diff --git a/module3/ressources/influenza-like-illness-analysis-jupyter.ipynb b/module3/ressources/influenza-like-illness-analysis-jupyter.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..562bad8a14d2f62161726254d00cee62bba4cb02
--- /dev/null
+++ b/module3/ressources/influenza-like-illness-analysis-jupyter.ipynb
@@ -0,0 +1,2501 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence of influenza-like illness in France"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The data on the incidence of influenza-like illness are available from the Web site of the [Réseau Sentinelles](http://www.sentiweb.fr/). We download them as a file in CSV format, in which each line corresponds to a week in the observation period. Only the complete dataset, starting in 1984 and ending with a recent week, is available for download."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This is the documentation of the data from [the download site](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Column name | Description |\n",
+ "|--------------|---------------------------------------------------------------------------------------------------------------------------|\n",
+ "| `week` | ISO8601 Yearweek number as numeric (year times 100 + week nubmer) |\n",
+ "| `indicator` | Unique identifier of the indicator, see metadata document https://www.sentiweb.fr/meta.json |\n",
+ "| `inc` | Estimated incidence value for the time step, in the geographic level |\n",
+ "| `inc_low` | Lower bound of the estimated incidence 95% Confidence Interval |\n",
+ "| `inc_up` | Upper bound of the estimated incidence 95% Confidence Interval |\n",
+ "| `inc100` | Estimated rate incidence per 100,000 inhabitants |\n",
+ "| `inc100_low` | Lower bound of the estimated incidence 95% Confidence Interval |\n",
+ "| `inc100_up` | Upper bound of the estimated rate incidence 95% Confidence Interval |\n",
+ "| `geo_insee` | Identifier of the geographic area, from INSEE https://www.insee.fr |\n",
+ "| `geo_name` | Geographic label of the area, corresponding to INSEE code. This label is not an id and is only provided for human reading |\n",
+ "\n",
+ "The first line of the CSV file is a comment, which we ignore with `skip=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 201910 | \n",
+ " 3 | \n",
+ " 58394 | \n",
+ " 50263.0 | \n",
+ " 66525.0 | \n",
+ " 89 | \n",
+ " 77.0 | \n",
+ " 101.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 201909 | \n",
+ " 3 | \n",
+ " 89391 | \n",
+ " 80479.0 | \n",
+ " 98303.0 | \n",
+ " 136 | \n",
+ " 122.0 | \n",
+ " 150.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 201908 | \n",
+ " 3 | \n",
+ " 172604 | \n",
+ " 160024.0 | \n",
+ " 185184.0 | \n",
+ " 262 | \n",
+ " 243.0 | \n",
+ " 281.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 201907 | \n",
+ " 3 | \n",
+ " 307338 | \n",
+ " 291220.0 | \n",
+ " 323456.0 | \n",
+ " 467 | \n",
+ " 443.0 | \n",
+ " 491.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 201906 | \n",
+ " 3 | \n",
+ " 394286 | \n",
+ " 376782.0 | \n",
+ " 411790.0 | \n",
+ " 599 | \n",
+ " 572.0 | \n",
+ " 626.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 201905 | \n",
+ " 3 | \n",
+ " 355785 | \n",
+ " 339295.0 | \n",
+ " 372275.0 | \n",
+ " 540 | \n",
+ " 515.0 | \n",
+ " 565.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 201904 | \n",
+ " 3 | \n",
+ " 241090 | \n",
+ " 227261.0 | \n",
+ " 254919.0 | \n",
+ " 366 | \n",
+ " 345.0 | \n",
+ " 387.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 201903 | \n",
+ " 3 | \n",
+ " 147063 | \n",
+ " 135890.0 | \n",
+ " 158236.0 | \n",
+ " 223 | \n",
+ " 206.0 | \n",
+ " 240.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 201902 | \n",
+ " 3 | \n",
+ " 75548 | \n",
+ " 67632.0 | \n",
+ " 83464.0 | \n",
+ " 115 | \n",
+ " 103.0 | \n",
+ " 127.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 201901 | \n",
+ " 3 | \n",
+ " 50295 | \n",
+ " 43525.0 | \n",
+ " 57065.0 | \n",
+ " 76 | \n",
+ " 66.0 | \n",
+ " 86.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 201852 | \n",
+ " 3 | \n",
+ " 37903 | \n",
+ " 31375.0 | \n",
+ " 44431.0 | \n",
+ " 58 | \n",
+ " 48.0 | \n",
+ " 68.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 201851 | \n",
+ " 3 | \n",
+ " 39259 | \n",
+ " 32977.0 | \n",
+ " 45541.0 | \n",
+ " 60 | \n",
+ " 50.0 | \n",
+ " 70.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 201850 | \n",
+ " 3 | \n",
+ " 27781 | \n",
+ " 22638.0 | \n",
+ " 32924.0 | \n",
+ " 42 | \n",
+ " 34.0 | \n",
+ " 50.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 201849 | \n",
+ " 3 | \n",
+ " 19738 | \n",
+ " 15481.0 | \n",
+ " 23995.0 | \n",
+ " 30 | \n",
+ " 24.0 | \n",
+ " 36.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 201848 | \n",
+ " 3 | \n",
+ " 19501 | \n",
+ " 15275.0 | \n",
+ " 23727.0 | \n",
+ " 30 | \n",
+ " 24.0 | \n",
+ " 36.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 201847 | \n",
+ " 3 | \n",
+ " 15949 | \n",
+ " 12105.0 | \n",
+ " 19793.0 | \n",
+ " 24 | \n",
+ " 18.0 | \n",
+ " 30.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 201846 | \n",
+ " 3 | \n",
+ " 11278 | \n",
+ " 7957.0 | \n",
+ " 14599.0 | \n",
+ " 17 | \n",
+ " 12.0 | \n",
+ " 22.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 201845 | \n",
+ " 3 | \n",
+ " 11065 | \n",
+ " 7791.0 | \n",
+ " 14339.0 | \n",
+ " 17 | \n",
+ " 12.0 | \n",
+ " 22.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 201844 | \n",
+ " 3 | \n",
+ " 6586 | \n",
+ " 3875.0 | \n",
+ " 9297.0 | \n",
+ " 10 | \n",
+ " 6.0 | \n",
+ " 14.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 201843 | \n",
+ " 3 | \n",
+ " 6550 | \n",
+ " 3988.0 | \n",
+ " 9112.0 | \n",
+ " 10 | \n",
+ " 6.0 | \n",
+ " 14.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 201842 | \n",
+ " 3 | \n",
+ " 7787 | \n",
+ " 5129.0 | \n",
+ " 10445.0 | \n",
+ " 12 | \n",
+ " 8.0 | \n",
+ " 16.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 201841 | \n",
+ " 3 | \n",
+ " 8048 | \n",
+ " 5098.0 | \n",
+ " 10998.0 | \n",
+ " 12 | \n",
+ " 8.0 | \n",
+ " 16.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 201840 | \n",
+ " 3 | \n",
+ " 7409 | \n",
+ " 4717.0 | \n",
+ " 10101.0 | \n",
+ " 11 | \n",
+ " 7.0 | \n",
+ " 15.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 201839 | \n",
+ " 3 | \n",
+ " 7174 | \n",
+ " 4235.0 | \n",
+ " 10113.0 | \n",
+ " 11 | \n",
+ " 7.0 | \n",
+ " 15.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 201838 | \n",
+ " 3 | \n",
+ " 7349 | \n",
+ " 4399.0 | \n",
+ " 10299.0 | \n",
+ " 11 | \n",
+ " 7.0 | \n",
+ " 15.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 201837 | \n",
+ " 3 | \n",
+ " 4915 | \n",
+ " 2386.0 | \n",
+ " 7444.0 | \n",
+ " 7 | \n",
+ " 3.0 | \n",
+ " 11.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 201836 | \n",
+ " 3 | \n",
+ " 3215 | \n",
+ " 1349.0 | \n",
+ " 5081.0 | \n",
+ " 5 | \n",
+ " 2.0 | \n",
+ " 8.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 201835 | \n",
+ " 3 | \n",
+ " 1506 | \n",
+ " 239.0 | \n",
+ " 2773.0 | \n",
+ " 2 | \n",
+ " 0.0 | \n",
