeddprPmjWrANGLiIiIyFA888wz+9y9cqDzIikXZWb3AE+4+/fMbDQwDrgFaHH3JWa2GDjV3T9vZm8nKEZ9DsGWfT8H/iRXI7Bf1dXVvmnTpsJeiIiIiIgMyMyecffqgc4r+q18MzsFuAC4G8Ddj7n7AeAy4J7cafcAl+ceXwb8yN2PuvsrQD1BkhqpbDbL5z73OVpaWqIORURERIpEr/+FFcUc0yqgGfi+mf3OzL5nZuOBye6+CyD3eVLu/KkE+0N32pE79iZmttDMNpnZpubm5sJdAVBXV8ezzz7LqlWrCvp1ikG/ZCIiIoOTptf/OIoiMR0F/E9gubufDRwCFp/gfOvjWJ/zD9x9hbtXu3t1ZeWA0xjyls1mWbduHe7OunXrEp/QrVy5ki1btnD33XdHHYqIiEhspe31P46iSEx3ADvc/elc+78IEtU9ZjYFIPd5b7fzp3d7/jSgqUix9qmuro6Ojg4AOjo6Ev2uKZvNsn79egA2bNigXzIREZF+pOn1P66Knpi6+25gu5m9LXdoHvA88ABwbe7YtcDq3OMHgKvMbIyZvRWYC/y6iCG/yYYNG2hvbwegvb2dDRs2RBnOsKxcuZLOBXAdHR0aNRUREelHml7/4yqqOqY3AqvMbDPwLuBrwBLgA2b2MvCBXBt3fw64jyB5fRi4YaAV+YVWU1PDqFFBpa1Ro0ZRU1MTZTjD8uijj56wLSIiIoE0vf7HVSSJqbv/PjcX9Cx3v9zd97t71t3nufvc3OeWbuff7u6z3f1t7v5QFDF3V1tbi1kw9dXMuOaaayKOKH+dtyT6ayeRFnOJiEgh1NbWMmJEkDqNGDEi0a//EM/XS+38lIeKigoymQwAmUyG8vLyiCPKX+cvWH/tJNKKSRERKYSKigrmz5+PmTF//vxEv/5DPF8vk5+FRCCbzdLUFKy/2rVrV6zeaQzVRRdddMJ20mjFpIiIFFJtbS1nnnlmKkZL165dG7vXSyWmeairq+uxYChO7zSGasGCBT3a1113XUSRhEMrJkVEpJAqKir4+te/norR0s6FXG1tbbF5vVRimoc0rcrbv39/j/aBAwciiiQcafreiIiIFMr69eu7Btncvat0ZNSUmOYhTavyli5d2qO9ZMmSiCIJx7nnntujfd5550UUiYiISHz1HvGtqKiIKJKelJjmIU2r8hobG0/YTpqjR4+esC0iIiKwe/fuHu1du3ZFFElPSkzzkKZVeZ0jv/21k2bjxo092r/61a8iikRERESGSolpntKyKq9zPmZ/7aTpnC/TX1tERETiW5VHiWme0rIqb+bMmSdsJ83pp5/eoz1lypSIIhEREYmvBQsW9JiWGJeqPEpMS9xNN93Uo7148eKIIglH7zps2Ww2okhERPIXxx15JJCW701FRUXX4u2amprYDLQpMc1TWn4w58yZ0zVKOnPmTKqqqiKOaHh6r8I///zzI4pERCR/cdyRRwJp+t4sWLCAd7zjHbEZLQVI9kqXCHX/wbzxxhujDmdYbrrpJhYtWpT40dK+aI6piCRN7x3srrnmmtiMZuWrvr6eRYsWceeddyZ6ACQp35vly5fT0NAw4Hk7d+4E4I477hjw3KqqKq6//vphxzYQjZjmIW3bXs6ZM4f7778/0X8sOj355JMnbIuIxF0ad7BbunQphw8fTnyt7LR9b44cOcKRI0eiDqOHSEZMzexV4DXgONDu7tVmVg78GJgFvAp81N33586/Gbgud/6n3X1tBGF36esHM+mjpmkxadKkHrVYJ02aFGE0IiJD19cOdkl+jamvr+/6u9zY2EhDQ0NiB0KS8r0Z7MjmokWLAFi2bFkhwxmSKEdML3L3d7l7da69GFjv7nOB9bk2ZvZ24CrgDOBi4NtmNjKKgDtp28v42rt37wnbEp20zMsWKbQ07S4I6dphMG3fmziK0638y4B7co/vAS7vdvxH7n7U3V8B6oFzIoivi34w42vevHknbEt00rRgQKSQ0rS7IKRrh8G0fW/iKKrE1IF1ZvaMmS3MHZvs7rsAcp8778FOBbZ3e+6O3LE3MbOFZrbJzDY1NzcXKHT9YMbZJZdc0qN96aWXRhSJdJe2edkihVRRUcEFF1wAwAUXXBDLxTVDkaZ62Wna+TGuokpMz3P3/wlcAtxgZhec4Fzr41ifS63dfYW7V7t7dWVlZRhx9kk/mPH10EMPYRb8yJgZa9asiTgigfQtGBApls6/Z0mWtnrZadn5Ma4iWfzk7k25z3vN7H6CW/N7zGyKu+8ysylA5+TAHcD0bk+fBjQVNeA+1NbW0tjYGOsfzKGWi5g6tc+B6DcpVsmIfGzYsKGrRJS7x3ZieqlJyoIBkTjIZrP84he/AOAXv/gFCxYsSPQASGe97MbGxlTUy5bCKnpiambjgRHu/lru8Xzgq8ADwLXAktzn1bmnPADUmdk3gAwwF/h1oeIrRO0viHcyF7dSEX0Z7Pdl7NixHD58uKt90kknda067Eucvy9pUlNTw8MPP0x7e7vmZYsMoK6uruuNXFtbWyoqv3zyk5/k1ltvTcXf25UrV7JlyxbuvvvuE76+SH6iGDGdDNyfuz0xCqhz94fN7DfAfWZ2HbANuBLA3Z8zs/uA54F24AZ3Px5B3D0kIZlLcrmIfE2ePLlr/qKZqVxUTNTW1rJu3TpA87JFBrJ+/foed37Wr1+f+MT0V7/6Fe7OL3/5S84+++yow8lbNptl/fr1QPB9uu666xI9mh1HRU9M3b0BeGcfx7NAn0uo3f124PYChwaUZjKXBEN5l3311VfT0tLCpZdemvg/5mnROS97zZo1mpctMoC01WPOZrOsXbsWd2ft2rWx3S1pMFauXNnjTYNGTcMXp3JRIqGYPHky48eP16hczGjBgMjgpK0ec11dHW1tbcAfpyYkVe+65apjHj4lppI6ZWVlzJ49O7HvyNOqoqKCr3/96/q+iAwgbfWYO29999dOks7R0v7aMnxKTEVERGKktra2R9m7pN9l6P1mtKKiIqJIhq+zhnl/bRk+/Y+KiIjETPfENOl2797do71r166IIhm+iy66qEdbFUbCp8RURGSIstksn/vc57SDlRREXV1dj90FkzwnE96cXCc52V6wYEGP782CBQsijih9lJiKiAxRXV0dzz77bOITBomnvjakSLILL7ywR7v3qGOSVFRUdI2Szps3T3PmC0CJqYjIEGSzWdatW4e7s27dOo2aSuhqamoYNSqo5piGDSkWLFjQY2pC0kcZFyxYwDve8Y7EX0dcKTEVERmCuro6Ojo6AOjo6NCoqYSutra2x+3ipC9+ShtVGCksJaYiIkOQttusEj+dG1KYWSo2pKirq+tRlF5v5uRElJiKxFh9fT1XXHEFDQ0NUYciOWm7zSrxlKYNKdJUx1QKT4mpSIwtXbqUw4cPs2TJkqhDkRzdZpViSNPt4t5bqqZhi1VV5SgcJaYiMVVfX9+1X3ZjY6NGTWMibbdZ00QJQzylbYvVlStXsmXLFlauXBl1KKmkxFQkppYuXdqjrVHT+EjTbdY0URmveJo3b16PVflJ3mI1m812zStfv3693gQVQGSJqZmNNLPfmdmDuXa5mT1iZi/nPp/a7dybzazezF4ysw9GFbNIMXWOlvbXluik6TZrWqiMV3zV1tZ2zcsuKytL9Bu6lStX9qjKoVHT8EU5Yvr3wAvd2ouB9e4+F1ifa2NmbweuAs4ALga+bWYjixyrSNHNnDnzhG2Jjm4Zx4/KeMVXRUUFf/ZnfwbABRdckOg3dI899liP9qOPPhpNICkWSWJqZtOAS4HvdTt8GXBP7vE9wOXdjv/I3Y+6+ytAPXBOsWIVicpNN93Uo7148eKIIpHedMs4flTGKxmSvB0p0FX2qr+2DF9UI6bfBG4COrodm+zuuwBynzuX7U0Ftnc7b0fu2JuY2UIz22Rmm5qbm8OPWqSI5syZ0zVKOnPmTKqqqiKOSEC3jOMqbWW80jQqn81mefzxxwH4xS9+kehr6r2dapK3V42roiemZvZhYK+7PzPYp/RxrM+3KO6+wt2r3b26srIy7xhF4uKmm25i3LhxGi2NEd0yjqe0lfFK06h8mn5nFixY0OPn7Lrrros4ovQZFcHXPA/4iJl9CBgLnGJm/wnsMbMp7r7LzKYAnfUkdgDTuz1/GtBU1IhFIjJnzhzuv//+qMMIRTab5Y477uCWW25J9Byzvm4Z33jjjRFHJZ1lvNasWZP4Ml69R+WvueaaRF9PUn5nli9fPqiyfKNGjeLYsWNMmDCBO+6444TnVlVVcf3114cVYkko+oipu9/s7tPcfRbBoqYN7v7/Ag8A1+ZOuxZYnXv8AHCVmY0xs7cCc4FfFzlsERmmtIwApe2WcZqkpYxXmkYYIX2/MyNHjmTEiBGcfvrpUYeSSlGMmPZnCXCfmV0HbAOuBHD358zsPuB5oB24wd2PRxemiAxVmkaAamtrWbduHZCOW8Zp0lnGK+nSNsLY1tbWdT3Hjx9n69atLFq0qN/zoxplHOzX7Ix92bJlhQynZEVaYN/dH3P3D+ceZ919nrvPzX1u6Xbe7e4+293f5u4PRRexiOQjTSNA2vlJCi1tI4xlZWVd11NeXk5ZWVnEEUmcxWnEVERSKikjQIN1ySWXsGHDBi699NKoQ5EUqq2tZc2aNUAwwhjXUfmhjGp+5jOfYdu2bdx11116MycnpC1JRaTg0jYC9NBDD/HGG290JQ8iYeusj5mWOpllZWXMnj1bSakMSImpiBRcbW1tV2HtpM/LVB3T+EpL7c/e21zefffdEUUiUnxKTEWk4CoqKshkMgBMmTIl0aMmaZovC+lJ5iA9lR96b3OpbS+llCgxFZGCy2azNDUF5YebmpoSnQSlbevLtCRzaRrJ7r1tZ9K38RQZCiWmIlJwdXV1PebMJTkJqqmp6UoUzCzR82XTlMylaST7wgsv7NHWtpdSSpSYisRYWm6zpmmU8ZJLLumRZCd5ZX6akrk0/YwtWLCgx5ufBQsWRByRSPEoMRWJsZUrV7Jly5bEL34499xze7TPO++8iCIZvoceeqhH0pDklflpSubSVPmh+5zsqVOnJnpOtshQDTsxNbORZpYxsxmdH2EEJlLqstks69evB4IEIsmjpkePHj1hO0k2bNjQY8RUyVw81NbWMmJE8JKWhsoPe/fuBWDPnj2J/t0XGaphJaZmdiOwB3gEWJP7eDCEuERK3sqVK7sSoI6OjkSPmm7cuLFH+1e/+lVEkQyfkrl4StOOXHV1dT1GspM8xUJkqIY7Yvr3wNvc/Qx3f0fu46wwAhMpdWkqGdO7SHiSi4YrmYuv2tpazjzzzER/TwDWr1/fY1S+886JSCkYbmK6HTgYRiAi0lPnopT+2knSe45p73aSpC2Zu+SSSzjppJMSvYgrbSZNmnTCtkia5ZWYmtk/mtk/Ag3AY2Z2c+ex3HERGaY0jTL2lvS6jGkZmYN0ba+alpqsnfNL+2uLpFm+I6Yn5z62EcwvHd3t2MkneqKZjTWzX5vZH8zsOTP7Su54uZk9YmYv5z6f2u05N5tZvZm9ZGYfzDNmkUTpvF3cXztJ0jTHFIJR069//euJHy1NUx3TNF1LdXX1CdsiaZbvK91q4Kvu/pW+PgZ47lGgxt3fCbwLuNjM3gssBta7+1xgfa6Nmb0duAo4A7gY+LaZjcwzbpHEmDJlSo92Z/mYJErb6G9a6sumqY5pmq6loaGhR/uVV16JKBKR4ss3Mf0esC83svllM5tvZqcM5okeeD3XLMt9OHAZcE/u+D3A5bnHlwE/cvej7v4KUA+ck2fcIomRzWZ7tPft2xdRJMPXe+eapO9kk5ZbxmmqY5qma9m5c2eP9o4dOyKKRKT48kpM3b0amA7cDhwDPg28nLs9/+2Bnp+rffp7YC/wiLs/DUx29125/ncBnbO9pxIssuq0I3esr34XmtkmM9vU3Nycz6WJxMbEiRN7tE899dR+zoy/BQsW9FjJft1110UcUf7SdMs4TdurpmkTh/Hjx5+wLZJmeU9ac/fD7v4Y8C3gX4B/A8YT3G4f6LnH3f1dwDTgHDM78wSn97VKos/7gO6+wt2r3b26srJyoDBEYm337t092rt27YookuGrqKjoShTOP//8RM/NTNMt4zRtr9p704YjR45EFMnwvfHGGydsi6RZvqvya83sLjP7JfAA8AFgC3C+u1cNth93PwA8RpDM7jGzKbn+pxCMpkIwQjq929OmAU35xC0i0Uv6/NI03TJO0/aqvRfUJXmBXZpKxYkMVb4jpiuA9wI/AK5398Xufr+77z7x08DMKs1sYu7xScCfAy8SJLjX5k67lmCBFbnjV5nZGDN7KzAX+HWecYtIBLLZLE8++SQATz75ZOJvf6dl56c0ba/auwRZkkuSpakih8hQjcrzeROAdwLnAl82s7cBu4CNwEZ3P9FftynAPbmV9SOA+9z9QTPbCNxnZtcRlKG6EsDdnzOz+4DngXbgBnc/nmfcIpFbvnz5m1bdDtaiRYv6/beqqiquv/76fMMqqJUrV/a4/X333Xef8FrirLa2lnXr1gHJ3/mppqaGNWvW4O6Jn2N64YUX8vOf/7yrneQFdhUVFXRfJ3HaaadFGI1IceWVmOYSw9/mPu