+ " 4.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 201834 | \n",
+ " 3 | \n",
+ " 1368 | \n",
+ " 116.0 | \n",
+ " 2620.0 | \n",
+ " 2 | \n",
+ " 0.0 | \n",
+ " 4.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 201833 | \n",
+ " 3 | \n",
+ " 1962 | \n",
+ " 5.0 | \n",
+ " 3919.0 | \n",
+ " 3 | \n",
+ " 0.0 | \n",
+ " 6.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1763 | \n",
+ " 198521 | \n",
+ " 3 | \n",
+ " 26096 | \n",
+ " 19621.0 | \n",
+ " 32571.0 | \n",
+ " 47 | \n",
+ " 35.0 | \n",
+ " 59.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1764 | \n",
+ " 198520 | \n",
+ " 3 | \n",
+ " 27896 | \n",
+ " 20885.0 | \n",
+ " 34907.0 | \n",
+ " 51 | \n",
+ " 38.0 | \n",
+ " 64.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1765 | \n",
+ " 198519 | \n",
+ " 3 | \n",
+ " 43154 | \n",
+ " 32821.0 | \n",
+ " 53487.0 | \n",
+ " 78 | \n",
+ " 59.0 | \n",
+ " 97.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1766 | \n",
+ " 198518 | \n",
+ " 3 | \n",
+ " 40555 | \n",
+ " 29935.0 | \n",
+ " 51175.0 | \n",
+ " 74 | \n",
+ " 55.0 | \n",
+ " 93.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1767 | \n",
+ " 198517 | \n",
+ " 3 | \n",
+ " 34053 | \n",
+ " 24366.0 | \n",
+ " 43740.0 | \n",
+ " 62 | \n",
+ " 44.0 | \n",
+ " 80.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1768 | \n",
+ " 198516 | \n",
+ " 3 | \n",
+ " 50362 | \n",
+ " 36451.0 | \n",
+ " 64273.0 | \n",
+ " 91 | \n",
+ " 66.0 | \n",
+ " 116.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1769 | \n",
+ " 198515 | \n",
+ " 3 | \n",
+ " 63881 | \n",
+ " 45538.0 | \n",
+ " 82224.0 | \n",
+ " 116 | \n",
+ " 83.0 | \n",
+ " 149.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1770 | \n",
+ " 198514 | \n",
+ " 3 | \n",
+ " 134545 | \n",
+ " 114400.0 | \n",
+ " 154690.0 | \n",
+ " 244 | \n",
+ " 207.0 | \n",
+ " 281.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1771 | \n",
+ " 198513 | \n",
+ " 3 | \n",
+ " 197206 | \n",
+ " 176080.0 | \n",
+ " 218332.0 | \n",
+ " 357 | \n",
+ " 319.0 | \n",
+ " 395.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1772 | \n",
+ " 198512 | \n",
+ " 3 | \n",
+ " 245240 | \n",
+ " 223304.0 | \n",
+ " 267176.0 | \n",
+ " 445 | \n",
+ " 405.0 | \n",
+ " 485.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1773 | \n",
+ " 198511 | \n",
+ " 3 | \n",
+ " 276205 | \n",
+ " 252399.0 | \n",
+ " 300011.0 | \n",
+ " 501 | \n",
+ " 458.0 | \n",
+ " 544.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1774 | \n",
+ " 198510 | \n",
+ " 3 | \n",
+ " 353231 | \n",
+ " 326279.0 | \n",
+ " 380183.0 | \n",
+ " 640 | \n",
+ " 591.0 | \n",
+ " 689.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1775 | \n",
+ " 198509 | \n",
+ " 3 | \n",
+ " 369895 | \n",
+ " 341109.0 | \n",
+ " 398681.0 | \n",
+ " 670 | \n",
+ " 618.0 | \n",
+ " 722.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1776 | \n",
+ " 198508 | \n",
+ " 3 | \n",
+ " 389886 | \n",
+ " 359529.0 | \n",
+ " 420243.0 | \n",
+ " 707 | \n",
+ " 652.0 | \n",
+ " 762.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1777 | \n",
+ " 198507 | \n",
+ " 3 | \n",
+ " 471852 | \n",
+ " 432599.0 | \n",
+ " 511105.0 | \n",
+ " 855 | \n",
+ " 784.0 | \n",
+ " 926.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1778 | \n",
+ " 198506 | \n",
+ " 3 | \n",
+ " 565825 | \n",
+ " 518011.0 | \n",
+ " 613639.0 | \n",
+ " 1026 | \n",
+ " 939.0 | \n",
+ " 1113.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1779 | \n",
+ " 198505 | \n",
+ " 3 | \n",
+ " 637302 | \n",
+ " 592795.0 | \n",
+ " 681809.0 | \n",
+ " 1155 | \n",
+ " 1074.0 | \n",
+ " 1236.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1780 | \n",
+ " 198504 | \n",
+ " 3 | \n",
+ " 424937 | \n",
+ " 390794.0 | \n",
+ " 459080.0 | \n",
+ " 770 | \n",
+ " 708.0 | \n",
+ " 832.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1781 | \n",
+ " 198503 | \n",
+ " 3 | \n",
+ " 213901 | \n",
+ " 174689.0 | \n",
+ " 253113.0 | \n",
+ " 388 | \n",
+ " 317.0 | \n",
+ " 459.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1782 | \n",
+ " 198502 | \n",
+ " 3 | \n",
+ " 97586 | \n",
+ " 80949.0 | \n",
+ " 114223.0 | \n",
+ " 177 | \n",
+ " 147.0 | \n",
+ " 207.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1783 | \n",
+ " 198501 | \n",
+ " 3 | \n",
+ " 85489 | \n",
+ " 65918.0 | \n",
+ " 105060.0 | \n",
+ " 155 | \n",
+ " 120.0 | \n",
+ " 190.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1784 | \n",
+ " 198452 | \n",
+ " 3 | \n",
+ " 84830 | \n",
+ " 60602.0 | \n",
+ " 109058.0 | \n",
+ " 154 | \n",
+ " 110.0 | \n",
+ " 198.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1785 | \n",
+ " 198451 | \n",
+ " 3 | \n",
+ " 101726 | \n",
+ " 80242.0 | \n",
+ " 123210.0 | \n",
+ " 185 | \n",
+ " 146.0 | \n",
+ " 224.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1786 | \n",
+ " 198450 | \n",
+ " 3 | \n",
+ " 123680 | \n",
+ " 101401.0 | \n",
+ " 145959.0 | \n",
+ " 225 | \n",
+ " 184.0 | \n",
+ " 266.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1787 | \n",
+ " 198449 | \n",
+ " 3 | \n",
+ " 101073 | \n",
+ " 81684.0 | \n",
+ " 120462.0 | \n",
+ " 184 | \n",
+ " 149.0 | \n",
+ " 219.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1788 | \n",
+ " 198448 | \n",
+ " 3 | \n",
+ " 78620 | \n",
+ " 60634.0 | \n",
+ " 96606.0 | \n",
+ " 143 | \n",
+ " 110.0 | \n",
+ " 176.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1789 | \n",
+ " 198447 | \n",
+ " 3 | \n",
+ " 72029 | \n",
+ " 54274.0 | \n",
+ " 89784.0 | \n",
+ " 131 | \n",
+ " 99.0 | \n",
+ " 163.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1790 | \n",
+ " 198446 | \n",
+ " 3 | \n",
+ " 87330 | \n",
+ " 67686.0 | \n",
+ " 106974.0 | \n",
+ " 159 | \n",
+ " 123.0 | \n",
+ " 195.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1791 | \n",
+ " 198445 | \n",
+ " 3 | \n",
+ " 135223 | \n",
+ " 101414.0 | \n",
+ " 169032.0 | \n",
+ " 246 | \n",
+ " 184.0 | \n",
+ " 308.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1792 | \n",
+ " 198444 | \n",
+ " 3 | \n",
+ " 68422 | \n",
+ " 20056.0 | \n",
+ " 116788.0 | \n",
+ " 125 | \n",
+ " 37.0 | \n",
+ " 213.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1793 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 201910 3 58394 50263.0 66525.0 89 77.0 \n",
+ "1 201909 3 89391 80479.0 98303.0 136 122.0 \n",
+ "2 201908 3 172604 160024.0 185184.0 262 243.0 \n",
+ "3 201907 3 307338 291220.0 323456.0 467 443.0 \n",
+ "4 201906 3 394286 376782.0 411790.0 599 572.0 \n",
+ "5 201905 3 355785 339295.0 372275.0 540 515.0 \n",
+ "6 201904 3 241090 227261.0 254919.0 366 345.0 \n",
+ "7 201903 3 147063 135890.0 158236.0 223 206.0 \n",
+ "8 201902 3 75548 67632.0 83464.0 115 103.0 \n",
+ "9 201901 3 50295 43525.0 57065.0 76 66.0 \n",
+ "10 201852 3 37903 31375.0 44431.0 58 48.0 \n",
+ "11 201851 3 39259 32977.0 45541.0 60 50.0 \n",
+ "12 201850 3 27781 22638.0 32924.0 42 34.0 \n",
+ "13 201849 3 19738 15481.0 23995.0 30 24.0 \n",
+ "14 201848 3 19501 15275.0 23727.0 30 24.0 \n",
+ "15 201847 3 15949 12105.0 19793.0 24 18.0 \n",
+ "16 201846 3 11278 7957.0 14599.0 17 12.0 \n",
+ "17 201845 3 11065 7791.0 14339.0 17 12.0 \n",
+ "18 201844 3 6586 3875.0 9297.0 10 6.0 \n",
+ "19 201843 3 6550 3988.0 9112.0 10 6.0 \n",
+ "20 201842 3 7787 5129.0 10445.0 12 8.0 \n",
+ "21 201841 3 8048 5098.0 10998.0 12 8.0 \n",
+ "22 201840 3 7409 4717.0 10101.0 11 7.0 \n",
+ "23 201839 3 7174 4235.0 10113.0 11 7.0 \n",
+ "24 201838 3 7349 4399.0 10299.0 11 7.0 \n",
+ "25 201837 3 4915 2386.0 7444.0 7 3.0 \n",
+ "26 201836 3 3215 1349.0 5081.0 5 2.0 \n",
+ "27 201835 3 1506 239.0 2773.0 2 0.0 \n",
+ "28 201834 3 1368 116.0 2620.0 2 0.0 \n",
+ "29 201833 3 1962 5.0 3919.0 3 0.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1763 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "1764 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "1765 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "1766 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "1767 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "1768 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "1769 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "1770 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "1771 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "1772 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "1773 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "1774 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "1775 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "1776 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "1777 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "1778 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "1779 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "1780 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "1781 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "1782 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "1783 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "1784 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "1785 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "1786 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "1787 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "1788 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "1789 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "1790 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "1791 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "1792 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 101.0 FR France \n",
+ "1 150.0 FR France \n",
+ "2 281.0 FR France \n",
+ "3 491.0 FR France \n",
+ "4 626.0 FR France \n",
+ "5 565.0 FR France \n",
+ "6 387.0 FR France \n",
+ "7 240.0 FR France \n",
+ "8 127.0 FR France \n",
+ "9 86.0 FR France \n",
+ "10 68.0 FR France \n",
+ "11 70.0 FR France \n",
+ "12 50.0 FR France \n",
+ "13 36.0 FR France \n",
+ "14 36.0 FR France \n",
+ "15 30.0 FR France \n",
+ "16 22.0 FR France \n",
+ "17 22.0 FR France \n",
+ "18 14.0 FR France \n",
+ "19 14.0 FR France \n",
+ "20 16.0 FR France \n",
+ "21 16.0 FR France \n",
+ "22 15.0 FR France \n",
+ "23 15.0 FR France \n",
+ "24 15.0 FR France \n",
+ "25 11.0 FR France \n",
+ "26 8.0 FR France \n",
+ "27 4.0 FR France \n",
+ "28 4.0 FR France \n",
+ "29 6.0 FR France \n",
+ "... ... ... ... \n",
+ "1763 59.0 FR France \n",
+ "1764 64.0 FR France \n",
+ "1765 97.0 FR France \n",
+ "1766 93.0 FR France \n",
+ "1767 80.0 FR France \n",
+ "1768 116.0 FR France \n",
+ "1769 149.0 FR France \n",
+ "1770 281.0 FR France \n",
+ "1771 395.0 FR France \n",
+ "1772 485.0 FR France \n",
+ "1773 544.0 FR France \n",
+ "1774 689.0 FR France \n",
+ "1775 722.0 FR France \n",
+ "1776 762.0 FR France \n",
+ "1777 926.0 FR France \n",
+ "1778 1113.0 FR France \n",
+ "1779 1236.0 FR France \n",
+ "1780 832.0 FR France \n",
+ "1781 459.0 FR France \n",
+ "1782 207.0 FR France \n",
+ "1783 190.0 FR France \n",
+ "1784 198.0 FR France \n",
+ "1785 224.0 FR France \n",
+ "1786 266.0 FR France \n",
+ "1787 219.0 FR France \n",
+ "1788 176.0 FR France \n",
+ "1789 163.0 FR France \n",
+ "1790 195.0 FR France \n",
+ "1791 308.0 FR France \n",
+ "1792 213.0 FR France \n",
+ "\n",
+ "[1793 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Are there missing data points? Yes, week 19 of year 1989 does not have any observed values."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1556 | \n",
+ " 198919 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1556 198919 3 0 NaN NaN 0 NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1556 FR France "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We delete this point, which does not have big consequence for our rather simple analysis."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 201910 | \n",
+ " 3 | \n",
+ " 58394 | \n",
+ " 50263.0 | \n",
+ " 66525.0 | \n",
+ " 89 | \n",
+ " 77.0 | \n",
+ " 101.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 201909 | \n",
+ " 3 | \n",
+ " 89391 | \n",
+ " 80479.0 | \n",
+ " 98303.0 | \n",
+ " 136 | \n",
+ " 122.0 | \n",
+ " 150.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 201908 | \n",
+ " 3 | \n",
+ " 172604 | \n",
+ " 160024.0 | \n",
+ " 185184.0 | \n",
+ " 262 | \n",
+ " 243.0 | \n",
+ " 281.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 201907 | \n",
+ " 3 | \n",
+ " 307338 | \n",
+ " 291220.0 | \n",
+ " 323456.0 | \n",
+ " 467 | \n",
+ " 443.0 | \n",
+ " 491.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 201906 | \n",
+ " 3 | \n",
+ " 394286 | \n",
+ " 376782.0 | \n",
+ " 411790.0 | \n",
+ " 599 | \n",
+ " 572.0 | \n",
+ " 626.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 201905 | \n",
+ " 3 | \n",
+ " 355785 | \n",
+ " 339295.0 | \n",
+ " 372275.0 | \n",
+ " 540 | \n",
+ " 515.0 | \n",
+ " 565.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 201904 | \n",
+ " 3 | \n",
+ " 241090 | \n",
+ " 227261.0 | \n",
+ " 254919.0 | \n",
+ " 366 | \n",
+ " 345.0 | \n",
+ " 387.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 201903 | \n",
+ " 3 | \n",
+ " 147063 | \n",
+ " 135890.0 | \n",
+ " 158236.0 | \n",
+ " 223 | \n",
+ " 206.0 | \n",
+ " 240.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 201902 | \n",
+ " 3 | \n",
+ " 75548 | \n",
+ " 67632.0 | \n",
+ " 83464.0 | \n",
+ " 115 | \n",
+ " 103.0 | \n",
+ " 127.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 201901 | \n",
+ " 3 | \n",
+ " 50295 | \n",
+ " 43525.0 | \n",
+ " 57065.0 | \n",
+ " 76 | \n",
+ " 66.0 | \n",
+ " 86.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 201852 | \n",
+ " 3 | \n",
+ " 37903 | \n",
+ " 31375.0 | \n",
+ " 44431.0 | \n",
+ " 58 | \n",
+ " 48.0 | \n",
+ " 68.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 201851 | \n",
+ " 3 | \n",
+ " 39259 | \n",
+ " 32977.0 | \n",
+ " 45541.0 | \n",
+ " 60 | \n",
+ " 50.0 | \n",
+ " 70.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 201850 | \n",
+ " 3 | \n",
+ " 27781 | \n",
+ " 22638.0 | \n",
+ " 32924.0 | \n",
+ " 42 | \n",
+ " 34.0 | \n",
+ " 50.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 201849 | \n",
+ " 3 | \n",
+ " 19738 | \n",
+ " 15481.0 | \n",
+ " 23995.0 | \n",
+ " 30 | \n",
+ " 24.0 | \n",
+ " 36.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 201848 | \n",