4ys8nAXwH/AHwV6Leck7tvBs7u43gWmNfPc24nWGglUjImTpzIgQMHerSTqq/tVZOamHbu/LRmzZrE7/x0ySWX8OCDDwLJn2N6xRVX9EhM/+Iv/iLCaIan9+JdFdgXGN6gRn+2bt0KnHjQY6iGO0iSV2JqZmcRjJZ2fowGngL+FXgy72hESsBgf2Gz2Sy1tbVAMDK3fPnyxCZBabrNCsGoaWNjY6JHS+GPc0w7R0zXrFnDjTfeGHVYeXnooYd6tJN8LSJ9aWhooP75l5hxyumh9Tm6PZgmcmxHOLvLb2sdcEbngPK9lf8DggT0IeCf3L1x2JGISA8VFRVdo6bz5s1LbFIK8L73vY8nnniiq927tE/S7N+/n61bt3LgwIFEf1/6mmOa1GSu9/zYJF+LSH9mnHI6t7z341GH0a+vPfX9YfeRb2L6VWCau98LYGZPA531mW5y9/8admTSr7CH8wsxlA/xnvOYFFOmTKGtrY0FCxZEHcqwjBkzpkd79OjREUUSjqVLl3L48GGWLFnCihUrog4nbzU1NTz88MO0t7cnfiFXTU1N17SEzraIJE++iekigm1CO40B3k1Qx/T7gBLTAmpoaODl5zcz/ZRwdmYtaw8WpRzZ8Vwo/QFsb9X6tDCUlZUxe/bsRI/KQbpK+dTX19PYGNwkamxspKGhgaqqQVfJi5Xa2lrWrl0LBNMrkjw14dxzz+2RmJ5//vkRRjM8Y8eO7VGHdezYsRFGI1Jc+Samo929+25Mv8wtXsqambaoKILpp4xk0fvGRR1Gv5ZtPBx1CBIjNTU1PPTQQxw/fpyRI0cmejRr6dKlPdpJHjWtqKggk8nQ2NhIJpNJ9Bugf//3f+/RXr58eWK/L703B0jyZgEiQ5VvYtpjb0R3/1S3Ziy3XNLtb5HCGMzvVltbG8ePB6PoHR0dbN26NbGlrzpHS/trJ0k2m6WpKdivZNeuXbS0tCQ2OU3T90WklOWbmD5tZp9w9+92P2hmnySmxe+D1WwvMGNCOH90Rx8PFgwc27knlP4Ath1MbtHxfJVK+YtSV1ZWxqhRo2hvb6e8vJyysrKoQ8rb1KlT2blzZ1d72rRpEUYzPHV1dV2Lnzq3V03qgqGZM2f2SEZnzpwZYTTDM3r0aI4dO9ajLVIq8k1M/wH4bzOrJahlCvCnBHNNLw8jsEKYMaGcW98/P+ow+nXbE+uiDqHoGhoaeOmFzVSGWKLTcrv3tezaHEp/zQcGPqeUDTZh/8xnPsO2bdu46667EjsqB0EimpbEtK/tVZOamN50003ccMMNXe3FixdHGM3wdE9K+2qLpFm+Bfb3AueaWQ1wRu7wmgF2fBLpU+VE+OhF4SzkKoT7HtVCrjCkZSHXM88806O9adOmiCIZvjTN/Z0zZ07XaPa0adMSuyBNpNQNawNed9/g7v+a+1BSKiKp13nru792ktTW1vaoY5rkVflAVzL61re+NeJIhmf8+PEnbIuk2bASUxGRUtN7D/Yk78meJtlslo0bNwKwceNGWlqSO2f/C1/4Qo/2P/3TP0UUiUjxKTEVERmCK664okf7L//yLyOKZPjq6uoYMSJ4GRgxYgSrVq2KOKL81dXV9Zgvm+Rr+dM//dOuUdLx48dz9tlnRxyRSPHku/hJRKQkpWl/+TQtfvr5z3/+pnYcr2WwlUg63zBMmjRpUBVGVDmkb6r8kjxFT0zNbDrwQ+B0oANY4e7fMrNy4MfALOBV4KPuvj/3nJuB64DjwKfdfW2x4xYRgeTsLz+YF+SxY8dy+PAfN8M46aSTEltfdtSoUSdsJ01HRwfjx4/n5JNPjjqURAt2Sqxn+ikzQuuzrD0o33VkRzjVEra3bguln7SI4je3Hfisu//WzE4GnjGzR4C/Ada7+xIzWwwsBj5vZm8n2P70DCAD/NzM/sTdtVRaREJVasnc5MmTu+ZimhmTJk2KOKL8vf766ydsx8VgfxY6f6aWLVtWyHBKwvRTZvDZ99wcdRj9uvPpO6IOIVaKnpi6+y5gV+7xa2b2AjAVuAy4MHfaPcBjwOdzx3/k7keBV8ysHjgH2FjcyEVEkpPMDTYBuvrqq2lpaeHSSy+N5cjvYHVu4NC9LSLJE+lvrpnNAs4GngYm55JW3H2XmXX+tZ8KPNXtaTtyx/rqbyGwEGDGjPCG7UWkNJRaMgdBon306NHEl4rqnpT21RaRZIgsMTWztwA/BT7j7q1m1u+pfRzrs3Cgu68AVgBUV1cnt7igiMRaWpI5SMbGB/kuYBlocUqcp1lESQuGJEqRJKZmVkaQlK5y9/+TO7zHzKbkRkunAHtzx3cA07s9fRrQVLxoRUR6SkIyV2pOOeUUWltbu9oTJkyIMJpka2ho4MUX66ksnxlepx4sGMrubQulu+aWxlD6kfiJYlW+AXcDL7j7N7r90wPAtcCS3OfV3Y7Xmdk3CBY/zQV+XbyIRUQkSoMZFctms9TW1na1v/Od7+iNwzBUls/kyg/dGnUY/frJz26LOgQpkChGTM8DPgZsMbPf547dQpCQ3mdm1wHbgCsB3P05M7sPeJ5gRf8Npb4iv6mpiUOtx1m28fDAJ0dke+txxjdpYFtEiqOioqJr1PT973+/klKRhIpiVf4v6XveKMC8fp5zO3B7wYISEZHEmzp1KsePH+fv/u7vog5FRPKkehoJlMlkONKxn0XvGxd1KP1atvEwYzOZqMMQkRKiub8iyTci6gBEREREREAjpiIiIiKxF6wveY2vPfX9qEPpV2PrbsY3HRpWHyWTmDY1NXHo4EFue2Jd1KH0q/FgC+OtpNd1iYiISAkrmcRUREREJKkymQzHOg5yy3s/HnUo/fraU99ndGZ4NYRLJjHNZDIc85Hc+v75UYfSr9ueWMfozOSow5A8abcUERGR4SmZxFSk0BoaGnjhhc1MODW8Po93BJ+bdm8Opb+D+0PpRkQkEYJ5mYe48+k7og6lX9tbGxnfND7qMGJDialIiCacChfEd1Cexwc5xVqjvyIiEgUlpiLyJg0NDWx5cTNlFeH12e7B5xebwxn9bcuG0o2IpFhQ9/sYn33PzVGH0q87n76DsZnRUYcRG0pMJVJNTU20HoT7Ho1vNYK9B+CIl972qmUVcNpl/W3SFr19qz3qEEREJGQqsC8iIiIisaARU4lUJpNhrO3joxeNjDqUft336HHKp2h7VRHpX9jzsgsxJxs0L1viT4mpiKReEpKGwSYMSbgWKL0EqKGhgWdffJkxFdND6e+YlwHwcvORUPoDOJrdPqjzgilWh/nJz24L7WuHrTnbyNH2cVGHIQUQSWJqZiuBDwN73f3M3LFy4MfALOBV4KPuvj/3bzcD1wHHgU+7+9oIwhaRhGpoaGDzi89DxVvC6dDbANjcvC2c/rKvD/rU4FpewCrKQ/nS7sFc3S3Ne0LpD8CzLaH1lSRjKqYz47Kbog6jX9tWL406BJEBRTVi+gPgLuCH3Y4tBta7+xIzW5xrf97M3g5cBZwBZICfm9mfuHt8V8uISPxUvIVRl1VHHUWf2ldvGtL5VlHOqA9/sEDRDF/7g4MbO9DobzxlMhnGjGrjyg/dGnUo/frJz26jYlJZ1GFIAUSSmLr742Y2q9fhy4ALc4/vAR4DPp87/iN3Pwq8Ymb1wDnAxmLEGlfbW4+zbOPhUPraeyio4j5pfHhr4ba3HmduaL2JSBoFo78vMaJiUij9dXhQReLZ5vB2kujI7g2tLxEZWJzmmE52910A7r7LzDr/Uk0Fnup23o7csTcxs4XAQoAZM2YUMNRoVVVVhdpfW26UYey02aH1OZfw44y7pqYmDhwcfBH7KBzYD3SUXukria8RFZMY8+Grow6jX0cfvDfqEES6bGvdzdee+n5o/e05FEy7mTw+nKlB21p3M4cJw+ojTolpf/oqpNhnAUN3XwGsAKiurk5tkcOwbyl13vZatmxZqP1KcjU1NdHWGu9aoW1ZaGpTki0ipaEQgz3Htu4DYPS04SWTneYwYdhxxikx3WNmU3KjpVOAzvsnO4DuyxynAXo1ktjJZDIwYl/styTNnK7SVyJSOra3buPOp+8Irb+9h4KFgpPGTw6lv+2t25jLnAHPK8Q85zgOTMUpMX0AuBZYkvu8utvxOjP7BsHip7nAryOJUKREZDIZWsv2xX7np0zl4JLspqYmaH1tyIuMiib7mkZ/RQqgEKOMbVuPATB2WjjbiM5lTslNfTuRqMqnSb/hAAAgAElEQVRF3Uuw0Ok0M9sBfIkgIb3PzK4DtgFXArj7c2Z2H/A80A7ckO+K/G0HW7jtiXAmAO459BoAk8efHEp/EMQ3Z2o478CSpPlAuFuSHshV3pkYUmWg5gNQPiWcvkREpHhKZZQxTaJald/fTPd5/Zx/O3D7cL5m2O9Gjm0Nsp/RISaSc6ZOLrl3TYW43v25xVzlU8JZzFU+pfQWcqVNJpNhX1l7rMtFDWX011sPDrokUxQ820JTmyr6icjQxelWfkFpwVA86d2siKRBU1MTR1sPxbqI/dHsdpraxkcdhsgJlUxiKiKSBplMhmzZyNgX2M9UDnw3qampiY7W12Jdkqkju5emtjeiDqPomlsaQ92S9EDrbgAmnnJ6KP01tzRSMWngBUOSPEpMRUJ0cH+4dUxfD6Yy85aQpjIf3A+ZQb4utGXDLRfVfjD4PCqcqiS0ZYHKcPoSGa5MJsOhsiOx35I0Uzl2wPMKMXXpwGvBgqGwdmuqmKQFQ2mlxFQkJIX4I7n1UDBfNnN6OPNlM6cPLs6CXEtrcC2zK0PayKFSc3+TLpPJ0FK2P/YF9jOVp0YdRlFpipVESYmpSEjS9Mc8TdfSJft6eOWiDua2A54wLpz+sq9r9FdEBCWmIlICwh5Z/ePob0hbHw9x9NezLaGtyveDwXwRmxBe6TvPtsAg5pimzdHs9tAWPx07GOwxM3rCpAHOHLyj2e1QOTe0/kQKQYmpiKRemqpyhJ9kB6XvZoeZSFYOvvRdR3ZvaIufOg7uB2DEhPBuvXdk98IgbuWH/31pA2D2IOaEDlrlXE1/kdhTYioikiBKsvu3tbUFgNlhzgmtPHVQcabp+yISJSWmIiISCSVzItLbiKgDEBEREREBJaYiIiIiEhO6lS9SZMuXL6ehoWFQ527dGqz+7rxFeSJVVVUFKfM0kMFeTxKuRURKl/6WxYMS014K8YMJ0fxwpulaStXYsSGuyI1Ymq4lCdL0Iqu/ZRIn+ltWWIlJTM3sYuBbwEjge+6+JMp40vSDmYRrSdMoY9peCNN0PWlK5gYrCb//g5Wma0mCNP1dBv0tG0ixvi+JSEzNbCTwb8AHgB3Ab8zsAXd/PuyvlaYfzDRdy1DoxUkKLQk/Y2n6/U/TtZTq6G8SfmdKURy/L4lITIFzgHp3bwAwsx8BlwGhJ6YST3H+gyvpoZ8ziYs4Jgy96fclvpL8vUlKYjoV2N6tvQN4T++TzGwhsBBgxoyQtgoUEREJSZITBpFiSEq5KOvjmL/pgPsKd6929+rKysoihCUiIiIiYUlKYroDmN6tPQ1oiigWERERESmApCSmvwHmmtlbzWw0cBXwQMQxiYiIiEiIEjHH1N3bzexTwFqCclEr3f25iMMSERERkRCZ+5umaqaCmTUDjQX+MqcB+wr8NYolTdcC6boeXUs86VriSdcSX2m6Hl3L0M109wEXAKU2MS0GM9vk7tVRxxGGNF0LpOt6dC3xpGuJJ11LfKXpenQthZOUOaYiIiIiknJKTEVEREQkFpSYDs+KqAMIUZquBdJ1PbqWeNK1xJOuJb7SdD26lgLRHFMRkQQxs48Ab3f3JVHHIiISNiWmIiIiIhILupUvIlJkZjbLzF40s++Z2bNmtsrM/tzMnjSzl83sHDMrN7P/NrPNZvaUmZ2Ve+7fmNlducdX5p7/BzN7PNqrEhEZvkQU2BcRSaE5wJXAQoLd7WqB84GPALcA24HfufvlZlYD/BB4V68+vgh80N13mtnEokUuIlIgGjEVEYnGK+6+xd07gOeA9R7MrdoCzCJIUv8DwN03ABVmNqFXH08CPzCzTxDsiicikmhKTEVEonG02+OObu0OgrtZ1sdzeiwKcPe/BW4FpgO/N7OKAsQpIlI0SkxFROLpceAaADO7EP7/9u4/yur6vvP4880vEQwoOCBXJARw3ezmJBqpm2rrMTGbn65ke2JOrd26aTZ0s1lr08ZECWvTHNvY0O1pT7Nh12NW3VZtTFpL1sQEV+NqTSRRE/EX1jAV0EGBGWEQFhjgvX/ci0Vk4DLzvfP93jvPxzlz7nzvfOfzfX/P3Jl53c/38/182JKZ/QfvEBHzM3NVZl5LfUnB00a8SkkqkGNMJamavgjcFBGrgZ3A5YfZZ1lEnE69d/Ve4PGRK0+Siud0UZJUooh4HvgPmfl/Dnn+l4EbM/OMUgqTpBLYYypJFZSZDwKGUkmjimNMJUmSVAkGU0kq3y9ExNMR8UpE3BQREyPigoh44cAOEfHWiLg/IrZGxFONpUklqaMYTCWpfJcB7wfmA/+M+hRQr4mI8cD/BlYCM4ArgFsjwkv9kjqKwVSSyvfVzNyQmX3AHwKXHvL1dwEnANdn5p7GhPt3HWY/SWprBlNJKt+Ggz5fB9QO+XoN2NBYJerg/U5tdWGSNJIMppJUvoMnxp8D9Bzy9R7gtIgYc8h+L7a6MEkaSQZTSSrfpyNidkRMA5YA3zjk66uAHcDnImJ8YyWofwP89ciWKUmtZTCVpPLdRv3Gpu7Gx3UHfzEz9wAXAx+kvvTo14DfyMw1I1ynJLWUKz9JkiSpEuwxlSRJUiUYTCVJklQJBlNJkiRVgsFUkiRJlTCu7AJa5eSTT865c+eWXYYkSdKo9+ijj27JzK6j7dexwXTu3Lk88sgjZZchSZI06kXEumb281K+JEmSKsFgKkmS1KTe3l4++9nP0tfXV3YpHclgKkmS1KTbbruNJ598kltvvbXsUjqSwVSSJKkJvb29rFy5ksxk5cqV9pq2gMFUkiSpCbfddhv79u0DYN++ffaatoDBVJIkqQn33Xff64LpfffdV3JFncdgKkmS1IRzzz33iNsaPoOpJEnSEERE2SV0HIOpJElSE374wx++bvuhhx4qqZLOZTCVJElqwqGX7s8777ySKulcBlNJkqQhyMyyS+g4BlNJkqQmHHop/9BtDd+4sguQJOlIli9fTnd391H3e/HFFwE49dRTm2p33rx5fOpTnxpWbeoczbzOJk6cyM6dO1/bPv7447nqqqsG3d/X2LEzmEoallaEBv+Yayh27dpVdglHZchubzNnznxttaeIYMaMGSVX1HkqF0wj4kTgRuBtQAK/CTwLfAOYCzwPfCwzXympRElD0A6hQdXUbOA60HO1bNmyVpYzIvx9GXnNvs4uvfRS+vr6+PCHP8wVV1zR4qpGn8oFU+DPge9l5kcjYgIwCVgC3JuZ10fE1cDVwOfLLLId+M5cI2E0hgZpqPx9aX8zZ85k9+7dXHbZZWWX0pEqdfNTREwBzge+DpCZezJzK7AIuKWx2y3AR8qpsDPt2rXLd+eSJDVh/PjxzJ8/n2nTppVdSkeqWo/pPGAzcFNEvAN4FLgSmJmZGwEyc2NEHHZQR0QsBhYDzJkzZ2QqrjDfmUuSpHZSqR5T6kH5ncDyzDwL2EH9sn1TMvOGzFyYmQu7urpaVaMkSZJaoGrB9AXghcxc1dj+FvWg+nJEzAJoPG4qqT5JkiS1SKWCaWa+BGyIiDMaT10IPA18G7i88dzlwIoSypMkSVILVW2MKcAVwK2NO/K7gY9TD9B3RMQngPXAJSXWJ0mSpBaoXDDNzJ8BCw/zpQtHuhZVR7NTX4ETuUvgwgeS2lPlgqk0XE59JTXP3xdJVWIwVVs4ll4ap7+SnC5OUnsymEpSg5e/JalcBlNJOkZe/pZUZe38JttgegjXl1ereSNXdXn5W9JoUsU32QbTIariD1Odx9eZJOlYtfObbIPpIdr5h6n24I1ckiQdXqVWfpIkSdLoZTCVJElSJXgpX5IkHTNv5FQrGEwlSVJLeSOnmmUwlSRJx8wbOdUKBlOV6lguBTVr7dq1wD/9ISyCl5YkSWo9g6lK1d3dzbPPrKbrxOLajP31x76Nqwtpb/PWQpqRJGnIRktHjsG0DRX94mzFCxOaf3F2nQgfe/fYQo9dpDt+sK/sEiRJo1x3dzc/f/pZ5kw5pbA2J+ytT86054VthbS3vv+lYbcxaoJpJ4W57u5unnt6NadNKSbMjd9b72Lc9cJThbQHsKHfMCdJKlen9TLOmXIKS9718cKOW7Q/evimYbcxaoJp/Z3GM8yZOq2Q9ibsSwD2vPhyIe0BrN/W1/S+p00Zy1W/OKmwYxdt2Y92ll2CJGmUq3fk/JzTpswprM3xeycAsOuFPYW0t6F/fSHtdIpRE0wB5kydxtJffl/ZZQzqugdXll2CJEkd5bQpc/i9f3VN2WUM6r+u+nLZJVSKKz9JkiSpEkZVj6kktbtOGi8vSYcymEoF6bRB9qqm7u5uVq95hphezHj5zPp4+Sc2FzdePnubGy9vyJaa19PTw47+7YXcYNQq6/pfYnLPjmG1YTCVCtLd3c0zz6xm6knFtbmvMSdrz0vFzMm67ZVCmlHJYvo0xl30/rLLGNTeu77f1H71kP0sY6bPKOS4+zMAeHJzcS/0/b2bCmtL0tEZTKUCTT0Jzq/u/XU84P11qpgx02dw3EWXll3GoHbfdXvZJUgA1Go19uzfVvnpoibUpg6rDW9+kiRJUiVUrsc0Ip4HtgP7gL2ZuTAipgHfAOYCzwMfy8xjulbT09PDjm3bKj0l07ptfUyOo09MXx9nsq/Sc4Vu6N/H5J6essuQpBHheFmpGJULpg3vzswtB21fDdybmddHxNWN7c+XU5rU+byRSzo23d3dPLnmOY6bfloh7e3J8QA8t3lXIe0B7O7dUFhb7aLekbOj0nOFbuhfx+SeyWWXURlVDaaHWgRc0Pj8FuB+jjGY1mo19uTYyk+wP6E286j71Wo1du1/pfIrP02s1couQ0PU3d3NE2tWM356cW3urd/8zZrNxdzINdBbSDNSYY6bfhpzFn2u7DIGtX7FV8ouQTqqKgbTBFZGRAL/IzNvAGZm5kaAzNwYEcXcwilpUOOnw8mLouwyBrVlRTa9bztcZrX3VypevSNnT+VXfppYm1B2GZVRxWB6Xmb2NMLnPRGxptlvjIjFwGKAOXOKWxdXrdPT00P/NrjjB0cfW1uWTVthVzpetp3VpyV6GqafUEyDOQDA6s0FrXHd+2ox7UhSm6tcMM2sJ4DM3BQRdwLnAC9HxKxGb+ks4LATyzV6V28AWLhwYfPdKZI63/QTGLdoYdlVHNbeFY+UXYIkVUKlgmlETAbGZOb2xufvA74EfBu4HLi+8biivCpVpFqtxsTYwsfePbbsUgZ1xw/2MW2W42UlSWq1SgVTYCZwZ0RAvbbbMvN7EfET4I6I+ASwHrikxBolSepYzsqhMlUqmGZmN/COwzzfC1w48hVJUrX09PSQ/duaXvazDNnbR89AdceN68i6u7tZs+bndE17c3GNZv3mnt5NA4U0t7lvXSHttJv1/S/xRw/fVFh7L+/oA2Dm5GmFtLe+/yUWMLyVnyoVTCVJUvm6pr2ZSz60tOwyBvXN715Xdgkjbt68eYW3uWdtfcr4CbOHFyYPWMDUYddpMJWkNlKr1egdP5ZxF72/7FIGtfeu71PrOvqczNJI2NC/vtAJ9jfteBmAGZOLeY1v6F/P6Sw46n6tGLZwYGjFsmXLCm97qAymkiSpI7Wil3Fg7R4AJs4uZu7R01nQkjrbVcuCaUSMpX4z02vHyMyCJv2TJLW7np4e9vdvZ/ddt5ddyqD2926iZ+D/lV2Ghmi09DJ2kpYE04i4Avh94GVgf+PpBN7eiuNJVdDT08PWbfDAyrIrGdzWV4D9R18soKenh4H+Y1tdaaQN9ELPgAsfSFInaVWP6ZXAGY276SVJeoNarUbf+Fc47qJLyy5lULvvup1a10lllyGNGq0KphuAbS1qW6qkWq0GY7Zw/vvKrmRwD6yE2ilHXyygVqvRP34LJy+KEahqaLasSGpdLnygaujp6WF3/w7Wr/hK2aUManfvBnoGJpddhnREhQbTiPjdxqfdwP0R8R1g94GvZ+afFnk8SWpGT08P9G+v7tKfvdsdliBJFN9j+qbG4/rGx4TGhyRJHatWq7Fj/C7mLPpc2aUMav2Kr1Drmlh2GdIRFR1MVwCPZ2Z175joEBv697HsRzsLaWvTjvr9aTMmjymkPajXd3phrUnDU6vV2DJ+L+MWLSy7lMPau+IRhyVIEsUH0xuBt0TEY8BDwA+BhzOzv+DjjGpFz3c20FjDeOLs+YW1eTqtmT9OktRaPT099G/bWenVlTb3rmP33klll1FZy5cvp7u7+6j7rW38/z8wBdaRzJs3ryXTbx2q0GCamQsjYhJwDnAu8NvAX0bES8BDmfmfijzeaFX0C6PsOdk2b4U7flDcutpbX60/nnhCMe1t3grTZhXTliRJVTFxYvWGdhR+V35m7qR+49NPgFXAecBvAB8o+ljHav22Pq57sJhJJl/esR2AmZPfdJQ9m7d+Wx8LTh1dy/i1olf1lcY7wGmziukBnjbL3l9Jo0etVuO4cQNc8qGlZZcyqG9+9zqmzxhfdhmVNRI9m61S9F35v0a9p/RM6nfjHwinv5SZLxV5rGNVdLDYs7beLTehwCC54NSZoy4AuSqHJEk6oOge0xuANcB/Bx7IzH8ouP0h67TL35IkSZ2m6GA6FXgH9V7TL0bEGcBG4EfAjzLzvoKPJ0mSpA5R9M1P+4DHGh9fjYiZwEeBzwBfAsYWeTxJkiR1jqLHmL6dem/pgY8JwMPAX1CfPkqSJEk6rKIv5d9MPYDeDfyXzFxXcPuSJEnqUMUt9VP3JeDZzLw9M9dFxKqI6G58fLTgY0mSJKmDFB1Mr6K+LOkBxwG/AFwAtO+kWpIkSWq5oi/lT8jMDQdt/31m9gK9ETG54GNJkiSpgxTdY3rSwRuZ+Z8P2uwq+FiSJEnqIEUH01UR8clDn4yI3wJ+XPCxJEmS1EGKvpT/GeDvGkuTPtZ47mzqY00/UvCxJEmS1EGKnmB/E3BuRLwH+JeNp79zLCs+RcRY4BHgxcy8KCKmAd8A5gLPAx/LzFeKrFvSGw30wpYVWVh7e7fVH8dNLaa9gV4cIKRK2d27gfUrvlJIW3u2bQJgwtQZhbQH9froOr2w9qRWKLrHFIBGEB3q8qNXAs8AUxrbVwP3Zub1EXF1Y/vzw69S0mDmzZtXeJtr+9cCML9rfjENdrWmTmkoin4tru0fAGB+18TiGu063d8ZVV5LgulQRcRs4MPAHwK/23h6EfXppgBuAe7HYCq11Kc+VfzsbldddRUAy5YtK7zt0SZ7+9h71/eLaWvbdgBi6psKaQ/q9dE1s6l99/duYvddtxdy3P3b6hfTxkw96Sh7HkObvZug6+jtFf074+9LdQ0MDLB+/Xr6+vqYNm1a2eUMS29vL1/+8pdZsmRJZc6lUsEU+DPgc8DBfyFnZuZGgMzcGBGDXteIiMXAYoA5c+a0sk5JKkXxPXOvAjC/ySDZlK6ZTdVZ/Ln0ATC/iSDZtK6T7GUcJZYvX053d/dR91uzZg2ZyeLFi3nLW95yxH3nzZvXkjf6RVm+fDlPPPEEX/va11i6dGnZ5QAVCqYRcRGwKTMfjYgLhtJGZt4A3ACwcOHC4gbHSVJFdFLPXCedi0aHgYEBMuvxYvv27QwMDDB+/PiSqxqa3t5eHnzwQQAefPDByvQAVyaYAucBF0fEh4CJwJSI+Cvg5YiY1egtnQVsKrVKSZI63Oa+dXzzu9cV1t7W/pcAOHHKKYW0t7lvHdNnLCikrQOaeaN07bXXvm57ypQpfOlLXyq0jpGyfPny121Xpde0MsE0M68BrgFo9Jh+NjN/PSKWAZcD1zceVwzaiCRJGpZWDF3Yun0PANNnFNO7OH3GglKGWKxateqI2+3kQG/pYNtlqUwwPYLrgTsi4hPAeuCSkuuRJKljefOjylTJYJqZ91O/+57M7AUuLLMeSZIktV4lg6kkFa73VfaueKSYtrbtrD9OnVRMe72vuliAJGEwlQq17RV4YGVx7b1an2KSEwqaYnLbK1Ar5t6DtlL8tEQHFgsoaFo6FwuQJMBgKhWmJasl7agHoNopxayWVDtldAYgpyWSpPZgMJUK4g0DkiQNz5iyC5AkSZLAYCpJkqSKMJhKkiSpEgymkiRJqgSDqSRJkirBYCpJktSEU0899XXbs2fPLqmS4Zs0adIRt8tiMJUkSWrCkiVLXrf9hS98oaRKhm/p0qWv27722mtLquT1DKaSJElNWLBgwWu9prNnz27rBUvOPvvs13pJJ02axFlnnVVyRXUGU0mSpCYtWbKESZMmtXVv6QFLly5lzJgxlektBVd+kiRJatqCBQu48847yy6jEGeffTZ333132WW8jsG0gy1fvpzu7u6j7rd2bX099gPLXx7NvHnzWrL8piRJGt0MpmLixIlllyBJkmQw7WT2akqSpHZiMJUkVZrDkqTRw2B6CP8ASlJ7cliS1P4MpkPkH0BJVdaKN9llvcH2Tb00ehhMD+EfQEmjiW+yJVWJwVRtodneH2iPHiCp1XxdS2pHBlN1HHuAJElqTwZTtQV7fyRJ6nxjyi7gYBExMSJ+HBGPR8RTEfEHjeenRcQ9EfFc4/GksmuVJElSsarWY7obeE9mvhoR44G/j4i7gV8B7s3M6yPiauBq4PNlFipJ0mjm2H+1QqWCaWYm8Gpjc3zjI4FFwAWN528B7sdgKlVCJ01LJKk1HPuvZlUqmAJExFjgUWAB8N8yc1VEzMzMjQCZuTEiZgzyvYuBxQBz5swZqZIlNcF/TFJn8c2jWqFywTQz9wFnRsSJwJ0R8bZj+N4bgBsAFi5cmC0qUdJB/OckSSpK5YLpAZm5NSLuBz4AvBwRsxq9pbOATeVWJ0nSsXPZa+nIKhVMI6ILGGiE0uOB9wJ/DHwbuBy4vvG4orwqJXUqx8uqKhz6otGqUsEUmAXc0hhnOga4IzPviogfAXdExCeA9cAlZRYpaXQzNGiofJMiHVmlgmlmrgbOOszzvcCFI1+RpNHE0CBJ5arUBPuSJEkavQymkiRJqgSDqSRJkirBYCpJkqRKMJhKkiSpEgymkiRJqgSDqSRJkirBYCpJkqRKqNQE+9Jo0Oyyl+DSl5Kk0cVgKlWYS19KkkYTg6k0wuzVlCTp8BxjKkmSpEowmEqSJKkSDKaSJEmqBIOpJEmSKsFgKkmSpEqIzCy7hpaIiM3AuhYf5mRgS4uPMVI66Vygs87Hc6kmz6WaPJfq6qTz8VyO3Zszs+toO3VsMB0JEfFIZi4su44idNK5QGedj+dSTZ5LNXku1dVJ5+O5tI6X8iVJklQJBlNJkiRVgsF0eG4ou4ACddK5QGedj+dSTZ5LNXku1dVJ5+O5tIhjTCVJklQJ9phKkiSpEgymkiRJqgSD6RBExP+MiE0R8WTZtQxXRJwWET+IiGci4qmIuLLsmoYqIiZGxI8j4vHGufxB2TUNV0SMjYifRsRdZdcyXBHxfEQ8ERE/i4hHyq5nOCLixIj4VkSsafzu/GLZNQ1FRJzR+Hkc+OiPiN8pu66hiojPNH73n4yI2yNiYtk1DVVEXNk4j6fa7WdyuP+RETEtIu6JiOcajyeVWeOxGOR8Lmn8bPZHRGWmWjqaQc5lWeNv2eqIuDMiTiyzRoPp0NwMfKDsIgqyF/i9zHwr8C7g0xHxL0quaah2A+/JzHcAZwIfiIh3lVzTcF0JPFN2EQV6d2aeWaU584boz4HvZeY/B95Bm/6MMvPZxs/jTOBsYCdwZ8llDUlEnAr8NrAwM98GjAV+tdyqhiYi3gZ8EjiH+uvroog4vdyqjsnNvPF/5NXAvZl5OnBvY7td3Mwbz+dJ4FeAB0a8muG5mTeeyz3A2zLz7cA/ANeMdFEHM5gOQWY+APSVXUcRMnNjZj7W+Hw79X+wp5Zb1dBk3auNzfGNj7a9uy8iZgMfBm4suxb9k4iYApwPfB0gM/dk5tZyqyrEhcDazGz1inmtNA44PiLGAZOAnpLrGaq3Ag9n5s7M3Av8X+DfllxT0wb5H7kIuKXx+S3AR0a0qGE43Plk5jOZ+WxJJQ3ZIOeysvE6A3gYmD3ihR3EYKrXRMRc4CxgVbmVDF3j0vfPgE3APZnZtucC/BnwOWB/2YUUJIGVEfFoRCwuu5hhmAdsBm5qDLO4MSIml11UAX4VuL3sIoYqM18E/gRYD2wEtmXmynKrGrIngfMjYnpETAI+BJxWck3DNTMzN0K9QwSYUXI9OrzfBO4uswCDqQCIiBOAvwF+JzP7y65nqDJzX+Oy5GzgnMYlsbYTERcBmzLz0bJrKdB5mflO4IPUh4ycX3ZBQzQOeCewPDPPAnbQXpcl3yAiJgAXA98su5ahaoxZXAS8BagBkyPi18utamgy8xngj6lfYv0e8Dj1YVdSy0TEF6i/zm4tsw6DqYiI8dRD6a2Z+bdl11OExqXV+2nfscDnARdHxPPAXwPviYi/Krek4cnMnsbjJurjGM8pt6IhewF44aDe+G9RD6rt7IPAY5n5ctmFDMN7gX/MzM2ZOQD8LXBuyTUNWWZ+PTPfmZnnU7/0+lzZNQ3TyxExC6DxuKnkenSQiLgcuAi4LEue4N5gOspFRFAfK/dMZv5p2fUMR0R0HbibMCKOp/6Pak25VQ1NZl6TmbMzcy71S6z3ZWZb9v4ARMTkiHjTgc+B91G/XNl2MvMlYENEnNF46kLg6RJLKsKltPFl/Ib1wLsiYlLj79qFtOlNaQARMaPxOIf6TTbt/vP5NnB54/PLgRUl1qKDRMQHgM8DF2fmzrLrGVd2Ae0oIm4HLgBOjogXgN/PzK+XW9WQnQf8O+CJxthMgCWZ+d0SaxqqWcAtETGW+puuOzKz7adZ6hAzgTvreYFxwG2Z+b1ySxqWK4BbG5fAu4GPl1zPkDXGMP5r4LfKrmU4MnNVRHwLeIz65cifUrGlFo/R30TEdGAA+HRmvlJ2Qc063P9I4Hrgjoj4BPU3EZeUV+GxGeR8+oC/ALqA70TEzzLz/eVV2ZxBzuUa4Djgnsbf6Icz85M1tMwAAAGUSURBVD+WVqNLkkqSJKkKvJQvSZKkSjCYSpIkqRIMppIkSaoEg6kkSZIqwWAqSZKkSjCYSlIbiYiLI6KtV5qSpME4XZQkSZIqwR5TSRphETE3ItZExI0R8WRE3BoR742IhyLiuYg4JyKmRcTfRcTqiHg4It7e+N5/HxFfbXx+SeP7H4+IB8o9K0kaPld+kqRyLKC++s1i4CfArwG/BFwMLAE2AD/NzI9ExHuA/wWceUgb1wLvz8wXDyzHK0ntzB5TSSrHP2bmE5m5H3gKuDfrY6ueAOZSD6l/CZCZ9wHTI2LqIW08BNwcEZ8Exo5Y5ZLUIgZTSSrH7oM+33/Q9n7qV7PiMN/zupsCGutZLwVOA37WWFtdktqWwVSSqukB4DKAiLgA2JKZ/QfvEBHzM3NVZl4LbKEeUCWpbTnGVJKq6YvATRGxGtgJXH6YfZZFxOnUe1fvBR4fufIkqXhOFyVJkqRK8FK+JEmSKsFgKkmSpEowmEqSJKkSDKaSJEmqBIOpJEmSKsFgKkmSpEowmEqSJKkS/j8s5NkkmqWCVwAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(5, 1, figsize=(11, 15), sharex=True)\n",
"for name, ax in zip(['conso_elec', 'hydrau', 'solaire', 'eolien', 'bio'], axes):\n",
" sns.boxplot(data=elec_df, x='mois', y=name, ax=ax)\n",
" ax.set_ylabel('GWh')\n",
" ax.set_title(name)\n",
"# Remove the automatic x-axis label from all but the bottom subplot\n",
"#if ax != axes[-1]:\n",
"# ax.set_xlabel('')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Commentaires:** \n",
" - confirmation de la saisonnalité de la consommation électrique, avec des pics durant les mois les plus froids (novembre à mars), \n",
" - Les productions éoliennes, solaires ou hydroéléctriques varient au cours de l'année avec une saisonnalité différente selon la production considérée: \n",
" * hydroélectrique : production moindre sur la période de juillet à octobre que nous pouvons décomposer en 2 phases: \n",
" # juillet - août : période traditionnelle de sécheresse \n",
" # septembre - octobre : reconstitution des réserves de stockage hydriques\n",
" * solaire : saisonnalité \"classique\" lié à la saisonnalité annuelle de l'ensoleillement\n",
" * éolien : saisonnalité inversée p/r à l'éolien mais moins marquée. On notera un nombre de valeurs mensuelles irrégulières plus important que pour les autres productions, reflet d'un potentiel \"éolien\" mensuel plus sensible aux fluctuations climatiques (tempête, ...) \n",
" - La production d'électricité à base de bio énergies peut être considérée comme la seule à âtre régulière tout au long de l'année. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Saisonnalité hebdomadaire"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAFlCAYAAAAOBLIFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xm8XGV9+PHPNywGCGFfhCtMISCuuOBWWkVFLY471kKLBVzwV5doseq1VQGXOmrRGldQhCjWuuBCudKCsrSKSkE2QTQRJxjKFtaEBEjI8/vjOeM9Ge5y7uTOnZmbz/v1mtfM2b8z58w553ue5zwnUkpIkiRJkqZmTq8DkCRJkqRBZDIlSZIkSR0wmZIkSZKkDphMSZIkSVIHTKYkSZIkqQMmU5IkSZLUgc17HYAkSVK/qg2PvAo4C/hv4LBmo766xyFJ6iPhc6bUr2rDIycCJ0wwyuJmo35MF5d/CHBh0XlSs1E/sYN5bA+8o+i8stmof79t+BnA0UXnnzQb9WYnsW6s2vBIa0dwcbNRP2Qa53sGG/n92tZDV9d5N9WGR44BTi86O92eurKeOlEbHqkBvy86p3u76ZvvqelTGx55EvCKovP7zUb9yrbhTWBvYFmzUa/NbHRjqw2P7A1cCfwaeGGzUV9VGnYMo//pY5uN+hldiqEGHFN0XtRs1C+a4vQXAc8BaDbqMY2hdVVteGQz4CrgccAHm436CW3D9wHeChwK1IAtgduAJnAecGazUW/WhkdeBPxnMdmpzUb9TaV5fAU4tuj8SLNRf19p2NnAS4vOxzUb9eumso3WhkeeB/wYuB94dLNRv3Eq31+Dw5Ipqbu2ZzQhXAx8f4JxJWk2exKj+8MmOUnpW7Xhkc2BbwC/I5dIrZpkkq6FwoYXFi/qTRgz7nXkRGoV8OnygNrwyN8CpwBz26Z5VPH6c2Ad0AB+Bqwn39pycNv4f1r6PN6wu8jJ9JQ0G/ULasMjPwOeBXwEeO1U56HBYDKlQdHRlfx+V5SyHNPjMDQgpnJVuTY8MrfZqN/fzXik6dQvpVEtzUZ9HRuebA+U1j5gEEt3a8MjAbyr6Dyr2ajfWRr2XOArwGZAAj4FfAFYBswHngK8GlgN0GzU760Nj/wKeCLw2NrwyA7NRv2u2vDIzsCjS4t9em14ZPNmo76uNjxyALBT0f+SZqPeaTWuL5GTqSNrwyPvbTbqyzucj/qYyZQGXm145F+Btxedz2o26j8vDfsF8HTgPuCRzUZ9ZbED/Sdy8f2jgAeBX5GL/09nEuMV87f3H6Oa4tG14ZFWlbfFzUb9mPGqwdWGR7YB3k0+IOxDPmD8BvgasKg4yLdXtVoMXFBMty/5ym+j2agvnuw7tX2/5wH/DBwI/B/56t8nygeT2vDIY4B/BJ4H7ALcTb6f4IPNRv3qcWa9a2145CNAnXwQPBd4e7NRv7k03z2ARcBfAA8A3wJ+OEGsf04+4D6LXAp4B/mq7T+X42j7nV8FHA68nHzF8zPAR8lJ7T8CuwOXA29uNurXlebxBeAZ5G1me3LVjV+Tq/l8se33OaD4Hn9e/DZfIa+Psb7DW4DXAPsBO5LX9TLgB8CHm436ytK4D6v+1radvQp4SfHddgKiGKeT9VWOcTvg5OJ32wwYAf51gvE3annjzPP5wN8Djwd2JlfpuRW4GDix2agvrTCPLYG3AUeST6I2B5YDZzcb9XeWxutkuzoYeDN5+15Prpr61majfktp/DcCbyL/p7cBVgDXkasjLS6NN5PbdWubWlbM61PAY4BrgYXkfeMnGT05/Q7w7laiXlTd+wD5RHVXYKsi3kuKeC8rxruIoqpZ4fTa8MgGVeQm2LfWgPcBLyy+x+riu3y62aifXRrvGEar3b2pmNffAjsAVwPvaDbqlzKJ2vDIDsVv9rJiHg8CVwCfaq+qPcE8/hr4f+T96Fzy7/ttclWy1aXxglwCcyzwhGLcm4GfNhv1v2lbxwAn1IZHWv/3k5qN+oltv+0TyOvrYOB/gUPGq+ZXGx55LLnE58/I/9EzgBuAU8vzL8ZtUuG4V+o/RD7O/gWwJ/kY/HPgo81G/b8n/wU5hLxPBPj3tmEfJe+HAD5f/u+St73zi1fZT8nbaJD/Vz9kNFG+rPgOuwBPJv9u5VKqS8YKsDY88mTgE8V8VhRxvq/ZqD9YGu0s8jF0C/I6/tBY89JgszU/zQanlT4f2fpQ1Kd+etH5nSKR2p2843wHOeHYEpgHPBP4Sm145JSZCXl8RSL13+QTlMeSD65bkavInAycXRseGeu/+3JyQvW4YpoDgDNqwyN/NoXFPx74L3LSMJd80vcx4G9K8f0Z+UTmKGAP8kFiF/KJ3C+KE8GxfA/4a2A78m/+l8AFteGRrYv5bkWuX344+URzR/LJyJjrpDY8chT5BPOl5JPrzYHdgL8CLi3utRrLqcX3mUc+MfsIufrlV4AFRf/nAP9RVPNpOZZ8oG0tax7wNODz5HXVimtX8gn+C8i/4e7kE7OTxonnpcCzgUcCjyimeTQ5Kf7BONOM50vkE7PWFdWNWV+t6YP8+7yefGK/LXAEeX2ONf5GLW8CTyMnKnuTt48tgCHyurykuEgy0feYS77Y8C/AU8nrby55nR9eGq/T7WqkiGV78rZ7OHBmab5/Sd72nko+ud+S/Pscyuh9Gb3Yrlt2Jl/geHLxuzwVOKd4vZ78v30kORn9x9J0BwCvJO9Pty3F+0rg4iKx7lhxwv/LIoZHkdf7duRE/Qe14ZH3jjPpx4o4h8jby7OAc4sLAxMtb1fyyfQ/APuT/5Pbkv+j36sNj7xrgslb8/gM8HXyxZT55HW9XxHPxcW+rvXf+hbwZfLJe2vcvcn7yk5cRN73bD1JjLuT91OHMrqfGgZO7HC55Xk/mpx8/j9yFcUtyP+LvwAurA2P/FWF2byoeF9PToRa896VfHxq+WjFsH5a+txKlP60NOynbf3KyVR52padycfp55OPz48iXwB5d3mkZqN+LzmRh/z9NQuZTGlQnFAbHkltr1cANBv1a8gnbwCvKW5ahQ0PRl8p3j9EPlBBvgq3E/nK4bKi33G14ZFpqdZRXNH7k1Kvxc1GPYrXMRNM+g5yNQXIic0jyUnNL4t+h5FPZtttT74yvj35RKJlKvW0dwI+Tj7Ze+s48/gS+eCxjHzC9QjyCdjt5IPy58aZ9zLybz/E6MHpAOANxee/LbohX8EcIp8E3t0+oyLh/Ax5H7aOfOI2n3zwpohpvMT4FmCvYpqWl5FPPrdjNEnYhw0P2q8jnxBtSz7heSK5VAPg7cWJEeTSk12Lz98nH3SfQlFKNIZ/JSfKOzKaILRuln5uceW/qiAfsLcu4oPO11fLC8lXiQGWktfRI4El44y/scsbz/nkE9rdyL/TjuR1BjlZO2qS6RcyeoJ0HfnkehvyxYfPw0ZvV78nJxT7k2+CB3h+bXjkkcXnZxfvq8jJ8iPI/4fXUKzvHm3XLduQSym2I5egQN4PPJn8W+1TxA6li1bk/dKLGL0YMB/4u2LY1uQSIoqS1GNL0x1b2h+eMc53oohph+Jz67s8m9H9wgdrwyN7jTPtIeR92kVF947AiydYFsAHyesR8u++TdHdOiH+cGmdPkxteOSZjO47zyAnKVszWmXtIEZ/n78kl/gB3ET+r80j7/dOgj9WBX9uaREnlX63E8cIYRn5otjWjG43Y/l78r4JNtxPTcd54aeL+d1Djn0ued95fTH/zxalxBN5WvHeLJfOk5OzlpXNRv2mPw4YHrmy7RxhRWncckLUusB4cGnYT9v6tcZZS06u221DLnXamfw/axnreHtV6zuNcyFUA86VqtmilSztzuiBp3XAX1qqVlAvTfPOZqN+Z1Ft5lOl/pMdbLutHON7m436Lc1G/ffkg3zLWDFe3mzUv9Bs1O+hdEWc0eSxiluBDzQb9bvJpVwbzKM2PLIfownP3uQk9gHyVchdiv5PKK56tjuh2ajfWBz8yqU0Lyjen1fq99Fmo35Ts1H/Hbk0rt3B5KQR4IfNRv37zUZ9ZbNRP4XRm9r3rw2PLBhj2k83G/U/kBPVlrXk6jf3MprIQD45bXmIfAX5RnIVv6vJiQ/kk71WAlX+Hic0G/U7mo36FcW0Y7mdXE3vWmANOUErX8F89FgTjePkZqP+X81GfU2zUb9mI9dXS/n7fKbZqP+mqLr2wfYRp2l547mJ/J++hHxSfye5GlHLZL9T+YTnzc1G/efNRn11s1G/rtmof7zovzHb1QeajfoNzUZ9CfA/pf6t/1+rOu425Cprf0f+rc5rNuqtbaMX23V53A8V415Y6v/94rf6PXDNGNPfQr46fwE5wbmXfP9Ky1S23w0UJTit/fmd5Oqc9zYb9f8hJyqQS8JeOMbkpzUb9YuLe23OKvWfbH/YKiVcR052ziaX+rVKtLZkw+qK400PuYrlLeRqiZ8o9W/FW94m/6nZqJ/fbNTvazbqv9uIe4Tf1mzUry32AddPMN4hpc9V9lOVFOvs0KJzO/K2dD/54ktr39BK3CbS2kesmGCc9VXjKqrQtxKvp9WGR+aRE1vIidRPis8H14ZHdmG0iuGVzbGbwn+IXE39jmaj/h/k6oUw9vbV+g6ti0CaZUymNCjKV+Nar3Ld9X8j77AB/ro2PHIguYocjCZaMHpCt6pZuqGV0ZIpGD0pnqrpugdxl9LnclOqk8X4m9Ln+0qf21s7msjvmo36QxPMo+pvs9MY/W4c53Pr6mh5muXjfG4Z7zeCyX+nJkCzUV9T6ndbqbtc3/0RALXhkSPI9eGfQ06cxtp3blW8V/4eRVXU/yGXJjySsbehrcboN54r2ro3Zn2NNWyy9TIdy3uY4mruj8kJyL4U66XNZL/TbqXP140zzsZsV5P9/z5PLvFZT756/a/kxOfW2vDI8DQsvwlT267b3FY6aSzPo7zc1jzKpQrfIldtegxjr4OpbL/tdmT03pj/a90rOkZc07k/bM1rc3KS2HqVT5In2n6r/Ada01fZJqeqfR8wWQww+f96Iu37rPI6q7r8sbRK8tsbfmiWPm9XvjDTbNSf1Jy4kZ7WvU9bkWtEzCWXfP0f+cLPGnLV278pTTNWFT+AW4sLly2tbWys/9bANEevztgAhWaFZqN+d2145Pvk6m+vIlcvgHz1qFzCcjv5pHVerWjRp+hfvtJ6GxN7oHj/40G5qJ6z2xjjdtIC0O3kah6tuO4ofZ4oxrUbudwN5tFs1FNteKR9eHm55zcb9YddEa4Nj0Rz7JaP9mL0BKf8XVa0vUMu8fll6XO729vm276cseJtWVexX1m5WuXbgC83G/X7a8Mjl/PwK6wrGK0mNES+ot763O5ljJ5sngksbOZWpk4Gjp8kprGsaevemPXV0r5exvo8ncsbyxMZvThyLbn09kZyYxtnjzdRm1sZ/V89hg23oZaN2a4m/P8VDTa8pjY8Mp/cSMD+5CpwzwD+uTY88rWNXH4n23WVccedR9FQQ+vellvJpZjXk6tOjtXQyFTX+53kffhmwB614ZHNShd7urU/vI18Qr0K2KmtMYEq2285lr9pNur/1j5CqUrwraXej2Hs6mQwhfjbkumJTGU/BdWPe+V1tqTZqO/fPqOK+4BbyL9J+QIDzUb9ttrwyKWM3g/9D8Wrip+SSxshV3OEIsFqNupra8Mj/0uuQvr3bdOMZW1b90Tfp5U4rmP0d9YsYjKl2eQr5JPe7Rits/5fxVWnlnOANxaf/6U2PPIP5JaGyjvPh2UQbZaRT4R2qw2PPJ3coMVJjP1/uqP0eb/a8Mg2zUb9vjHGKzuHfI8CwEdqwyPHkk+4P1AaZ7IYu6LZqC+pDY/8lvz9X1AbHnkHo9VtFpCrHz6OfLN8uxNqwyO/Jh90yq0ctlpdurA03XCRqMwFyi01tfyU/OyPHYDDasMjLyNXMzqSfI8HwG+aFVp4q6h8QnkvEMV6efIY417I6D0pJ9WGR95APvF7wxjjlue7Gri/NjzyLPL9YxttI9dXy4XAe4rPb60Nj/wX+WLF+7u0vLGUf6cHyCe6ewHjNT4wlrMZvR/ic7XhkdeTq609Cnh5s1H/BF3crmrDI4eTL+T8mHwPxVXkhm+eQb5y3bqXcCa36421jvx/juLzveSS5vFaLCvvDx9fK5qhHm/mzUZ9TW145AJyVeAdyfuQfyEno8eUYjhvY75Em3OA48j3Ln25NjzyT0Xcf0Left7K6P2I403faqDjw7XhkWXkUo9dyPcyvZbcktyZ5G2yVQrykdrwyE3kZyLtCry22ai3fsfy7/aY2vDIlu1JXgemsp+Cise9Yp39mFyVcb/a8MjHyY2+rCHfd/d88kWQcvXhsfwvuYpnrTY8sm3bfVP/RC7VnQP8fW14ZCW5Iapb2fA+5XblxGivMfr9hJxMlRP1MVvym6IDi/fLm4165aqJGhxW89OgGKsBivYHPv6Y0aofrR38V9rG+UBpnNeRrxJdw+hNrac0G/WfTRLL10uff04+gXgHG1ajAaCZH/J4bdH5p8CqIvZjJpj/p9mwsYlbyPdbPLXody7wzUli7KbjGK1S+Snyyd9d5IPfSYxdQgf5IPcHcjWS1knt9YzW0f9q0Q05mVxObvBggyuTAEVC+jZylaktyK3erWS0Sd8HmPjm66kqt1y3mJz4fI7ROvhln2L06vQryFeAf8nYyfa5jP6WxxXzvYT8e06XTtdXy3mM3sDfuon8ZnJS1I3ljeV6Rh+a+RTyb9pktIpoFYsYPXF6PPAL8u/9G+At0PXt6jHkxiWuK+a5kvxbQf49r+7Bdr1RihPcHxede5L/37cyWorY7gpG95PvBNYW+8PaBIt5B6P/h/eTE/mfMNooxfubjXp7lciN8QFG7297LbkE9D5yE/GnkBO5cRXHj9Y9Y39SxLqmmM8PyYlxa1/wbXJT85CT6R8Vy2q/R3YpoyXErwEeKH63Q6b87UaNt58ar4Sl8nGv6N8qgXkXeZu4l3zf38nkpGoyrXv/Hvag3Waj/iNyqe6DxfATydveg2xYvbPdlWxY5RM2TKbaS6GabRdjp6woiW4l39OZ9KuPmExp1iiu+JSr9K2grQpQceP8QeT7FX5H3vmuIh8cXtds1KucqHyNfGWsST65uYp85fTmccZ/LbkJ1Xsrfo/7yFfHPkg+gXyAfHJ6Jbk6w8t6eXWr2ahfTE7svkpOeNaSD5xXk08W/3GcSV9JvrftHvJv/h3gea37NIrqKYcC3yUf8O4mPzPmjWPNrNmof518E/U55Cu368gH7W8BT2826hdt1Bd9+LL+nnyScz/5quxh5G2ofdzbirh+VIx7G/m5L+8bY9zfkav6XVGM+3tyi4wPqxq0EbF3ur5a0yfyydZXGF1332XDVuOmbXnjzHMd+Xc6l5xcrCAnRwunMI/7yVfD30UuKbiP/N9aSqmBgi5uVz8mr9el5N/wIfI+49+B57SqZ83kdj1NjiJf3LmLvH2cyTglj83c+MzfkhPKB8YaZ4xpriMn0KeRT5jXFcu5EHhFs1FvbGT87cu7lXyM+Dg5iW+VhC4hr78jx5/6j/N4M/l3ubiIdS35v3Ah+f6yc4vxEjk5eiP5RP5e8jHpRkrPViq23b8ib7djNYYwZWPsp24FGmxYa6Cs8nGv2aj/mtxC6RfIz616kPw7XEdej1WOsxcyun99WOu1RaMtB5LvRfwtOWFdXUzTet7i09umWQeUnzO2ktFGVSBfyFrf1r2xDidfGFnPho9x0SwSKXV6a4UkSZJmi9qGDz7+40N7exTLm4AvkpPZvdsajRoIteGRS8g1Lb7RbNQ7fXaY+pwlU5IkSeo3XyZXk58HvL3HsUxZbXjkeeRE6gGmdn+nBowNUEiSJKmvFC03Pr7XcXSq2ahfgM2ibxKs5idJkiRJHbCanyRJkiR1wGRKkiRJkjpgMiVJkiRJHTCZkiRJkqQOmExJkiRJUgdMpiRJkiSpAyZTkiRJktQBkylJkiRJ6oDJlCRJkiR1wGRKkiRJkjpgMiVJkiRJHTCZkiRJkqQOmExJkiRJUgdMpiRJkiSpAyZTkiRJktQBkylJkiRJ6oDJlCRJkiR1wGRKkiRJkjpgMiVJkiRJHdi81wHMtJ133jnVarVehyFJkiSpT11++eUrUkq7TDbeJpdM1Wo1Lrvssl6HIUmSJKlPRcSyKuNZzU+SJEmSOmAyJUmSJEkdMJmSJEmSpA6YTEmSJElSB0ymJEmSJKkDJlOSJEmS1AGTKakPrFixgre97W3ccccdvQ5FkiRJFZlMSX1g8eLFXH311SxevLjXoUiSJKkikympx1asWMG5555LSolzzz3X0ilJkqQBYTIl9djixYtJKQGwfv16S6ckSZIGhMmU1GPnn38+a9euBWDt2rWcd955PY5IkiRJVZhMST32ghe8gC222AKALbbYghe+8IU9jkiSJElVmExJPXb00UcTEQDMmTOHo48+uscRSZIkqQqTKanHdt55Zw477DAigsMOO4yddtqp1yFJkiSpgs17HYCkXDrVbDYtlZIkSRogJlNSH9h55535zGc+0+swJEmSNAVW85MkSZKkDphMSZIkSVIHTKYkSZIkqQMmU5IkSZLUAZMpSZIkSeqArfnNsEWLFrF06dJpn+/y5csBGBoamvZ5AyxYsICFCxd2Zd6SJEnSIDKZmiXWrFnT6xAkSZKkTYrJ1AzrVulOa76LFi3qyvylQdetUmHobsmwpcKSJPUvkylJ2kiWDEuStGkymZK0Sehm6Y4lw4NrxYoVnHTSSZx44onstNNOvQ5HkjRgTKakKRjEBkSsJiaNb/HixVx99dUsXryY448/vtfhSJIGjE2jS31gzZo1VhWTZtiKFSs499xzSSlx7rnncscdd/Q6JEnSgLFkSpoCGxCRZo/FixeTUgJg/fr1lk5JkqbMkilJ0ibp/PPPZ+3atQCsXbuW8847r8cRSZIGjSVTkqS+1437FbfaaitWr169Qfd0lz57z6IkzW6WTEmSNkm77777Hz9HxAbdkiRVYcmUJKnvdat055WvfCV33HEHL3/5y71fSpI0ZSZTkqRN1u67787999/P0Ucf3etQJEkDyGp+kqRN1hZbbMF+++3nA3slSR0xmZIkSZKkDsxYMhUR+0XE/RFxZqnf8yPi+ohYHREXRsTepWERER+LiDuK18cjIkrDa8U0q4t5HDpT30WSJEmSZrJk6nPA/7Y6ImJn4LvA+4EdgcuAb5bGPw54BXAg8ETgJcCbSsO/AVwB7AT8E/CdiNili/FLkiRJ0h/NSDIVEUcAdwM/LvV+FXBtSunbKaX7gROBAyPigGL40cDJKaXlKaWbgJOBY4r57Q88BTghpbQmpXQWcA1w+Ex8H0mSJEnqejIVEfOBDwLvbBv0OOCqVkdK6T7gd0X/hw0vPpeH3ZBSWjnO8PYYjouIyyListtvv73TryJJkiRJfzQTJVMfAk5LKf2hrf884J62fvcA244z/B5gXnHf1GTTbiCldGpK6aCU0kG77GJNQEmSJEkbr6vPmYqIJwGHAk8eY/AqYH5bv/nAynGGzwdWpZRSREw2rSRJkiR1VbdLpg4BasCNEXEL8A/A4RHxS+BacuMSAETENsC+RX/ahxefy8P2iYhtxxkuSZIkSV3V7WTqVHKC9KTi9UVgBHgR8D3g8RFxeETMBT4AXJ1Sur6Y9qvA8RGxZ0TsQb7n6gyAlNJvgSuBEyJibkS8ktzi31ld/j6SJEmSBHS5ml9KaTWwutVdVM+7P6V0e9F9OPBZ4EzgF8ARpclPAfYht9IH8OWiX8sR5OTqLuBG4NWt+UqSpP6waNEili5d2pV5L1++HIChoaFpn/eCBQtYuHDhtM9X0uzS1WSqXUrpxLbuHwEHjDNuAt5dvMYa3iRXI5QkSZugNWvW9DoEqa9162KGFzJGzWgyJUmSNi3dPClqzXvRokVdW4akh/NCxiiTKUmSJGkW6tbFDC9kjJqJ50xJkiRJ0qxTqWQqInYFDgb2ANYAvwIuSymt72JskiRJktS3JkymIuK5wDCwI3AFcBswF3gFsG9EfAc4OaV0b7cDlSRJkqR+MlnJ1IuBN6aUbmwfEBGbAy8BXoDPd5IkSZK0iZkwmUopvWuCYeuA7097RJIkSZI0AKreM/UI4HCgVp4mpfTB7oQlSZIkSf2tatPoPwDuAS4HHuheOJIkSeoXg/jQVxi8B79qcFVNpoZSSn/R1UgkSZK0SfChr5otqiZTl0TEE1JK13Q1GkmSJPUNH/oqTWyyptGvAVIx3rERcQO5ml8AKaX0xO6HKEmSJEn9Z7KSqZfMSBSSJEmSNGAmS6b+HvgpcElK6aYZiEeSJEmSBsJkydRS4JXAJyIC4BKK5Aq4KqW0vrvhSZIkSVJ/muyhvZ8FPgsQEY8EDgb+lFxitSswv9sBSpIkSVI/mrQ1v8hFUk8gJ1EHA48ll1h9rbuhSZIkSVL/mqw1v/PJpU9XAj8H/jml9OuZCEySJEmS+tmcSYbfQG4afb/itSAidu56VJIkSZLU5ya7Z+pNABExH3gmuarfWyJiF+BXKaWjux+iJEmSJPWfSe+ZKjwArAbWFJ+HgC27FZQkSZIk9bsJq/lFxKci4hfAzcAHgW2BU4BHp5SeMAPxSZIkSVJfmqxk6vfA14ErUkoPzUA8kiRJkjQQJkumPgds1UqkIuKZjFbvuyKltLKbwUmSJElSv5osmfoYcBvw8aL7G8CvgLnAL4H3dC80SZIkSepfkyVTzweeVuq+O6X00uJBvv/TvbAkSZIkqb9N9pypOSmldaXu9wCklBIwr2tRSZIkSVKfmyyZ2jIitm11pJTOA4iI7chV/SRJkiRpkzRZMvUl4JsRsVerR0TsTb536kvdDEySJEmS+tmE90yllD4ZEauBn0TENkAC7gMaKaUvzESAkiRJktSPJmuAgpTSF4EvRsQ8IGwOXZIkSZImqeYXEUdFxByAlNKq9kQqIvaNiD/rZoCSJEmS1I8mK5naCbgiIi4HLgduJzc8sQB4DrACGO5qhJIkSZLUhya7Z+rTEfFZ4HnAwcATgTXAr4HXppRu7H6IkiRJktR/qtwz9RBwfvGSJEmSJDF50+iSJEmSpDEMoqjoAAAgAElEQVSYTEmSJElSB7qeTEXEmRFxc0TcGxG/jYg3FP1rEZEiYlXp9f7SdBERH4uIO4rXxyMiSsNrEXFhRKyOiOsj4tBufxdJkiRJapn0nimAiNgN+Gdgj5TSYRHxWOBZKaXTKkz+UeD1KaUHIuIA4KKIuAK4oxi+fUpp3RjTHQe8AjiQ/LDg84EbgC8Ww78B/Ax4cfH6TkTsl1K6vcp3kiRJkqSNUbVk6gzgv4A9iu7fAu+oMmFK6dqU0gOtzuK1b4VJjwZOTiktTyndBJwMHAMQEfsDTwFOSCmtSSmdBVwDHF7p20iSJEnSRqqaTO2cUvoWsB6gKEl6qOpCIuLzEbEauB64GfhhafCyiFgeEadHxM6l/o8Drip1X1X0aw27oe0hwuXh7cs/LiIui4jLbr/dgitJkiRJG69qMnVfROxELlUiIp4J3FN1ISmlNwPbAn8OfBd4gPzA36cBewNPLYZ/vTTZvLZl3APMK+6bah/WGr7tOMs/NaV0UErpoF122aVq2JIkSZI0rqrJ1PHA2cC+EfFT4KvA26ayoJTSQymlnwBDwN+llFallC5LKa1LKd0KvBV4YUTMLyZZBcwvzWI+sCqllMYY1hq+EkmSJEmaAZUaoEgp/TIingM8GgjgNymltRuxzLHumUrFe6vFvmvJjU9cWnQfWPRrDdsnIrYtVfU7EPi3DmOSJEmSpCmZStPoTycnLE8BjoyIv51sgojYNSKOiIh5EbFZRLwIOBK4ICKeERGPjog5RRXCRcBFKaVW9b2vAsdHxJ4RsQfwTnJDGKSUfgtcCZwQEXMj4pXAE4GzpvB9JEmSJKljVZtG/xq5NOlKRhueSOSEZyIJ+Dtyc+ZzgGXAO1JKP4iII8nNre8K3Etu+vzI0rSnAPuQW+kD+HLRr+UIcnJ1F3Aj8GqbRZckSZI0UyolU8BBwGOL+5UqK5Kb54wz7BvkZ0WNN20C3l28xhreBA6ZSjySJEmSNF2qVvP7FbB7NwORJEmSpEFStWRqZ+C6iLiU3Kw5ACmll3UlKkmSJEnqc1WTqRO7GYQkSZIkDZqqTaNf3O1AJEmSJGmQVLpnKiJeFRFLIuKeiLg3IlZGxL3dDk6SJEmS+lXVan4fB16aUvp1N4ORJEmSpEFRtTW/W02kJEmSJGlU1ZKpyyLim8D32bA1v+92JSpJkiRJ6nNVk6n5wGrghaV+CTCZkiRJkrRJqtqa37HdDkSSJEmSBknV1vz2j4gfR8Sviu4nRsT7uhuaJEmSJPWvqg1QfAl4L7AWIKV0NXBEt4KSJEmSpH5XNZnaOqV0aVu/ddMdjCRJkiQNiqrJ1IqI2Jfc6AQR8Wrg5q5FJUmSJEl9rmprfm8BTgUOiIibgN8DR3UtKkmSJEnqc1Vb87sBODQitgHmpJRWdjcsSZIkSepvEyZTEXFUSunMiDi+rT8AKaVPdjE2SZIkSepbk5VMbVO8b9vtQCRJkiRpkEyYTKWUTineT5qZcCRJkiRpMExWzW/RRMNTSgunNxxJkiRJGgyTNY1+efGaCzwFWFK8ngQ81N3QJEmSJKl/TVbNbzFARBwDPDeltLbo/iJwXtejkyRJkqQ+VfWhvXuwYSMU84p+kiRJkrRJqvrQ3gZwRURcWHQ/BzixKxFJkiRJ0gCo+tDe0yPiXOAZRa/hlNIt3QtLkiRJkvrbhNX8IuKA4v0p5Gp9fyheexT9JEmSJGmTNFnJ1PHAccDJYwxLwPOmPSJJkiRJGgCTteZ3XPHxsJTS/eVhETG3a1FJkiRJUp+r2prfJRX7SZIkSdImYcKSqYjYHdgT2CoingxEMWg+sHWXY5MkSZKkvjXZPVMvAo4BhoBPlvqvBP6xSzFJkiRJUt+b7J6pxcDiiDg8pXTWDMUkSZIkSX2v6kN7fxwRnwSeXXRfDHwwpXRPd8KSOrdo0SKWLl3a6zCmZMmSJQAsXLiwx5FMzYIFC6Y9ZtffzOjGupMkaVNTNZk6DfgV8Jqi+7XA6cCruhGUtDGWLl3Kb3/1S/aa91CvQ6lsy7W5LZj7m//b40iqu3HVZl2Z79KlS7ni2itg+67MvjvW57crbrqit3FUdXevA5AkaXaomkztm1I6vNR9UkRc2Y2A+sWgXR0fxCvj0L2r43vNe4j3HbRq2uerUR++bF73Zr49rD9kfffmv4mbc1HVhlwlSdJEqiZTayLiz1JKPwGIiIOBNd0Lq/eWLl3KFddcx/qtd+x1KJXEgwmAy393S48jqW7O6jt7HYIkSVJPDdoFfPAiflnVZOrvyA1RbEduHv1Ocit/s9r6rXfk/se+pNdhzFpzrzun1yFIkiT11NKlS/nNr37No7bdvdehVLbFulzDYfWyu3ocSXV/WNmdAodKyVRK6UrgwIiYX3TfW3UBEXEm8HxgG+AW4OMppS8Xw54PfA7YC/gFcExKaVkxLIAG8IZiVqcB70kppWJ4jXzf1jOAG4G3ppR+VDUuSZIkqR88atvdeefTj+11GLPayZee3pX5VkqmIuIDbd0ApJQ+WGHyjwKvTyk9EBEHABdFxBXAMuC75GTpP4APAd8EnllMdxzwCuBAIAHnAzcAXyyGfwP4GfDi4vWdiNgvpXR7le8kSZIkSRuj6l3I95VeDwGHAbUqE6aUrk0pPdDqLF77klsCvDal9O2U0v3AieTSrwOKcY8GTk4pLU8p3QScTFG1MCL2B54CnJBSWlM8A+saoNxIhiRJkiR1TdVqfieXuyPiX4Czqy4kIj5PToS2Aq4Afgh8BLiqtIz7IuJ3wOOA64v3q0qzuaroR/F+Q0pp5TjDJUk9MGg3UnsTtSRpY1RtgKLd1sA+VUdOKb05It4GPAs4BHgAmAe0V8m7B9i2+Dyv6C4Pm1fcS9U+rDV8z7GWHxHHkasNstdee1UNW5I0RUuXLuX6K69kUG6jblXPuPvKwXnax+C02SpJs1/Ve6auIVfPA9gM2AWocr/UH6WUHgJ+EhFHkVsHXAXMbxttPtAqbWofPh9YlVJKETHZtO3LPhU4FeCggw5KY40jSZoeuwOvJ3odxqx1Gh7GJKlfVC2ZKrcPvg64NaW0biOWuS9wLfm+KAAiYptSf4r3A4FLi+4D24btExHblqr6HQj8W4cxSZIkSdKUVG2AYmXptQaYHxE7tl7jTRQRu0bEERExLyI2i4gXAUcCFwDfAx4fEYdHxFzgA8DVKaXri8m/ChwfEXtGxB7AO4EzAFJKvwWuBE6IiLkR8UrgicBZU/v6kiRJktSZqiVTvwQeBdxFfmjv9uRnO0Gu/jfe/VOJXKXvi+TEbRnwjpTSDwAi4nDgs8CZ5OdMHVGa9pRivtcU3V8u+rUcQU6u7ipiebXNokuSJEmaKVWTqf8Ezk4p/RAgIg4DDk0pvXOiiYrk5jkTDP8RcMA4wxLw7uI11vAmuTELSZIkSZpxVav5Pa2VSAGklM5lgiRJkiRJkma7qiVTKyLifeTqeAk4Crija1FJkiRJUp+rWjJ1JLk59O8Vr12KfpIkSZK0SapUMpVSuhN4+3jDI+IzKaW3TVtUkiRJktTnqlbzm8zB0zQfSZLUA4sWLWLp0qW9DmNKlixZAsDChQt7HEl1CxYsGKh4JU1supIpSZI0wJYuXcq11/ya7bfetdehVLb+wQDgpt8Nxm3cd6++rdchSJpmJlOSJAmA7bfelececMTkI6ojF17/770OQdI0q9oAxWRimuYjSZIkSQNhupKpT0/TfCRJkiRpIFSq5hcR+wPvAvYuT5NSel7xfkY3gpMkSZKkflX1nqlvA18EvgQ81L1wJEmSNFWD1hrjILbECLbGqIermkytSyl9oauRSJIkqSNLly7lV1ddxbZbDkbbYuvW5Wvzy359bY8jqW7lg+t6HYL6UNV/3H9ExJuB7wEPtHoWD/OVJElSj2275eY8fbcdeh3GrHXprXf1OgT1oarJ1NHF+7tK/RKwz/SGI0mSJEmDoVIylVL6k24HIkmSJEmDpGprflsAfwc8u+h1EXBKSmltl+KSJEmSpL5WtZrfF4AtgM8X3a8t+r2hG0FJkiRJUr+rmkw9LaV0YKn7goi4qhsBSZIkSdIgmFNxvIciYt9WR0Tsg8+bkiRJkrQJq1oy9S7gwoi4AQhgb+DYrkUlSZIkSX2uamt+P46I/YBHk5Op61NKD0wymSRJkiTNWhMmUxHxvJTSBRHxqrZB+0YEKaXvdjE2SZIkSepbk5VMPQe4AHjpGMMSYDIlSZIkaZM0YTKVUjqh+PjBlNLvy8Miwgf5SpIkSdpkVW3N76wx+n1nOgORJEmSpEEy2T1TBwCPA7Zru29qPjC3m4FJkiRJUj+b7J6pRwMvAbZnw/umVgJv7FZQkiRJktTvJrtn6gfADyLiWSmln81QTJIkSZLU96o+tPeKiHgLucrfH6v3pZRe15WoJEmSJKnPVW2A4mvA7sCLgIuBIXJVP0mSJEnaJFVNphaklN4P3JdSWgzUgSd0LyxJkiRJ6m9Vk6m1xfvdEfF4YDug1pWIJEmSJGkAVL1n6tSI2AF4P3A2MA/4QNeikiRJkqQ+VymZSil9ufh4MbBP98KRJEmSpMFQKZmKiO2BvyVX7fvjNCmlhd0JS5IkSZL6W9Vqfj8Efg5cA6zvXjiSJEmSNBiqJlNzU0rHdzUSSZIkSRoglZ8zFRFvjIhHRsSOrVdXI5MkSZKkPlY1mXoQ+ATwM+Dy4nXZZBNFxCMi4rSIWBYRKyPiiog4rBhWi4gUEatKr/eXpo2I+FhE3FG8Ph