+ " 3 | \n",
+ " 19501 | \n",
+ " 15275.0 | \n",
+ " 23727.0 | \n",
+ " 30 | \n",
+ " 24.0 | \n",
+ " 36.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 201847 | \n",
+ " 3 | \n",
+ " 15949 | \n",
+ " 12105.0 | \n",
+ " 19793.0 | \n",
+ " 24 | \n",
+ " 18.0 | \n",
+ " 30.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 201846 | \n",
+ " 3 | \n",
+ " 11278 | \n",
+ " 7957.0 | \n",
+ " 14599.0 | \n",
+ " 17 | \n",
+ " 12.0 | \n",
+ " 22.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 201845 | \n",
+ " 3 | \n",
+ " 11065 | \n",
+ " 7791.0 | \n",
+ " 14339.0 | \n",
+ " 17 | \n",
+ " 12.0 | \n",
+ " 22.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 201844 | \n",
+ " 3 | \n",
+ " 6586 | \n",
+ " 3875.0 | \n",
+ " 9297.0 | \n",
+ " 10 | \n",
+ " 6.0 | \n",
+ " 14.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 201843 | \n",
+ " 3 | \n",
+ " 6550 | \n",
+ " 3988.0 | \n",
+ " 9112.0 | \n",
+ " 10 | \n",
+ " 6.0 | \n",
+ " 14.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 201842 | \n",
+ " 3 | \n",
+ " 7787 | \n",
+ " 5129.0 | \n",
+ " 10445.0 | \n",
+ " 12 | \n",
+ " 8.0 | \n",
+ " 16.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 201841 | \n",
+ " 3 | \n",
+ " 8048 | \n",
+ " 5098.0 | \n",
+ " 10998.0 | \n",
+ " 12 | \n",
+ " 8.0 | \n",
+ " 16.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 201840 | \n",
+ " 3 | \n",
+ " 7409 | \n",
+ " 4717.0 | \n",
+ " 10101.0 | \n",
+ " 11 | \n",
+ " 7.0 | \n",
+ " 15.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 201839 | \n",
+ " 3 | \n",
+ " 7174 | \n",
+ " 4235.0 | \n",
+ " 10113.0 | \n",
+ " 11 | \n",
+ " 7.0 | \n",
+ " 15.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 201838 | \n",
+ " 3 | \n",
+ " 7349 | \n",
+ " 4399.0 | \n",
+ " 10299.0 | \n",
+ " 11 | \n",
+ " 7.0 | \n",
+ " 15.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 201837 | \n",
+ " 3 | \n",
+ " 4915 | \n",
+ " 2386.0 | \n",
+ " 7444.0 | \n",
+ " 7 | \n",
+ " 3.0 | \n",
+ " 11.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 201836 | \n",
+ " 3 | \n",
+ " 3215 | \n",
+ " 1349.0 | \n",
+ " 5081.0 | \n",
+ " 5 | \n",
+ " 2.0 | \n",
+ " 8.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 201835 | \n",
+ " 3 | \n",
+ " 1506 | \n",
+ " 239.0 | \n",
+ " 2773.0 | \n",
+ " 2 | \n",
+ " 0.0 | \n",
+ " 4.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 201834 | \n",
+ " 3 | \n",
+ " 1368 | \n",
+ " 116.0 | \n",
+ " 2620.0 | \n",
+ " 2 | \n",
+ " 0.0 | \n",
+ " 4.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 201833 | \n",
+ " 3 | \n",
+ " 1962 | \n",
+ " 5.0 | \n",
+ " 3919.0 | \n",
+ " 3 | \n",
+ " 0.0 | \n",
+ " 6.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1763 | \n",
+ " 198521 | \n",
+ " 3 | \n",
+ " 26096 | \n",
+ " 19621.0 | \n",
+ " 32571.0 | \n",
+ " 47 | \n",
+ " 35.0 | \n",
+ " 59.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1764 | \n",
+ " 198520 | \n",
+ " 3 | \n",
+ " 27896 | \n",
+ " 20885.0 | \n",
+ " 34907.0 | \n",
+ " 51 | \n",
+ " 38.0 | \n",
+ " 64.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1765 | \n",
+ " 198519 | \n",
+ " 3 | \n",
+ " 43154 | \n",
+ " 32821.0 | \n",
+ " 53487.0 | \n",
+ " 78 | \n",
+ " 59.0 | \n",
+ " 97.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1766 | \n",
+ " 198518 | \n",
+ " 3 | \n",
+ " 40555 | \n",
+ " 29935.0 | \n",
+ " 51175.0 | \n",
+ " 74 | \n",
+ " 55.0 | \n",
+ " 93.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1767 | \n",
+ " 198517 | \n",
+ " 3 | \n",
+ " 34053 | \n",
+ " 24366.0 | \n",
+ " 43740.0 | \n",
+ " 62 | \n",
+ " 44.0 | \n",
+ " 80.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1768 | \n",
+ " 198516 | \n",
+ " 3 | \n",
+ " 50362 | \n",
+ " 36451.0 | \n",
+ " 64273.0 | \n",
+ " 91 | \n",
+ " 66.0 | \n",
+ " 116.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1769 | \n",
+ " 198515 | \n",
+ " 3 | \n",
+ " 63881 | \n",
+ " 45538.0 | \n",
+ " 82224.0 | \n",
+ " 116 | \n",
+ " 83.0 | \n",
+ " 149.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1770 | \n",
+ " 198514 | \n",
+ " 3 | \n",
+ " 134545 | \n",
+ " 114400.0 | \n",
+ " 154690.0 | \n",
+ " 244 | \n",
+ " 207.0 | \n",
+ " 281.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1771 | \n",
+ " 198513 | \n",
+ " 3 | \n",
+ " 197206 | \n",
+ " 176080.0 | \n",
+ " 218332.0 | \n",
+ " 357 | \n",
+ " 319.0 | \n",
+ " 395.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1772 | \n",
+ " 198512 | \n",
+ " 3 | \n",
+ " 245240 | \n",
+ " 223304.0 | \n",
+ " 267176.0 | \n",
+ " 445 | \n",
+ " 405.0 | \n",
+ " 485.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1773 | \n",
+ " 198511 | \n",
+ " 3 | \n",
+ " 276205 | \n",
+ " 252399.0 | \n",
+ " 300011.0 | \n",
+ " 501 | \n",
+ " 458.0 | \n",
+ " 544.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1774 | \n",
+ " 198510 | \n",
+ " 3 | \n",
+ " 353231 | \n",
+ " 326279.0 | \n",
+ " 380183.0 | \n",
+ " 640 | \n",
+ " 591.0 | \n",
+ " 689.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1775 | \n",
+ " 198509 | \n",
+ " 3 | \n",
+ " 369895 | \n",
+ " 341109.0 | \n",
+ " 398681.0 | \n",
+ " 670 | \n",
+ " 618.0 | \n",
+ " 722.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1776 | \n",
+ " 198508 | \n",
+ " 3 | \n",
+ " 389886 | \n",
+ " 359529.0 | \n",
+ " 420243.0 | \n",
+ " 707 | \n",
+ " 652.0 | \n",
+ " 762.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1777 | \n",
+ " 198507 | \n",
+ " 3 | \n",
+ " 471852 | \n",
+ " 432599.0 | \n",
+ " 511105.0 | \n",
+ " 855 | \n",
+ " 784.0 | \n",
+ " 926.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1778 | \n",
+ " 198506 | \n",
+ " 3 | \n",
+ " 565825 | \n",
+ " 518011.0 | \n",
+ " 613639.0 | \n",
+ " 1026 | \n",
+ " 939.0 | \n",
+ " 1113.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1779 | \n",
+ " 198505 | \n",
+ " 3 | \n",
+ " 637302 | \n",
+ " 592795.0 | \n",
+ " 681809.0 | \n",
+ " 1155 | \n",
+ " 1074.0 | \n",
+ " 1236.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1780 | \n",
+ " 198504 | \n",
+ " 3 | \n",
+ " 424937 | \n",
+ " 390794.0 | \n",
+ " 459080.0 | \n",
+ " 770 | \n",
+ " 708.0 | \n",
+ " 832.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1781 | \n",
+ " 198503 | \n",
+ " 3 | \n",
+ " 213901 | \n",
+ " 174689.0 | \n",
+ " 253113.0 | \n",
+ " 388 | \n",
+ " 317.0 | \n",
+ " 459.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1782 | \n",
+ " 198502 | \n",
+ " 3 | \n",
+ " 97586 | \n",
+ " 80949.0 | \n",
+ " 114223.0 | \n",
+ " 177 | \n",
+ " 147.0 | \n",
+ " 207.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1783 | \n",
+ " 198501 | \n",
+ " 3 | \n",
+ " 85489 | \n",
+ " 65918.0 | \n",
+ " 105060.0 | \n",
+ " 155 | \n",
+ " 120.0 | \n",
+ " 190.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1784 | \n",
+ " 198452 | \n",
+ " 3 | \n",
+ " 84830 | \n",
+ " 60602.0 | \n",
+ " 109058.0 | \n",
+ " 154 | \n",
+ " 110.0 | \n",
+ " 198.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1785 | \n",
+ " 198451 | \n",
+ " 3 | \n",
+ " 101726 | \n",
+ " 80242.0 | \n",
+ " 123210.0 | \n",
+ " 185 | \n",
+ " 146.0 | \n",
+ " 224.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1786 | \n",
+ " 198450 | \n",
+ " 3 | \n",
+ " 123680 | \n",
+ " 101401.0 | \n",
+ " 145959.0 | \n",
+ " 225 | \n",
+ " 184.0 | \n",
+ " 266.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1787 | \n",
+ " 198449 | \n",
+ " 3 | \n",
+ " 101073 | \n",
+ " 81684.0 | \n",
+ " 120462.0 | \n",
+ " 184 | \n",
+ " 149.0 | \n",
+ " 219.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1788 | \n",
+ " 198448 | \n",
+ " 3 | \n",
+ " 78620 | \n",
+ " 60634.0 | \n",
+ " 96606.0 | \n",
+ " 143 | \n",
+ " 110.0 | \n",
+ " 176.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1789 | \n",
+ " 198447 | \n",
+ " 3 | \n",
+ " 72029 | \n",
+ " 54274.0 | \n",
+ " 89784.0 | \n",
+ " 131 | \n",
+ " 99.0 | \n",
+ " 163.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1790 | \n",
+ " 198446 | \n",
+ " 3 | \n",
+ " 87330 | \n",
+ " 67686.0 | \n",
+ " 106974.0 | \n",
+ " 159 | \n",
+ " 123.0 | \n",
+ " 195.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1791 | \n",
+ " 198445 | \n",
+ " 3 | \n",
+ " 135223 | \n",
+ " 101414.0 | \n",
+ " 169032.0 | \n",
+ " 246 | \n",
+ " 184.0 | \n",
+ " 308.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1792 | \n",
+ " 198444 | \n",
+ " 3 | \n",
+ " 68422 | \n",
+ " 20056.0 | \n",
+ " 116788.0 | \n",
+ " 125 | \n",
+ " 37.0 | \n",
+ " 213.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1792 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 201910 3 58394 50263.0 66525.0 89 77.0 \n",
+ "1 201909 3 89391 80479.0 98303.0 136 122.0 \n",
+ "2 201908 3 172604 160024.0 185184.0 262 243.0 \n",
+ "3 201907 3 307338 291220.0 323456.0 467 443.0 \n",
+ "4 201906 3 394286 376782.0 411790.0 599 572.0 \n",
+ "5 201905 3 355785 339295.0 372275.0 540 515.0 \n",
+ "6 201904 3 241090 227261.0 254919.0 366 345.0 \n",
+ "7 201903 3 147063 135890.0 158236.0 223 206.0 \n",
+ "8 201902 3 75548 67632.0 83464.0 115 103.0 \n",
+ "9 201901 3 50295 43525.0 57065.0 76 66.0 \n",
+ "10 201852 3 37903 31375.0 44431.0 58 48.0 \n",
+ "11 201851 3 39259 32977.0 45541.0 60 50.0 \n",
+ "12 201850 3 27781 22638.0 32924.0 42 34.0 \n",
+ "13 201849 3 19738 15481.0 23995.0 30 24.0 \n",
+ "14 201848 3 19501 15275.0 23727.0 30 24.0 \n",
+ "15 201847 3 15949 12105.0 19793.0 24 18.0 \n",
+ "16 201846 3 11278 7957.0 14599.0 17 12.0 \n",
+ "17 201845 3 11065 7791.0 14339.0 17 12.0 \n",
+ "18 201844 3 6586 3875.0 9297.0 10 6.0 \n",
+ "19 201843 3 6550 3988.0 9112.0 10 6.0 \n",
+ "20 201842 3 7787 5129.0 10445.0 12 8.0 \n",
+ "21 201841 3 8048 5098.0 10998.0 12 8.0 \n",
+ "22 201840 3 7409 4717.0 10101.0 11 7.0 \n",
+ "23 201839 3 7174 4235.0 10113.0 11 7.0 \n",
+ "24 201838 3 7349 4399.0 10299.0 11 7.0 \n",
+ "25 201837 3 4915 2386.0 7444.0 7 3.0 \n",
+ "26 201836 3 3215 1349.0 5081.0 5 2.0 \n",
+ "27 201835 3 1506 239.0 2773.0 2 0.0 \n",
+ "28 201834 3 1368 116.0 2620.0 2 0.0 \n",
+ "29 201833 3 1962 5.0 3919.0 3 0.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1763 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "1764 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "1765 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "1766 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "1767 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "1768 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "1769 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "1770 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "1771 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "1772 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "1773 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "1774 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "1775 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "1776 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "1777 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "1778 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "1779 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "1780 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "1781 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "1782 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "1783 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "1784 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "1785 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "1786 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "1787 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "1788 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "1789 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "1790 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "1791 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "1792 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 101.0 FR France \n",
+ "1 150.0 FR France \n",
+ "2 281.0 FR France \n",
+ "3 491.0 FR France \n",
+ "4 626.0 FR France \n",
+ "5 565.0 FR France \n",
+ "6 387.0 FR France \n",
+ "7 240.0 FR France \n",
+ "8 127.0 FR France \n",
+ "9 86.0 FR France \n",
+ "10 68.0 FR France \n",
+ "11 70.0 FR France \n",
+ "12 50.0 FR France \n",
+ "13 36.0 FR France \n",
+ "14 36.0 FR France \n",
+ "15 30.0 FR France \n",
+ "16 22.0 FR France \n",
+ "17 22.0 FR France \n",
+ "18 14.0 FR France \n",
+ "19 14.0 FR France \n",
+ "20 16.0 FR France \n",
+ "21 16.0 FR France \n",
+ "22 15.0 FR France \n",
+ "23 15.0 FR France \n",
+ "24 15.0 FR France \n",
+ "25 11.0 FR France \n",
+ "26 8.0 FR France \n",
+ "27 4.0 FR France \n",
+ "28 4.0 FR France \n",
+ "29 6.0 FR France \n",
+ "... ... ... ... \n",
+ "1763 59.0 FR France \n",
+ "1764 64.0 FR France \n",
+ "1765 97.0 FR France \n",
+ "1766 93.0 FR France \n",
+ "1767 80.0 FR France \n",
+ "1768 116.0 FR France \n",
+ "1769 149.0 FR France \n",
+ "1770 281.0 FR France \n",
+ "1771 395.0 FR France \n",
+ "1772 485.0 FR France \n",
+ "1773 544.0 FR France \n",
+ "1774 689.0 FR France \n",
+ "1775 722.0 FR France \n",
+ "1776 762.0 FR France \n",
+ "1777 926.0 FR France \n",
+ "1778 1113.0 FR France \n",
+ "1779 1236.0 FR France \n",
+ "1780 832.0 FR France \n",
+ "1781 459.0 FR France \n",
+ "1782 207.0 FR France \n",
+ "1783 190.0 FR France \n",
+ "1784 198.0 FR France \n",
+ "1785 224.0 FR France \n",
+ "1786 266.0 FR France \n",
+ "1787 219.0 FR France \n",
+ "1788 176.0 FR France \n",
+ "1789 163.0 FR France \n",
+ "1790 195.0 FR France \n",
+ "1791 308.0 FR France \n",
+ "1792 213.0 FR France \n",
+ "\n",
+ "[1792 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Our dataset uses an uncommon encoding; the week number is attached\n",
+ "to the year number, leaving the impression of a six-digit integer.\n",
+ "That is how Pandas interprets it.\n",
+ "\n",
+ "A second problem is that Pandas does not know about week numbers.\n",
+ "It needs to be given the dates of the beginning and end of the week.\n",
+ "We use the library `isoweek` for that.\n",
+ "\n",
+ "Since the conversion is a bit lengthy, we write a small Python \n",
+ "function for doing it. Then we apply it to all points in our dataset. \n",