4RURpei4gLI2J1RFwfEYdO5YtLkiRJ0saoWs3vePKDe1d0MP8/AM8BbgReDHwrIsoP/N0+pbRujGmPA14BHAgk4HzgBuCLxfBvkJO7Fxev70TEfiml26cYoyRJkiRNWdWSqWuB1VOdeUrpvpTSiSmlZkppfUrpHOD3wFMrTH40cHJKaXlK6SbgZOAYgIjYH3gKcEJKaU1K6Sxy4xiHTzVGSZIkSepE1ZKph4ArI+JC4IFWz6k2jR4RuwH7k5OzlmUR0Sp5elep9OtxwFWl8a4q+rWG3ZBSWjnO8PblHkcu6WKvvfaaSsiSJEmSNKaqydT3i1fHImIL4OvA4pTS9RExD3gacCWwE/C5YviLiknmAfeUZnEPMK+4b6p9WGv4nmMtO6V0KnAqwEEHHZSqxLt8+XLmrL6HudedU2V0dWDO6jtYvnysGp4bZ/ny5dy3cjM+fNm8aZ+3Ri1buRnbLF8+7fNdvnw53ANzLqpacK4puxuWp+lfd5IkbWoqJVMppcUbs5CImAN8jdyQxVuLea5itBGLWyPircDNETE/pXQvsAqYX5rNfGBVSilFRPuw1vCVSJIkSdIMqJRMRcRLgA8BexfTBJBSSu0JzVjTBnAasBvw4pTS2nFGbZUYtVrsu5bc+MSlRfeBjFYPvBbYJyK2LVX1OxD4tyrfp4qhoSFufWBz7n/sS6Zrlmoz97pzGBrafdrnOzQ0xP3rbuZ9B62a9nlr1Icvm8fcoaFpn+/Q0BC3x+2sP8Tng3fLnIvmMLTn9K87SZI2NVXr0fwruUGInVJK81NK21ZJpApfAB4DvDSltKbVMyKeERGPjog5EbETsAi4KKXUqr73VeD4iNgzIvYA3gmcAZBS+i25euAJETE3Il4JPBE4q2JMkiRJkrRRqt4z9QfgVymlSvcbtUTE3sCbyI1W3FJ6TNSbgPXAPwO7AveSG6A4sjT5KcA+5Fb6AL5c9Gs5gpxc3UVudv3VNosuSZIkaaZUTabeDfwwIi5mw9b8PjnRRCmlZYxW2xvLNyaYNhXLffc4w5vAIRMtX5I0s5YvX85K4DSmdO1NU3AzsKoLjb9I6o3ccNZKTr709F6HMqv9YeUtbLP8vmmfb9Vk6iPkBiHmAltOexSSJEmSNGCqJlM7ppRe2NVIJEkDb2hoiLtXrOD1E1ZK0MY4jcT2XWj8RVJvDA0Nsfqhu3jn04/tdSiz2smXns7WQztM+3yrNkDxo4gwmZIkSZKkQtVk6i3Af0bE/RGxsnjd283AJEmSJKmfVX1o77bdDkSSJEmSBknVe6aIiJcBzy46L0opndOdkCRJkiSp/1Wq5hcRDeDtwHXF6+1FP0mSJEnaJFUtmXox8KSU0nqAiFgMXAEMdyswSZIkSepnlav5AdsDdxaft+tCLJIkqUeWL1/OPatXcuH1/97rUGatu1ffRlq+ptdhSJpGVZOpjwJXRMSFQJDvnXpv16KSJElSZcuXL2flg+u49Na7eh3KrLXywXUsX76812Goz1Rtze8bEXER8DRyMvWelNIt3QxMkiTNnKGhIeKBO3juAUf0OpRZ68Lr/509h3bqdRiSplGlZCoiDgauTCmdHRFHAe+OiE+nlJZ1NzxJkiRNZmhoiIdW3sPTd9uh16HMWpfeehdDQ0O9DkN9pupDe78ArI6IA4F3AcuAr3YtKkmSJEnqc1XvmVqXUkoR8XJgUUrptIg4upuBSRvjxlWb8eHL5vU6jMpuXZ2va+y29foeR1Ldjas2Y/9uzfxumHNR1Ws9fWBV8T4om9zdwJ69DkKSpMFXNZlaGRHvBY4Cnh0RmwFbdC+s/jBn9Z3MvW4wnk0c998LQJo7v8eRVDdn9Z3A7tM+3wULFkz7PLvtwSVLAJhb26/HkVS3P935rQdx/S0p1t9+ew7I+ttzMH9nSZL6TdVk6q+AvwZen1K6JSL2Aj7RvbB6b9BONJYsWQnAfvtOf3LSPbt35XdeuHDhtM+z21oxL1q0qMeR9J7rb/DdApxG6nUYldxRvA9SkwC3kJ9VIknqvaqt+d0CfLLUfSOz/J6pQTuh82ROUj8YtAtRtxelitvvNyCliuREatB+Z0maraq25vcq4GPAruSm0QNIKaXBqVMmSeo6L0RJkjYlVav5fRx4aUrp190MRpIkSdrU/GHlLZx86em9DqOy21bfCcCuW+/Y40iq+8PKW3g00//ogKrJ1K0mUpIkSdL0GsRqu2uXrABg670H57lmj2aHrvzWVZOpyyLim8D3gQdaPVNK3532iCRJkqRNxKBVjwarSJdVTabmA6uBF5b6JcBkSpIkSdImqWprfsd2OxBJkiRJGiRzqowUEUMR8b2IuC0ibo2IsyJiqNvBSZIkSVK/qpRMAacDZwN7AHsC/1H0kyRJkqRNUtVkapeU0ukppXXF6wxgly7GJUmSJEl9rWoytSIijoqIzYrXUcAd3QxMkiRJkvpZ1WTqdcBrgFuAm4FXF/0kSZIkaZNUtTW/G4GXdTkWSZIkSRoYVVvzWxwR25e6d4iIr3QvLEmSJEnqb1Wr+T0xpXR3qyOldBfw5O6EJEmSJEn9r2oyNScidmh1RMSOVKwiKEmSJEmzUdWE6GTgkoj4DpDIjVF8pGtRSZIkSVKfq9oAxVcj4jLgeUAAr0opXdfVyCRJkiSpj1WuqlckTyZQkiRJkoT3PUmSpMLdq2/jwuv/vddhVLbq/rsAmDd3h0nG7A93r76NPdmp12FImkYmU5IkiQULFvQ6hClbsuROAPbcdzASlD3ZaSB/Z0nj62oyFRGPAD4PHArsCCwF/jGldG4x/PnA54C9gF8Ax6SUlhXDAmgAbyhmdxrwnpRSKobXgNOBZwA3Am9NKf2om99HkqTZauHChb0OYcpaMS9atKjHkUjaVFVtGr1TmwN/AJ4DbAe8H/hWRNQiYmfgu0W/HYHLgG+Wpj0OeAVwIPBE4CXAm0rDvwFcAewE/BPwnYjYpavfRpIkSZIKXU2mUkr3pZROTCk1U0rrU0rnAL8Hngq8Crg2pfTtlNL9wInAgRFxQDH50cDJKaXlKaWbyM2zHwMQEfsDTwFOSCmtSSmdBVwDHN7N7yNJkiRJLd0umdpAROwG7A9cCzwOuKo1LKV0H/C7oj/tw4vP5WE3pJRWjjO8fbnHRcRlEXHZ7bffPh1fRZIkSdImbsaSqYjYAvg6sDildD0wD7inbbR7gG2Lz+3D7wHmFfdSTTbtBlJKp6aUDkopHbTLLtYElCRJkrTxZiSZiog5wNeAB4G3Fr1XAfPbRp0PrBxn+HxgVdEAxWTTSpIkSVJXdT2ZKkqSTgN2Aw5PKa0tBl1LblyiNd42wL5F/4cNLz6Xh+0TEduOM1ySJEmSumomSqa+ADwGeGlKaU2p//eAx0fE4RExF/gAcHVRBRDgq8DxEbFnROwBvBM4AyCl9FvgSuCEiJgbEa8kt/h31gx8H0mSJEnq+nOm9iY3Z/4AcEsupALgTSmlr0fE4cBngTPJz5k6ojT5KcA+5Fb6AL5c9Gs5gpxc3UV+ztSrU0q2LiFJkjZJKx9cx6W33tXrMCpZve4hALbefLMeR1LdygfX9ToE9aGuJlPFA3hjguE/Ag4YZ1gC3l28xhreBA7Z6CAlSZIG3IIFC3odwpQsWbIEgL3326/HkUzNoP3O6r6uJlOSJEnqvoULF/Y6hClpxbto0aIeRyJtnBl9zpQkSZIkzRYmU5IkSZLUAZMpSZIkSeqAyZQkSZIkdcBkSpIkSZI6YDIlSZIkSR0wmZIkSZKkDphMSZIkSVIHTKYkSZIkqQMmU5IkSZLUgc17HYAkzYRFixaxdOnSrsx7yZIlACxcuHDa571gwYKuzFeSJG08kylJ2khbbbVVr0OQJEk9YDIlaZNg6Y4kSZpu3jMlSZIkSR2wZGqGdeu+jW7eswHetyFJkiS1M5maJbxnQ5LUj2z8RdJsZjI1w9wxD7ZBLFn0hEDSbOWFREm9ZjIl9QFPCKSJDeKFDPBiBngRUdLsZjIlTYEnBdLs4oUMSbPZIF6IGrSLUCZTkqS+N0gHVkma7bwQNcpkSpIkSZqFvBDVfSZTkiRJGtMgVhODwasqpsFlMiVJkqQZZTUxzRYmU5IkSRqTpTvSxOb0OgBJkiRJGkQmU5IkSZLUAZMpSZIkSeqAyZQkSZIkdcBkSpIkSZI6YDIlSZIkSR0wmZIkSZKkDphMSZIkSVIHTKYkSZIkqQMmU5IkSZLUgUgp9TqGGRURtwPLeh1Hl+wMrOh1EOqY62+wuf4Gl+tusLn+BpfrbrDN9vW3d0ppl8lG2uSSqdksIi5LKR3U6zjUGdffYHP9DS7X3WBz/Q0u191gc/1lVvOTJEmSpA6YTEmSJElSB0ymZpdTex2ANorrb7C5/gaX626wuf4Gl+tusLn+8J4pSZIkSeqIJVOSJEmS1AGTKUmSJEnqgMnUJiYilkfEIb2OY1MQEcdExE9m+zIHUUScGBFn9mjZZ0TEh3ux7E1ZROwVEasiYrNxhvdsm1D3RcQhEbG813GomohoRsShvY5DU7cp7ktNpmZIcRBvvdZHxJpS99/0Or5NVUS8NyJ+2NZvyTj9jpjZ6NQp/2+bjuKka03bOt+jfbyU0o0ppXkppYd6EeemKCL+LCIuiYh7IuLOiPhpRDytwnSeSPepTtepeqf4Pz0YETu39b8yIlJE1HoT2exhMjVDioP4vJTSPOBG4KWlfl/vdXybsP8GDm5drY6I3YEtgKe09VtQjKsBMJP/t4jYfDrnp46U1++8lNL/lQe6jmZeRMwHzgE+A+wI7AmcBDwwA8t2fXdBL9epNtrvgSNbHRHxBGCr3oUzu5hM9YmIODMiTix1HxoRzVL3UER8LyJuj4jfR8RbSsOeGRG/jIh7I+LWiPhEadgxEbEsIlZExHDbMp8VET+PiLsj4uaIWBQRWxTDTomIj7WNf25EvHX6v31P/S85eXpS0f1s4ELgN239fpdS+r+IOCAizi+uyP0mIl7TmlFE7BQRZxfr4VJg3/KCiitA/68o5borIj4XEVEa/rqI+HUx7L8iYu+if0TEpyLituJq4NUR8fiKy/x0RPyhGH55RPx50X/3iFgdETuVxn1qsX1tMR0/7ADYMiK+GhErI+LaiPjjU9yLdbWg1P3HqnlRVBeKiPdExC3A6RGxc0ScU/yX7oyI/4mIOcX4Ty7+nysj4pvA3NJ8dyimu71Y7+dExFAx7C8j4vJywBHxzoj4fnd/lsEXEbViHb4+Im4ELij127wY508i4uJivZwPtF+1/XZE3FL85/47Ih5X9H9asZ/dvDTu4RFx5Ux+xwGwP0BK6RsppYdSSmtSSuellK6OiH0j4oKIuKM4Nn09IrYHiIivAXsB/xG5lPHdMUYVvSiVXkWuVvSdyMfRe4FjImKr4n97V/z/9s492quq2uOfr5CQgCBKCiaQJQWBhA3gdn2RYpd8QXiLIjC8jiS7Kl4hs0LDfHRLG9dK81am8hAJH5DaTc1hiCgopohcSEyBgQRefPDWDJz3j7l+nPX7eQ7nd47g73cO8zPGHmfvtfZae50993rMNedaP2kp0L8k/SWSXkzyXyrpCym8VarDfbJ7PyS3fnbaky+sCbArmRa5dtVS3+ZIukJuydos6UFllhJJo+VjldckfS9/qKQBkuarZqxyvaR9U9wNkn5Scv+9ki7cky+iCTIVODO7/howpXAhqX3qD9cnOUzM+rAxkuZJujbVpxWSPp+l3evb0lCmmgByC8l9+MD/UOAk4FuSTky3/By4xsz2xy0od6Z0fYDrgZEpXRfgkCzr7cA4/MM/GhgCjE1xk4GRWWU6GDgemLFn/svKYGZvA0/gChPp76PAvJKwuZLaAH8EpgMfwmd5flFoGIAbgLeAzsC/paOUU/FOvS/wJeBfACQNA74LDAc6pTLcntJ8LpWhB9ABGAG8VuYzF+JKYcdU7jsktTazdcCcVIYCo4AZZvaPOl5Xc+N0/HvuANyD15VyOQR/p92Ac4DxwMu47A7GZWmpw5+Nd2QdgTuAM7J89gFuSfl0Bd7MynEP8BFJPbP7R6W8gvI4HuhJqmclTAf+jLd/V+CDi5w/AEfgdf1p4DYAM1uI17+TsntDLu9mObBD0mRJn5d0QBYn4Id4n9QTOAyYBGBmoym2Jv+4zOcNxfu+Drisvo9PLn0Ul3+pfF8EjgXa4/lUN8QAAAybSURBVNaVaZI6m9nf8XZhVHbvV4CHzGx9mWVpruxKpuUwEjgLr1P7AhMAJPUCbgRG49/EgcCHs3Q7gP/A6+pngBOBb6a4ycBXsrHKQSn+doKcBcD+knqmMeUIIF/X9HO8LhyOt5tn4rIqMBCfZD4I+DHwG2nnZHC0pWYWx/t8ACuBwSVh04BJ2fVgYGU6Pxp4qeT+S4Ffp/PHgcuAA0vu+QEwLbtuizdKg+oo1wTgjux6OfDZdH4hcE+l390eksckYFY6fxav9ENKwr6GNz6PlqT9Jd5ptwD+AXwii7samJddG3BMdj0TuCSd/wE4O4vbB9iGD7JPSLL4J2Cf7J56n1nL//oG0DedjwAey/JaBwyotDz2gHxrq2+T8MFR4boX8GaJrD6WXd8KXJnOBwFvA62z+B8Av8vTpPDjgL+RftMvhT1eyKuWsn4KeCO7vhG4Kp1/MsmvVaXfaTUdSb5bgA3pmA10TzI8PLuvENYSV1y3A22y+Olk7WXJMzqktO3T9beB29J5x1RXO1f6XVTbgStKt+ITDdvxCYKDa7lvGPBMiUwHZ9eDgJdrkfvgdD4JmFsS/xIwJLs+pzSPkvsXAUPT+UBgNam9BZ4CvlTp91kNR10yTTLIxxs761u6ngNMzOK/Cdyfzi/DJ/IKcW1SGzu4jjJcSOqf0/Uy4KR0fh7wP5V+T9V0FOoKMBGfxBiCTwy3TDL6KO6q2StLMxaYk87HAH/N4vZL6Q6JttSPsEw1DboBXZOJe4OkDcDF1FiZzsIHg89LelLSySm8C94hAGBmW4DXC9dyl7XfJ/PrJnxAmJtnp1AzO9c0ZwvKYy5wTJpl62RmL+AD3n9OYb3TPd2AgSVy+Couh054w7Q6y3dVLc9al51vwxVcUt4/zfJ9HZ+9PdTMHsatFTcAr0j6ldx3vd5nyt3CliXz+gZ85qkg498BvSQdjs8MbTSzJ8t6Y82DUlm0VvlrLdab2VvZ9TXAX4EHJb2kGpfaLsAaSz1FYqeMJO0nd6ldlergXKCDanacK1iIhc/azjSfOQ+KGWZmHdIxLAtfXcf9XXCldWsWlsulhaT/lLuBbcIHI1BTd6YBp0lqi1t3HzWztbvlP2lGmNkyMxtjZh/G29EuwHXJbW6GpDXp/U6jxDWoEZTKugu7bhvPlC/AL7S5vQtlMLMngK3A8ZI+gXt83PMey9csqEumZSavq/8rHatspcb7Akk95C7QhbHK1RR/L5PZO8Yq75WpuHVwDJmLH/4u96W4jqzCPZoK7JSdmW1Lp22JthQIN79qYiuu7RfI3fFWAy9kg4UOZtbOzE4DMLPnzezLuAn1J8BdkloDa3H3CQDSx9oxy/eXwBJ8Nn1/fHZIWfxUYLikfvjMxb276X+tNubjSsY5wGMAZrYJtyicA/zNzFbgcnikRA5tzexcYD0+O3NYlm/XBpRhNTC2JO8PmtnjqTw/M7NP49aJHsC36numfH3Ut/EG6gAz6wBsJMk4KQMzcYVwNNEB5Wyj7voIPrNWc2G22czGm9nhwGnARckNdy1waOYOAcXfxXjg48DAVAcLrqUFGS3AZ2iPxTvBkFHDsDrC1wIHJNfdArlcRuJuY4PxtqF7Ci/IZQ3ebnyBqDtlYWZ/wS0avfHZcQOOTN/9KIr7nlK5FfWPabKhdP1SaZqi/o/itrEb8GvcinFgahuXlJShMEAfDdxZMnkS8C6Z7moMUx+lY5X9cFe/AjcCfwGOSN/LdymW1TRgqKS+uOUs1pXWgpmtwjeiOBm4O4t6Ffdy6ZaFdQXWlJFttKWEMlVNLAJOkS9I7wxckMXNB95OVobWSdPvI+nTsHPh5kFm9g4+WDbgHXx9xlD5RhOtgCsp7nDapfu3pnUZY7O4QsVbhHcqdzTXzsTM3sTdOC7C1yoVmJfCCrv43Qf0SO/7A+noL6mn+XbLdwOTkrWhF+/2G94V/w18J1uY2V7SF9N5f0kD5RtDbMXXSO0o45ntcGVrPdBS0mXA/iXPnYLPUp1Osf/03s4i3CLUQtIQ3Ie8TiSdKuljSWnahLvT7sDr7nbgAkktJQ0HBmRJ2+HrpDZI6oi7jJYyBbdMbjez+A2x3UBq254CLpe0r6RjcCW4QDvc7eU1fIB4dS3ZTME9BPoAs/ZsiZseyfNhvGo2VDkMX3u0AH+/W/Dv/lB8cijnFXztRoHluOX4lNQOTgRa1VOEmXibekAqw/lZXBu8L1yfynYWrhDkTMUHeKMonsXfa6lHpouA4+S/59Ye+E4Dsr4TOFW+7fq+uJdMPj5th7erW5Kl8Nw8sZm9jK8Pngrclfr0oHbOBk4osSTtwOvLVZLapcmGiyhjTBBtqRPKVPVwK+73uwq4n2yjBzPbjs8kDMBNpK/iVqXCwPhkYJmkzcC1wAgze9vMFuMbTMzEZxjWUWxmH48Pvjen/H5bS7km4x94k5wtaACP4Ja9fLD6aAqbC259wDeD+DJutVoH/IiaTv083Oy9DpfnLeU+3MxmpbxmJFP4EqCwW87++CzqG/j38Rou5/qe+QC+Fmt5SvcWJa4wZvYYrng/bWYryy3vXsA4vEMouHLWN9N5BPAQPkCcD/zCzOaYb3AyHFdY38DXqeUzgtfh29O+ig9I7q8l76n4QK+518H3m5H42pjXcSU2HzBPwevMGmApLptSZuEzubNKBiaBsxl/v09I2oq/wyV4v3M5cBQ+mfd7iusEuOVqYnLBm2BmG/E1NjfhMtmKr9nZFZfjMlwBPEhWf8xsKe7FMR9X3PqQvBKye17GF8sbxZNsezN1ytTM/oiPIRbjmxHcV26mZva/wL/ja23W4m1lLt8JeH3djPeFe/NY5T1hZi+a2VO1RJ2P16uX8HHQdODmMrPd69tSFbvyB0Exkk4AfoMv5I6PpRki6WFgupndVOmyBO9G0geB/wOOSuv5gipB0ou4e+5DlS5LsPuRdDPu5j2x0mUJdo2k43BLSvfkpRM0IZp6Wxo/bBfUSTK3j8N3DQxFqhki/+X6o3Cf5qA6ORdYGIpUdSHpDNxq8XClyxLsfiR1x63K/SpbkqA+kuvnOOCmUKSaHs2hLQ1lKqgV+W9ULcDdHH5W4eIEewBJk/EticclF8agypD/cLdwOQVVgqQ5+A6qo2Pw1vyQdAX+u0Y/TJsPBVVKWu/9FP4TJmfVc3tQZTSXtjTc/IIgCIIgCIIgCBpBbEARBEEQBEEQBEHQCEKZCoIgCIIgCIIgaAShTAVBEARBEARBEDSCUKaCIAiCIAiCIAgaQShTQRAEQcWR9Hily7A7kPQNSWdWuhxBEATB+0Ps5hcEQRA0CyS1MLMdlS5HEARBsPcQlqkgCIKg4kjaIucaSUskPSdpRIobJOm+7N7rJY1J5yslXSZpHvDFOvK+QNJSSYslzUhhbSTdLGmhpGckDU3hYyTNlnSvpBWSzpN0UbpngaSO6b6vp7TPSrpL0n4pfJKkCel8jqQfSXpS0nJJx6bwFun/XJjKNHZPvdcgCIJgzxLKVBAEQVAtDAc+BfQFBgPXSOpcRrq3zOwYM5tRR/wlQD8zOxL4Rgr7HvCwmfUHPpue1SbF9QZGAgOAq4BtZtYPmA8UXPjuNrP+ZtYXWAacXcezW5rZAOBC4Psp7GxgY3p2f+Drkj5Sxv8ZBEEQVBktK12AIAiCIEgcA9yeXPVekfQIrmxsqifdb+uJXwzcJmk2MDuFfQ44vWBFAloDXdP5n8xsM7BZ0kbg3hT+HHBkOu8t6UqgA9AWeKCOZ9+d/v4Z6J49+0hJ/5qu2wNHACvq+T+CIAiCKiOUqSAIgqBaUB3h2yn2pGhdEr+1nnxPAY4DTgculfTJ9KwzzOz5ogJIA4G/Z0HvZNfvUNNv3goMM7Nnk8vhoDqeXUi7I0sr4Hwzq0sBC4IgCJoI4eYXBEEQVAtzgRFpTVEnXAF6ElgF9JLUSlJ74MRyM5S0D3CYmf0JuJhiS9L5kpTu69fAsrYD1kr6APDVBqZ9ADg3pUVSj8zFMAiCIGhChGUqCIIgqAYMmAV8Bng2XV9sZusAJM3E3fVeAJ5pQL4tgGlJCRPwX2a2QdIVwHXA4qRQrQRObUC+lwJP4Irec7hyVS434S5/T6dnrweGNSB9EARBUCXE1uhBEARBRZF0IPC0mXWrdFmCIAiCoCGEm18QBEFQMSR1wXfJu7bSZQmCIAiChhKWqSAIgqBZIOkG4OiS4J+a2S2VKE8QBEHQ/AllKgiCIAiCIAiCoBGEm18QBEEQBEEQBEEjCGUqCIIgCIIgCIKgEYQyFQRBEARBEARB0AhCmQqCIAiCIAiCIGgE/w/s4HAnJkCRegAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(figsize=(14,5))\n",
"ax = sns.boxplot(data=elec_df, x='jour_sem', y='conso_elec')\n",
"ax.set_title(f'Evolution hebdomadaire de la consommation électrique (GWh)\\n',\n",
" fontweight='bold', fontsize=16, color='C0')\n",
"ax.set_ylabel('consommation_quotidienne (GWh)')\n",
"ax.set_xlabel('jour_semaine')\n",
"plt.yticks(fontsize=12), plt.xticks(fontsize=12)\n",
";"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Remarques:** \n",
" - la consommation d'électricité est plus faible lors du week-end, mais avec un écart qu'on aurait supposé plus important par rapport aux autres jours de la semaine. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"L'analyse de saisonnalité peut également être conduite par l'[autocorrelation_plot](https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html) comme nous le verrons dans quelques instants"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evolution au cours dela période considérée"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**NB_1:** afin d'obtenir une visualisation plus apropriée des évolutions annuelles, nous allons modifier la fréquence des données (**resample**) en passant d'une fréquence quotidienne à une fréquence mensuelle (**downsampling**) \n",
"**NB_2:** la donnée mensuelle sera notifiée \"nan\" si pour la colonne considérée, le mois comporte moins de 28 données (*min-count=28*)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.dates as mdates\n",
"\n",
"fig, ax = plt.subplots(figsize=(14,7))\n",
"ax.plot(elec_month['conso_elec'], color='black', label='Consommation')\n",
"elec_month[['hydrau', 'solaire', 'eolien', 'bio']].plot.area(ax=ax, linewidth=0)\n",
"ax.set_title(f\"Evolution annuelle de la consommation électrique\\n et de la production d'électricité renouvable(GWh)\\n\",\n",
" fontweight='bold', fontsize=16, color='C0')\n",
"ax.xaxis.set_major_locator(mdates.YearLocator())\n",
"ax.set_xlabel('année', fontsize=14)\n",
"ax.legend()\n",
"ax.set_ylabel('Total mensuel (GWh)');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Remarques:** \n",
"On observe : \n",
" * la saisonnalité des différents items (en dehors de la bio-énergie), \n",
" * la relative constance de la consommation électrique au cours des années, voire sa légère tendance à la baisse (à confirmer), \n",
" * la part croissante de l'éolien, et dans une moindre mesure du solaire, dans la contribution à la production d'éléctricité."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Observation de l'évolution de la part des énergies renouvelables dans la consommation éléctrique**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\"Resamplons\" par année"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"