+ "The results go into a new column 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "There are two more small changes to make.\n",
+ "\n",
+ "First, we define the observation periods as the new index of\n",
+ "our dataset. That turns it into a time series, which will be\n",
+ "convenient later on.\n",
+ "\n",
+ "Second, we sort the points chronologically."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We check the consistency of the data. Between the end of a period and\n",
+ "the beginning of the next one, the difference should be zero, or very small.\n",
+ "We tolerate an error of one second.\n",
+ "\n",
+ "This is OK except for one pair of consecutive periods between which\n",
+ "a whole week is missing.\n",
+ "\n",
+ "We recognize the dates: it's the week without observations that we\n",
+ "have deleted earlier!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A first look at the data!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEKCAYAAADaa8itAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmcHkWd/z/f55ormSQzOUkCk0C4lSuGIOIBCHiiLiK4\nK+gi7P48dnVX16DrsovyAtz1WA9QXFBE5RAPUOQI4T4SSDhDDjJJCDkmmWRmMpO5n6N+f3RVX09X\nd/U8/fT0k6n36zWvp6e7urq6u7q+9T2qihhj0Gg0Go0mClLjXQCNRqPRHDxooaLRaDSayNBCRaPR\naDSRoYWKRqPRaCJDCxWNRqPRRIYWKhqNRqOJDC1UNBqNRhMZWqhoNBqNJjK0UNFoNBpNZGTGuwBx\nMn36dNbW1jbexdBoNJqaYs2aNfsYYzNU0k4oodLW1obVq1ePdzE0Go2mpiCibapptflLo9FoNJGh\nhYpGo9FoIkMLFY1Go9FEhhYqGo1Go4kMLVQ0Go1GExmBQoWIbiGiTiJaa9vXQkTLiWgT/51mO3Yl\nEbUT0UYiOte2/xQiepUf+yEREd9fR0R38v2riKjNds6l/BqbiOhS2/4FPG07PzdX+aPQaDQaTaWo\naCq/BHCea98yACsYY4sArOD/g4iOBXARgOP4OTcQUZqfcyOAywEs4n8iz8sA9DDGjgDwfQDX87xa\nAFwF4FQASwBcZRNe1wP4Pj+nh+eh0Wg0mnEmUKgwxp4A0O3afT6AW/n2rQA+Ytt/B2NshDG2FUA7\ngCVENAdAM2NsJTPWL/6V6xyR190AzuJazLkAljPGuhljPQCWAziPHzuTp3Vff0LAGMPvVm/HSKE4\n3kXRaDQaB2P1qcxijHXw7d0AZvHtuQC229Lt4Pvm8m33fsc5jLECgF4ArT55tQLYz9O685oQ3L92\nN7569yv40Yr28S6KRqPROKjYUc81DxZBWaoCEV1BRKuJaPXevXvHuziR0D0wavwOjo5zSTQajcbJ\nWIXKHm7SAv/t5Pt3AphvSzeP79vJt937HecQUQbAFABdPnl1AZjK07rzKoMxdhNjbDFjbPGMGUpT\n1ySeQrEEAMikaJxLotFoNE7GKlTuBSCisS4FcI9t/0U8omsBDIf8c9xU1kdES7lP5BLXOSKvCwA8\nwrWfBwGcQ0TTuIP+HAAP8mOP8rTu608ICiVDMcykdES4RqNJFoETShLR7QDeDWA6Ee2AEZF1HYC7\niOgyANsAXAgAjLHXiOguAOsAFAB8njEmvMmfgxFJ1gDgfv4HADcDuI2I2mEEBFzE8+omom8BeJ6n\nu5oxJgIGvgbgDiL6NoAXeR4TBiFUsmmtqWg0mmQRKFQYYxdLDp0lSX8NgGs89q8GcLzH/mEAH5fk\ndQuAWzz2b4ERZjwhEeavtDZ/aTSahKHtJzWIaf5K69en0WiShW6VapASFypaUdFoNElDC5VaxJjh\nBiyxgdwajWaiooVKDSIUFC1TNBpN0tBCpQYhU6posaLRaJKFFio1SEqYv8a5HBqNRuNGC5UaRCgq\nJa2paDSahKGFSg1COupLo9EkFC1UahDS0V8ajSahaKFSw5S0UNFoNAlDC5UaRJi/mHbVazSahKGF\nSg1CMKWKRqPRJAotVGoQ0jJFo9EkFC1UahAx5xfTnnqNRpMwtFCpQYT5q1ZkSr5YQtuy+/B/T24Z\n76JoNJoqo4VKDVMjMgWDI8Y6bf+7YtM4l0Sj0VQbLVRqENOnUitSRQ/W1GgmDFqo1CBi8KOepkWj\n0SQNLVRqkJrt+GsZqNEc9GihUoNQjUV/6bnKNJqJgxYqGo1Go4kMLVQ0sVEbepVGo6kELVRqkFqz\nJtVaeTUazdjRQkVTdbSGotFMHLRQ0cRGrQQWaDSasaOFiqbqaFmi0UwctFDRVB8tVDSaCYMWKprY\n0LJFozn40UKlBqm1xlmvUKnRTBy0UDlI2dM3jCO+/le8uqN3vIuifSoazQSiIqFCRF8moteIaC0R\n3U5E9UTUQkTLiWgT/51mS38lEbUT0UYiOte2/xQiepUf+yHxGROJqI6I7uT7VxFRm+2cS/k1NhHR\npZXcR62h0kg//vpeFEoMtz77RrWLo4wWLhrNwc+YhQoRzQXwTwAWM8aOB5AGcBGAZQBWMMYWAVjB\n/wcRHcuPHwfgPAA3EFGaZ3cjgMsBLOJ/5/H9lwHoYYwdAeD7AK7nebUAuArAqQCWALjKLrwmCrXS\nRtdKOTUaTeVUav7KAGggogyARgC7AJwP4FZ+/FYAH+Hb5wO4gzE2whjbCqAdwBIimgOgmTG2khkD\nGX7lOkfkdTeAs7gWcy6A5YyxbsZYD4DlsATRQU+YRjoJ2oEen6LRTBzGLFQYYzsB/A+ANwF0AOhl\njD0EYBZjrIMn2w1gFt+eC2C7LYsdfN9cvu3e7ziHMVYA0Aug1SevCYFopP2mPxHHkuQkT1JZNBpN\ndajE/DUNhiaxAMAhAJqI6O/sabjmMa4tCRFdQUSriWj13r17x7MokeP3YClB881rUaLRTBwqMX+d\nDWArY2wvYywP4A8A3g5gDzdpgf928vQ7Acy3nT+P79vJt937HedwE9sUAF0+eZXBGLuJMbaYMbZ4\nxowZY7zVGiYBLbq2fmk0E4dKhMqbAJYSUSP3c5wFYD2AewGIaKxLAdzDt+8FcBGP6FoAwyH/HDeV\n9RHRUp7PJa5zRF4XAHiEaz8PAjiHiKZxjekcvk/DSY6eYqGFi0Zz8JMZ64mMsVVEdDeAFwAUALwI\n4CYAkwDcRUSXAdgG4EKe/jUiugvAOp7+84yxIs/ucwB+CaABwP38DwBuBnAbEbUD6IYRPQbGWDcR\nfQvA8zzd1Yyx7rHeS61Ra42z9qVoNBOHMQsVAGCMXQUjtNfOCAytxSv9NQCu8di/GsDxHvuHAXxc\nktctAG4JWeSDgpprpGusuBqNZuzoEfUHOUlqz5NUFo1GUx20UKlBVMxfCQr+0sJEo5lAaKGiqTq1\n5gPSaDRjRwuVGiTciPoEtegJKopGo6kOWqjUILVn/opGmpRKDP942xqs3NIVSX4ajSZ6tFDRVJ2o\nlKUDIwU88NpuXH7r6mgy1Gg0kaOFSg0SpuefBItT5GVIkBam0WicaKFSgyiZvxLY8tbc+BqNRhMa\nLVQ0VSdRwQIajaaqaKFykJOE9jyyMiTgXjQajT9aqBykJCn6SxCVcEngrWk0Go4WKjXIRDUnaZ+M\nRpN8tFCpQcLIlCQ0w1HLwCQtQKbRaJxooXKQkyStJjkl0Wg01UILlRpEpXFOUm8+KrNVguSjRqOR\noIVKDVMrjWxU5SzxjBIkLzUajQstVGqQWvOpCCo1xSXpXjQajTdaqNQgwpzk12NPUmc+smEqWqpo\nNIlHC5UaplYa2aiCBUxhGkluGo2mGmihUoOEaqMTJHgqLYq47yQFIWg0GidaqBykJKnd1eYvjWbi\noIVKDcLM39poZaMSBrVyvxrNREYLlVqkRrvslRa7Rm9bo5lQaKFSw6g0ssno3UflqDdIkGVPo9G4\n0EKlBmGuXy+StEhXZIMfS3rwo0aTdLRQqUG0GcifXfuHEjXnmUYzkdBCJQTbuwdx95od410MEyXz\nVwLa1jijv9Zs68bbr3sEv0vQe9JoJhJaqITgYzc+g6/87uVx7wUzBQNYkkxEcUZ/bdh9AADw4ps9\n0VxUo9GEQguVEOzrHwEAFEsJ6P4HkAQNJWrC3VOCpKpGM4HQQiUEad79L4yzUBGNq18jK3r1SRAu\nUUWglVhw/FcS7lejmchooRKCFBcqpXE3f/HfGgkpjs78pZ4mSeY/jWYiUZFQIaKpRHQ3EW0govVE\ndBoRtRDRciLaxH+n2dJfSUTtRLSRiM617T+FiF7lx35IfHInIqojojv5/lVE1GY751J+jU1EdGkl\n96F+w8aPNn+ND9bcX8GJtEzRaMaHSjWV/wXwAGPsaAAnAFgPYBmAFYyxRQBW8P9BRMcCuAjAcQDO\nA3ADEaV5PjcCuBzAIv53Ht9/GYAextgRAL4P4HqeVwuAqwCcCmAJgKvswqtapHhLVSpV+0r+mOYv\nn757GG2m2kRXhuCMtKai0YwvYxYqRDQFwDsB3AwAjLFRxth+AOcDuJUnuxXAR/j2+QDuYIyNMMa2\nAmgHsISI5gBoZoytZEZY1a9c54i87gZwFtdizgWwnDHWzRjrAbAcliCqGpZPZZylCsfXp5IEacKJ\nzqdi/KrIiyQN/tRoJhKVaCoLAOwF8AsiepGI/o+ImgDMYox18DS7Aczi23MBbLedv4Pvm8u33fsd\n5zDGCgB6AbT65FVVhE+lOO4+leQIjDiplXE5Gs1EphKhkgFwMoAbGWMnARgAN3UJuOYxrp85EV1B\nRKuJaPXevXsrzMv4HXdFhTl+vJMkqHGNc5yK0NC0+UujGR8qESo7AOxgjK3i/98NQ8js4SYt8N9O\nfnwngPm28+fxfTv5tnu/4xwiygCYAqDLJ68yGGM3McYWM8YWz5gxYwy3aZFO1ZD5S4QUx1SWOFCL\ndjPQMkWjGR/GLFQYY7sBbCeio/iuswCsA3AvABGNdSmAe/j2vQAu4hFdC2A45J/jprI+IlrK/SWX\nuM4ReV0A4BGu/TwI4BwimsYd9OfwfVXFDCkeb0e9SpqDSZpwlKK/INJosaLRjAeZCs//IoDfEFEO\nwBYAn4EhqO4iossAbANwIQAwxl4jortgCJ4CgM8zxoo8n88B+CWABgD38z/ACAK4jYjaAXTDiB4D\nY6ybiL4F4Hme7mrGWHeF9xIIJcSnIvCN/kpGEQFEOEuxGS6sBz9qNEmlIqHCGHsJwGKPQ2dJ0l8D\n4BqP/asBHO+xfxjAxyV53QLgljDlrZSUOU5lfFUVlciuRIUUx2iES8DtajQTGj2iPgTCp1Icb/OX\nwoIqSQopjgq16C/tqPejVGJoW3YfbnisfbyLojlI0UIlBGZIcUJG1PtGf8VWimDGY436lJYqnuS5\nlv2D5ZvGuSSagxUtVEJghhSP+ziVMInGX7xEvZ6Kn7ww00R0zVqh88Awnn9D3a04Ucc6aaqPFioh\nsEKKkzJLsd80LQdfo2E56uUcjPetwkd/8gw+/tNnA9MdhFZRTcLQQiUENWX+SkYRAUTn3wkTSj3R\nrF879w8BCH7WKssmxMmzm7uwf3B0vIuhiRAtVEKQHPNXrUV/RZRPmMGPMUiV4XwRX77zJXT2DVf9\nWqoEdXiSpMkNjRZx8c9X4opfrRnvomgiRAuVEJgTShaT8WH6TygZXzniQ/2m4lBU7l/bgT++uBPX\n3r8hhqupMRoQmihkThKqx+BoAQDQvrd/nEuiiRItVEKQmEW6VOb+SkSzYRBZ9FeIfOK4+7qMsXLD\n0GgxIGV8jBb8hUqSQs1HeFlz6YOrGbr+gQ1oW3bfeBdj3Di43maVIXPwY3I+zCCSUdKIp773MW1F\nHf21u3cYIwVvoVGfNT6fYcnx8UBVU0kCQgDmMgdXM3TjY5sBQFpvDnYOrrdZZRLnqPeL/lKIEKs1\nQt1LBFKlVGJYeu0KfPnOlzyP13NNZTifnMZDVVNJQr0QmkrdQSZURGdjYCQ59SJODq63WWWsEfXj\nbf4KnoF4/JsMizjXqI8S0et/eF2n5/E63niMBDTkcRLoqE+QTyXPn6/4rg4WJtUZs1/1DxfGuSTj\ngxYqITDn/kpALy+QBJUxzuivKBHCIpuWNXrJ6GTYCSpLydRU4iiNP0koQzUQQjI/3tOZjxNaqISA\nzKnvxzuk2L0hT3Mwfbdxz+slTElZqXnGKE8U0YDPbe1G72C+4nyCgkiSVB+SFExSDZJgYhwPtFAJ\nQeJG1E+wqe/jviXhaM1KopNENah00bbRQgkX/uxZfPqXz1WUDxA82WlUkYvD+SLueWlnRQ1n0gZi\nRk2CFNhYqXQ9lQlFKiGDH1VIUi8pshH1Md/SaEDIKzOFSmUFE52DV3f0VpQPoKCpRPQMv/WXdfjN\nqjcxq7keSxe2jimP5NTQ6lAL7UQ10JpKCEgh+mv/4Ci+88AGFKo4P765VLCK+esgqtfivuMyfwX5\nVESjUan5S7yjKHx1qo76StnDZxE4UIEz2go4SUYlXbOtByde/VDF08ZQAn1tcaKFSgiEpuLXM/32\nfetxw2Ob8dC6PVUrh4rZIEnCpFYd9QMjRoPZkPNW6E1NpcIORJRmoKDecXS9Z+NjqMj8JX4TUld/\n+vhm7B/MY9XWaBaRTcp9xY0WKiFIKTjqRe82P84reSXJUR/ncsJRMsBHyjfl0p7HRQ+7UvNXlGaS\n4Lm/oqWS/JLW6NZnoxl3lJQ5AscLLVRCkFJYoz4Ov4slMPwc9QdfhVa5oyhNKZamIhEqEY35iPJN\nBWoqEZlkRMNZWTXzH29VLDFs2N1XyQVCIQZhjuSj6RBOUOuXFiphUJmmRQieONr0WpEbkTX0Md+v\n0DYzksF5UWtgURCkIEd1KeuJRBH95Z3Ht+9bh/N+8CR29AyO+RphaOCayv6hSn0qBlpT0QSiMqLe\nUn2rVw61tdrFbwIqdmQyJd57sdZm8XfUV/qIWYSW0rimvo9CUwk69a+vdgCIb1bwBdObAABb90Uj\nxBLx7Y0DWqiEQGXur3hmMvY3GxjHDr4KHfcCXEErTUYWgBDhuwp21EdzHeHXisKnIssjX4w32k9M\nuxP1BKgTDS1UQqDiLxH1P45eykSL/jJnKVZIG4UzP6hRsOpBpY76ik4HoD6DdlT1MhJNRdEpFXdo\nbmRmzQkqVbRQCYHQQvyifSxNpXrlCLMCYhKES3TrqcR7M6amUmVVJQqtVhQxaKxLZJqKECqV+FSC\nrsF/42qbI/M3xdAGJBktVEKgElIcTVSMKn7RX3FcP17C3FIUJiVLiFXXpxKJUDEDRGLSVCLQBFWj\n5+LqTER9He2o1wSS4k/LL8ImDru/0uBH0+8y/hU7qjLE/Y0G9TQjm0Y+CvMX/w2ahiyyRxiJo14I\nZe9MTJNeTC++pPBdhctv/L+98UALlRBY0y/Iv1xzKpEqlkOlkU7SZH1Rm7/8Vn4URONT8Td/Re0r\nioKgrKJq6EzfYSWZBJ4sLAOVXESd6DWVSLOrGbRQCYFozP16TnFGKKnU2SQIlaiI+1ZUHfWVNkZR\nNPSqOUTtN4hkmpaAdHH1+E1NpcKapkfUa5QxJ/7zM3/x32pOJRJmDEoyzF8R5aMQ/RXld2xqRgHX\nqvSSURRZdZngqDWVSlDVpuMTKtH4yAR6nIomEEuoyKWKWTHHuTFPUoWObOp7JbNfdPctQlml5q+o\nHPUR2Eni1lSizE/2XuMYSFxNJujCj5ULFSJKE9GLRPQX/n8LES0nok38d5ot7ZVE1E5EG4noXNv+\nU4joVX7sh8R1ayKqI6I7+f5VRNRmO+dSfo1NRHRppfehgmn+8qssCtpM5eVw/nqmSZBPJSrCzCQQ\nBda4GMk0LRFdJ1LtKqZrRRNS7C+UzTDpmKSK1SGMNr+JRhSayj8DWG/7fxmAFYyxRQBW8P9BRMcC\nuAjAcQDOA3ADEYmZ+m4EcDmARfzvPL7/MgA9jLEjAHwfwPU8rxYAVwE4FcASAFfZhVe1EHXEr7KI\nI1WdUFIp+is5RP6R+theorzvoOWLo/KpRKnVxmVKsgb5jj0P1XPj0rqjHsNTqxpWpVQkVIhoHoAP\nAPg/2+7zAdzKt28F8BHb/jsYYyOMsa0A2gEsIaI5AJoZYyuZUXt+5TpH5HU3gLO4FnMugOWMsW7G\nWA+A5bAEUdUQdcSv56Rq2642kYW7RkGMhQgcsBhhXtGFnlaeh3IDXfmlANgd9WPPw9S4ZZpKzI1z\n1Nr9eLcB40WlmsoPAPwbALuxZxZjrINv7wYwi2/PBbDdlm4H3zeXb7v3O85hjBUA9AJo9cmrqog6\n4jeiXkXwVFyOEHN/Pbe1Gy9t31+1ssRJGPNXFN+zcvRXxdeJVL+K5VpRhBSrNrrxm7+iuV5c42uS\nxpiFChF9EEAnY2yNLA3XPMb1yRLRFUS0mohW7927t8LcjFvxc6xaJrIKLxVcDN+P0n7oIz95uoqF\nCSaywY8KY4Asf1Pl11ReFKzCS8XZ9iSpnQsqijlpZZIKrYAod1LMX794eiu2dQ3Edr1KNJXTAXyY\niN4AcAeAM4no1wD2cJMW+G8nT78TwHzb+fP4vp18273fcQ4RZQBMAdDlk1cZjLGbGGOLGWOLZ8yY\nMbY7NfMyfv16IKIhGm8nXULqM4AozQkhEsVgUkqimSS4zBGZB80R9ZXbv4JG1MfVOEe/gNn4f4X9\nIwX815/X4eKbVsZ2zTELFcbYlYyxeYyxNhgO+EcYY38H4F4AIhrrUgD38O17AVzEI7oWwHDIP8dN\nZX1EtJT7Sy5xnSPyuoBfgwF4EMA5RDSNO+jP4fuqipJPhf/GsfKjf6Lxr9CCqH0PfiPqS9HJFKuR\nCXLUV3qdWH1Oxm/lMiWCqe8VzLhA/NO0JGmi0Eop8DDUfr6KaRxkqpDndQDuIqLLAGwDcCEAMMZe\nI6K7AKwDUADwecaYWAz6cwB+CaABwP38DwBuBnAbEbUD6IYhvMAY6yaibwF4nqe7mjHWXYV7cSB6\nHr423jjMXwrYL19Jr7SjdwgbOg7gPUfPrLhMlRJmsGcUvcSgBjiqBjrKxicop6invve74EihiN6h\nPGZOrpeURe1acTXOUY8tS8I4FdFWpSWrl1aDSIQKY+wxAI/x7S4AZ0nSXQPgGo/9qwEc77F/GMDH\nJXndAuCWsZZ5LJiaim9IcfXNXyqD7qK6/MdueAYdvcN447oPjDmPqJ5EGOtXFEI9eMGriHxFEVaV\n4JDiaK5jyRR5hp//zQt4eH2ntO4EBVXEuTYRYD2bqN5rIjSVcRAqekR9CEyfis/ypqJ3Us0FelSc\n0VH1ujp6hwFYavRYiKxRUMgmyplmWYB5K6r7irPxiXM54YfXd8oPQj2oopoDie2I91nppxvFGJ6o\nGC0YDy8Vx2SEHC1UQiA+/uFCUZrG0lRiKZK8HLbrR1GdRuP6sn1Qi/5ijt9KCLKxR/WOox1R75+Z\nOX60wkYmTISTTPgGCWVrsauYzF9aU4kELVTGwICP0yvqiul3jThG1OfSRhUZyVegqURUFstRH3yx\naMap+JsyIzN/xRirZ4VJV0aYmXhlPkhTZgdkEZ/5K9isHC6/aPKphHxRayqJRlS2A8NyoWLZZeMr\nT9hjYchljCpSiaYSZ0hxlMI8yJQWlYkz0vVUAhvoaK4TRqjI7k+1LHEpyQejT8U0f8XY0muhEgLR\noxzOy81fYgbjOHwq/mmsVJWYOrJp49xKNJWoCLM4WRQfdLCmwjcq7ATGGf0V3bWCl9YOvqa/zyr4\n/GiJKsgmbrOdH6a5s6rLBjrRQiUEKtO0FCPu7XiXQ8FvENHlhS02X1F8ZHxRUqomFRVEgynLynzH\nFV4r1hH1Eeen0neSfQuB0V8xL3ZlBuJU2H+ylnYef6EyHoJNC5UQWJXOR6gITWWczV9REckKf5GZ\nv4Q/QN7rstr56Bz1UvNXxPcVR15RjaiP0qcSRGyLdIlORGTmr0iyqbAM0QWuqKKFSgjEi/HVVErR\nqND+5YgmjQoiaCQBwV/mPfk1iFE6W4Omtq/Fxicynwr/jcan4p3AFFxxhRTz34PJpxJliL0qWqiE\nQE1T4UIlhpbC7wqRjZzmzUclM8VG9STC3FI008krmr8iuk4cBC08pgqF6GzIvoXgRbri9U1YPrQK\nM1IYwxMX4zH/mBYqIRCvx28goKWpxFAQP5dKVD3SCOzaUZu/1NJEZ/4KdNRHdJ0oCB5RH21nQ8n8\nFeBTCUKPU6mkDMav1lSSShhNJYK32Decx+BoefiyUhSUbbuSPmkqSZEsCmnCfkQ/ebQdd6/Z4Xks\nyJRWi5pK5J2NCqK/gsR//It0RWu6TpJPJU6qMaHkQYuSTyXCivnW/3wIUxuzeOk/zvEtj+cxZk83\ndiwzRyXmr/g+0iCTipv/fnAjAOCCU+aVHQua8TiR41QCR9Sb9q+KsHwqwWmDfCJBQjU+8xf/jciH\nk4SOmI7+SjgqPpVCMdrezv7BvLQc/iPqrYOVCIQoeovxmr/4bxTmr4BooKjGqcQZmRP1lVTKLg8p\n9vdZqYbmXv/ABnz0hsoXootqLaS4J8L0w2or4iuL1lRCYPpUSgyMMc9BhZE5+/zKodJjj8rMEbOz\nVAWV9VSinKW42uav8fCpVDoUTlxGpexBnRr5OBW1+cVufGxzcCEUMM1xEb2PoCCGa+9fj/Y9/bj5\n02+L5oIeRLXmTxi0UAmBXdoXSwyZdPmnKUxjfr2r3b3DGBgt4PAZkyorT0Vnq5GKxPwVDWofezjz\nlx+W+StAU6nwWnEK7KgnwQyjPY41D9XnUyyxiiZOjN6n4p/Pzx7fUlH+X/ndyzhh/lR8aulhPmUw\nfrWjPqHY34vMryKEiV+FOu26FTjru49XUA5/s0zQsTBEMeVEVGUJM02LWlo1/4PMxh5ZIxSjphL1\ndP0q2UmjvxRvXLVDI+a5GitRRX9ZGk91W/K71+zAN/+01r8sevBjsrHXEVlFNzUVP39HDO83qktY\ndm3/dCOFIh58bXdEV/VGZaXFMBHFfgEXxvX8P8ioTJ3xrvxo/FY6ot4yfwWXXTqi3uwAeBN2XZKg\nSU/Xd/Rh1ZYu6XFxLz7LJakRoQm2UsbDaq2FSghCaSoKNWqsJqWgj9GeplLM6K+ADB/dsBf/cNsa\nbN7bH82FPVC5pzDO1nxAIxTkn4lqVttYR9RHNg+bukANDHSQEXKMVJCm8r7/fRKfuGml9LhlKqr0\nfUZrRquEqKfzV0ELlTC4fCpeFBTMX0F5BBajvDgeaeI1f4mZm4dGy2dwjiz6K8T4HJVL5gO6pEET\nRlrRYf7X+fXKbfjOAxukx+Oc+0tonJWOqA9jZpR1SMTzC/KDBHVoBGu29SilkxGV+SvO5S+CCAqL\nrwZaqITAqal494rCmETiWMirUlKKg9xEr7+aK0SqmG5Uwr4FG3cfULpesPnL/1r//qe1uMEnQinO\nxieqXnSYHrDMdCo6YLIFpMKavx7ZsEctoYQgH5oqQXPGxYkep5JwwvhUVHpXQTb9oHL4mr/GlHM5\n4oMPaqQkZ8T8AAAgAElEQVTF8byHCSJqk4u/UGGO8vhx4c+e9T0eNOVOVOavSDUVxeNBpr8grIGC\nwWWXPR8xo3dQwFbQNd46bwoAYM6UhsCy+F4nIoEbVuPxev+FYgk/f2KL54wa4cqizV+Jxt44FiSm\nk6JpEqme+csqkPz8qCtR0AeS5/fiJSgjM3+p2O/5b8XPFsE9TrtWWtHSAGM+M3xmYXwh/vn4X84d\nfu+F2C8bdyT2q5q/Kn3n4uyoOgmqxfFK94cXd+Kav67HTysMOx4PE5wWKiFQ0VSsWYqD8xv7NB8q\n50XtU/FPV4zD/KWSJoSmEkSQPdpeHypph+I0USgJZsbw+zU7fFc4DQqntvurZGks85d/eQLrnk+H\nJgxR+ULE+ap10Ov57No/BCAKjVLkHV8d00IlBPZ3L6vAoiKNu/krYp9K0Aci7sXT/BWjpiKKWWkD\nY1wvyPwV3HCqEOfcXyrXemLTPvzr717Gdx7Y6HMd/lvBsymaQsVbqqj6JqxGPJoGODp/09g1rL4h\nw+zVlEtXWBbwslSUTSi0UAmB/b0EaypjtzUrlyeGiqI6S7EpVDzMgmGLuW5XH066+iHsPTDiyic4\np6hMGI48AsxfxvbYrxPveirWtWTXFUs7bN0nDw9XNQ0a2955BDnqVYMuShFpKoioAbbqoGJ6j3SF\niFaQ1eupJBz7C5KppUJDUangY9ZUVNJEVJdU11MRDVGl6joA/N9TW9AzmMdjGzsd+63Bj37LCfPn\nX/EItmBziP1Wk7DejEpe9sOykOpJdcbsTQeG5U5iFvBs7PtlQkEIA1nghWokpfjmKjV5RueoD5eP\nl1VDvJvKTXpc+FeUSzi0UAkBY0A2Le+5l0osVOTHWH0qKlMvRDZOhf8GyQpR+b18KpH1lpTu20DV\nuetH0Ih6+33F4VN5bms3Hlhb2awF9jKPFLx9JtmM0Sz4dRCCGmAV81eQpqJu/oq2AY57nIrX9cRA\nTplJT/WbEqfHqbFooRICBoZMynhkXhXY3pCp9JrG2rNSsZNGp6lwIRrkUykK85dXSHE4RCPjPk/8\n73/f0fRa7depxG+ggmpRL/zZs/jHX6/xTROUlb2Yw3nJWCsFvyBz/cryMLa905iRkrJxQCVnOhlm\neSvUTs0OYQzjVOzHvL4t0TkL8t0GEUXnKixaqISAMZgzE3u9VPu+cTd/jSnncpTNX76O+nClMfut\nrtOCGnn7sSgc9UHmF/v+JEy4aeTlf9xeTpmmohLByAIaTof5K0BTCWrEVc1fqu9c1kGKbtxRcD72\nsnoVZ5S/G5mgVBUWlomx0sUO1NFCJQQMQDbNNRWPl1109M4UzF9jrLwqA5oi01T4b1Altnwq5enG\nWhZ3D9acndnvHLO3qX5RWUhr0Jij6Bz19u3q9ixVNBWV1UuDevUqWpz6OKAgTcX4VY3+kgmfqGad\nVvEF2TV6rw6qMH/J5xhULYtauijRQiUEjDFkUnJNxV4BlEKKFdV1dwNp9th9zgnjU3lm8z6s29Xn\neSylav7y86nYtxWei9xxG5zHWOzrmbT3ZxDo9A4pDFSEk0p75vcugkOKreMyn4losPwaV9UZnI38\nJJpK0b+TYM1oEFT3/BtgWb5u8ub1lLKRoqKp5Av2dy5vS6RRphUEAVSbMQsVIppPRI8S0Toieo2I\n/pnvbyGi5US0if9Os51zJRG1E9FGIjrXtv8UInqVH/shcV2NiOqI6E6+fxURtdnOuZRfYxMRXTrW\n+wiDQ1Px6CrYPx4Vm6d/T1AuoJR6UiHq0id/vgrv/+GTnsdUlxM2P2wPQTnWHr37NlU+VnEkjKbS\nKBkLEM4ZHXwd6RTwkjxl5Csw+tuzl84KoeCXst6F9/GSIzLOO03RDJutTFMpBjTAbmTz9gltO6pZ\niv2ysXe+vIot3o10Ms6Q5q84qURTKQD4V8bYsQCWAvg8ER0LYBmAFYyxRQBW8P/Bj10E4DgA5wG4\ngYjE13wjgMsBLOJ/5/H9lwHoYYwdAeD7AK7nebUAuArAqQCWALjKLryqBrOivwI1lQod9UWfvCzf\nQnDjWikUdu4vz+iv8nS+15SEDItesUpjJ2s4vGjMBgkV7/PC+lRUGgiVNsBPww3Urmw1Qzb7QUmh\nxx4ULGK/p6DetlzoqGkOYUfUSzWVYsn3OABs7x5E27L78Ez7Pmkacet++bzZPWCVx1NT4WWRvGtV\nYVFTE0oyxjoYYy/w7QMA1gOYC+B8ALfyZLcC+AjfPh/AHYyxEcbYVgDtAJYQ0RwAzYyxlcxoJX/l\nOkfkdTeAs7gWcy6A5YyxbsZYD4DlsARR1SgxZtNU/HvkKo2n30fg12CpVBT1kEP/dOYiXYE+FR+h\nYr9eiEruThnUO7afFSb6q16qqYjf4A9bLYRcsj+kcPIL9Q06236tgmyslYLZKdhRz8rSyq4ju4zq\nQOIgU5EsvRvhD/TLRkyvf8fz26VpVDSsb/zRWrHR6/4KAYJSOfqrxjQVE26WOgnAKgCzGGMd/NBu\nALP49lwA9jexg++by7fd+x3nMMYKAHoBtPrk5VW2K4hoNRGt3rt37xjuzqLELPNXFJqKis3aKy/m\nkcaNalUK6t2Fjf4KGqeiIlPENd1pVRo7cTthbMnZlMynwj9sWW8x5H1Jl9UNmY87GCKMucaeVDb4\nUcX8FeTMd2inkjSmT0UqmMSvmpZcqaZSCDDHAVb0p69gD9DiAGCkYDd/ebQlwvwl6YkoR3/VkqYi\nIKJJAH4P4EuMMYe3l2se8d+Vsww3McYWM8YWz5gxo6K8SoyZA8M8NZUIHfW+Wo+Ceq1al4IqnTBF\nqQ5+DDR/hXDUu53AKrZzc5yKQhCEMGXKnc3O65YfD6epBC2rq5qP+xk7TgmKlFJw1FvrivgIFaFl\nBBx3b48lj2B/nn8D7EZ238J57vcIRafSb4E3FU3l8BlNtvTlx4M0Ffut+geuSA9VjYqEChFlYQiU\n3zDG/sB37+EmLfBfMdfGTgDzbafP4/t28m33fsc5RJQBMAVAl09eVYUxIGtGf5VXTEfseYWait9H\nqRKyqFqXgjSq0NO0FMrTsZCNr2wVehUHqLgdlV5rkPnFiiSTLcjmvS0tW0TCyd0ZCWVSVBAqYrfv\n4EdTi/A+rqLFBWk7RQXhBoR31Mujv4I1lVw6eLYBcbZfPvOmNfqWpxDg37HnLQsN9zu/mlQS/UUA\nbgawnjH2PduhewFcyrcvBXCPbf9FPKJrAQyH/HPcVNZHREt5npe4zhF5XQDgEa79PAjgHCKaxh30\n5/B9VYXZfSo+41SyaQrVqHlhP+T+uMV/Kj32IFTNX0Hhz36aiv0SLETgksz85f/cgnuJ7nIFzaIr\nu/egUdFl+QWYedzbMtzRX0yy7YW9CDJHfZADHQg2RTrqr9Tc5C80VMaNMMbGEP0lESrFYKFiXtfn\nmEqnzz6vmte3GmTSs9+r30Je4xH9lang3NMBfArAq0T0Et/3dQDXAbiLiC4DsA3AhQDAGHuNiO4C\nsA5G5NjnGWNiSO/nAPwSQAOA+/kfYAit24ioHUA3jOgxMMa6iehbAJ7n6a5mjHVXcC9KlJg1L5Lf\niPpcOqXWyPg1jg6tx12O4I9ItSoFO+rlmpkd0bMKGqcSzvzlxLxvld58wH05/BjSNP55OQa7Kjnq\ng4WTSmfA1/wVVAaFxr4U0Ngb+fBjkiQq2mlReZyKtBjOwIMKNZWhUS5UfKp60ISpjFnz//m9ywPD\neas8HulEx0FFU+kdyqN1Up0knW9xq8KYhQpj7CnI7BTAWZJzrgFwjcf+1QCO99g/DODjkrxuAXCL\nanmjoMQYctwO7zn3lxAqmZRSw6fS4wY8NBUWfL6qVAkqp+pgQn+fSrjG14w4c11TZVVNFYHrPh5o\n/pL26O1pfS/H08uESrh83JqT3ScU9HjtaYM0NJVAkiDTlV+agvk+PcrJmFLQhd00qaq5yzRPsSiZ\n6vQq3textv2S2r8TLyFWDJil2H6vmzr7sXDGJO90psk4PumiR9SHICj6yyFUAnqBQIiQYlc60xnt\nZxZQlCpBmor4wB5ev8c3nfhQvT5Y5nMvfrgFlGnr99XwgtMAij32AIFq194qcdSH9an4aSqqC1oZ\n5fFOoxT9FWT+KtnTysoiz+Oel3aZ23735Jhvz9d57n2O/RrCjOQ7Ej5IU3FcU004eaUzR/cr1BkV\n81ecGosWKiFw+FS8hAp/0dm0XKio9ODcx6Qhxb49M+khB0E9L3H49T39Sh+3t/nLfs/BZRLmr7EE\nKKhqVvbnK9NEgsxf9kZMpScoM6vYz1R5b+UhxcHnWGnt9cp/8KNKQESQlufetuOnqXT0DtvKIy+H\nahi/XaPxmpFgtFjinUZCicnfp1/UF+D/3doJMp1aPpXgIJGBEfmyz+Y3E6NU0UIlBPbBj14fpNjn\np6mohFqKa5npXJVO1bfQ1mpEmLzrSHkodVCP3mE28EkrPtSgkGI185e3iTHIsWu/lqoG5nUd9/5i\niXk2MqGnaZE6tcMJJ7cQdJi/As61Zx+oqSiZv/yPu7cd11GItgosh0Pz91n/xaE5lecnxo008NkV\nZJeUdUDM6zjepTxd0CzFQaP77fsHRuSaisq7jBotVEIgejKAzKdi/Ob8NBVFoaIyTYvfWAzGDOE2\nd2oDpkuceEDwB22/tJ/qb03T4tX4lqfzQ6qplII/ENHAqmpgfmlHbQPUvNIEmTDcqI1TCczGNI14\nnR+EX2fFTBPCpyJdktj+bAK+hUA/kKIZSVVT8TKTjfCw3Mac4WaWPRv3sy8vq7Xta/4KmKU4TPTX\nwKiPpqLwLqNGC5UQODQVj4opKm6dj6NedSEvZ4/SramU51V2PpjvsrsqZTCuZR33U/3zvtO0qPXe\n3GncH1SYEfWAv7Ziv2+ZsLSvN+L34RvXCr6OfPR5uDTuNWuYI513Oczy2K8V0GD5mZ3EI5NdzjkQ\nWJYHFyoeudgnjvarog6fyhg7aYD1rhv4lD3SsSwe6wXZUe1oFEsMaT7mzXOWYnNEfbB2O+ijqYjT\nK114LAxaqISBWdM0eI+oN36z6ZS8kSn6V26vY+Wain+FM9LIR6bLruOFo0fvq6nwkGLPRbrs+Sn0\n6M37K3nu9/tAVMxaRpmMY9k0SR28QZqKisD4l7teMrflDYR9O7hn6jbzOCLZPM+2pVWofyqdlqAe\nsP15BWkzXuWYMdnSrv01kPDfk5eZTLzr+iDzV0DrbH++fp9WocTMgZSegx99Zv12n3Prs2/Iy6Og\n3UdNJeNUJgw7egaxcfcBlBhDmgjpFPlWhFwmJa18Dk1F0VEvH2Dmp6kYEMG3pQmqbKo+Fb8JJcNc\nD5CHU6qYv1RNbfYxRTINbKRQQmMujcHRoqdALZaM9XUKJSZthOxRTCq9TnljZh0YdZU3yM5vRyVQ\nRCUsO8inEmaalhIz3m2K99zX7uzFl+98GQAwc3Kdf4+fP4u6TKpCTUX4VHhDP0ZHvT0IICiwJZdJ\nYShfLHuGpZItnFqhI1LplDFRo4WKAh/80VPYP5hHQzaNVIqQJu8R8+LF5TIpM4LEvYyn6porflEk\nKhFOhqZC0gWvVMrgLoefwLDGqXhpcMG9VkeZxP258lJbkVBVaBu/uUwKg/l82fFiiaFQYpiayxhC\nRaKpZNMpFEpFpY9WZfS5Ss/fLURUtAIzf96YjRZKFc2AGzT+QWXBOvt1Rosl1KcMLeHJTda08nXZ\nlK9JT+Rd5xMc4y6PVx0VmorpU5GZv4I6TQ7tVZ4uXyyZpnT3O3e8a2n0l5FmamMW+wfL6687HZO0\nR9VAm78UEC9tKF8EEZBKeX/8ohHMmZWlPC9VdT3vUKOd6cS/oqJ4w0yPil8TEbg+uO243zgAaznh\ngBH1Cp1qUyOR+FT87tvhi/INZLA6AIyVX0s0Mk11RkMnm5ZHmEMrcdTbCy1LYhck7rKEWeWyUGKo\n8zG7AGrapL0OeuHsSHinsV/fPmuveOYAUJdJB2icwjqQDjDP+jfUI2XmL4mwDJg9OIxPpS4jEyrB\nAzrF/qNnTw5IZ22HqCYVoYVKSFJEyKRSvisc1vGK6dXAqkZ/FRy2b+/r+OUhfCoECoieUQ+RVNNU\nKvepWDO0OvNSCeF1+lR8Ghmzh5v2TDvqCjH1ystuF1f5YCvRVOydDPdYoDDmrxKzZtqWDqyz7d9t\nGy/iuGZAOLBK58lh0rMJFaEtAEB9NqU0iDBIUwkKzFB21Juh8zKhYx8QKy2OUXckUz7Z8w6K0JtU\nlwUgHwAZdjXaKNBCJSQpMv68KvqmPf0AgHqf6fGVhYpPb8XR85f12MGFSoC2G9TI2w/72W59zV8K\ndnxnXt4x+irPzuFTUTR/AeW9f9HINNVlPI+LMggThpJZL2BkOSBv6J0hsc6Mguz8zjLYHMRSs5S1\n3dE75F0ecy0U2XX8gxxEWQT2SDv78s71mbT/eA9Fn4rD/OUxk7Zp/uKdCKlPhZ8rE+SqM5Xb34P7\nUo5w44A1bybXG/VzSBJWHPbbiwItVEJCkDvqv7v8dQCGHRjwDj9UddT79fQcJh6fDzZNYr0QOUGd\n3BKzelR+PX9V85dKaOOo+eE6S+5c91ymoakJbfHB5ySzTo+YNnahqXgLFcv8Jb1UYHnsu1VG75cP\nCrUezN4DI75lKNjLrGD+ss+maydoRl+ZFuK4TskKq7WnsT+noHn0zICLAE3FXs4RT02Fa6Y5tegv\nuaai1ojniwzZjPdS3U6fin+dEabCQYlQUZ3BI0q0UAlJimAIFZ8XJFRSr+kgVDUVe+NcPqGkSo/d\niKYh+I9dCFKJi8yy/appKh4NSMiKLRtNHCZyyet8r3RCYLrflWhkmrgpxkugFpnd/BV8X0EjywG5\nidEZ/eU2f1nHfvbEFv8y8Ibcrw7bhU3fsLcTWNQF2V3LtBB3GqEZjDjCt63tdIr8fRM2k7MRhRfc\n2HsJOVFG4VORO+p96rmr7H6fVrFUktYdkbfKHIKW+UuiqWjzVw1AhBSRr2orVFKvRtjpK/FppO09\nHlc6hw3eZ9Bdmigw2iOoojEGU6j42e7t5i/3h63iM7AjPirZ4Ee/cqtocfYyyezapjlE1VGv8MGq\n+BakjZWPoz4oIslRBgYjLJ5IqqXahc2IZAEoUZ6xNuKA0QALzcCexv7dpIiUBj9aTm/vdPbG3qs8\noy7NNCj6K2id+2w6yJdpWQDcWYlnV+9j0hPlM81feYlPRaGtiBotVEJSKJak5i+BKVS8Km/A9Axe\nx8p9KsEmtBJjSKmYv4JCUG29cf9xKiVwS0b5hIcK063bsT7cyhz1XQOj0mu4GyN3w2z6VHxCTAuO\nsFDppaxrqoTWetj7jfJZ+9290jA90GKpZGkqklbG3uiOSASCOYuu5NLD/PllUiTNo1iyGvERD/PX\npLqM4b9U6HzVSToHZnltz8/bUe8MzJCav3zMvIDlMJ9cnw0cNyMPKbYi0YIi9CZxn582f9Uw6ZSh\nqfibv4SmIu8RAWM3fznCfKUzzRqhz4b5y6fHbiuDbNLEnKThtedRYtYH6Tc1u0r7Jwb3lY1TUXCC\nMgYs5Ot/b+8elF7DDCmW+FTKNBWP51xikDYMghmT67BgepNvmVU0Ffu9d/U7/SZhHfWWUPFOM1oo\nmQEeMtNVkKYyyGfOndqY8xEqJTPSyzF7Ac/7ka+8C9l0SmnOuWChoqap1OcCHPUl77opEA7zaY1Z\nc30WLwpFJi2zeJ/12bTP960mVJzT5Wihkkhy6ZRh57W9rOF8EW3L7jP/Nz8Un9BFwNvnYh7zMX85\nG1fv84uMO0FDDH707o0z084sa7zEfTZJhKkjIktBqggNz9f85aOhiQk0ZR+a/fycJFKvzKcimest\nyKcyWiihtSlXVn5HmRWEir2uuDWwoLBwO0KoyCIYRZkn83fptf65fcS37HUO8B77tMYsRmWCqcRs\nmortu7CN96rLpqXmMyMP45gsNNzK0yZUFDQVqXAqBGkqxn20NMmFqShnvaQTZpq/sj4+Fb5bfHM6\n+quG+eAJh3Anp7XPHiGTSZHNB1H+Eh22Y4mpAwC6B6zeqLsBzRdLCmGhauYvPwewOC7s3jKfirj/\naY05z3zGbv5yaWhKjvrg3htgvRvZOBRxT37RX6USzAge2W2NFIrm81OJlAqKKsqlU2Wait+g1PLy\nGCY7PxNuvljC5PqsWX6vPAQyTWVotIi6TAoNubSPpsI8fSriXWTSKdRlUr6Ns6qmEuio5wObrfct\nMQ0GmL8sTSUn1VSEUBbXcueVt5m/pD4VV0jxgGScimPwo/apJI+zj5mFBdObyuy89g/vktPaTOet\nV8X70h3WBIN+PczXdvWZ22VO5GLJDFv2W/c8zaO//KSKvaHz+tgKxZJl1pJcS6znMLWRR725Gznb\nvyqdJSv6y1keFQ2NgZm9t35JOKz9GvU5b0f853/7gnE8KxcqhVIJmZRcU2GMYaRQskWQBftUghz1\ns6bUYV+/U1MJ46jPF0vIZVK+0V8jvH5l097+kO8+tNHclr3OgdECmuoyhlCQOPuLDk2l3FEvOmgy\nE5zIA7DC+KXLGARpKryjJuq6rOcvOioyQS4a95amnPy++XP3Mv3Z8xZjdLy+cbf5S0VT0eavBJHh\nHuhj5xhTIrh7efYXanyMxmN1V96RQhEHbNNUS00dxRLueH67+X9ZHLvNJOXnyEspRH8FjScolJjV\nm5eUt3/E+pCA8gAF1alp3OXw9alIw2GNyJvpk+qwa7/3wD17mWR+IEG95N7FGup+jvrRYgmMAdOa\n/MM+CyVrvEZQSPGsyfXY1TvkmnZEvbEYLZRQl0n5RjCOFowGtj6T9mwYn9ncZW7L3sPgaBEN2bQx\nz5iPn6jJo2EV92YIFe8yuNMK89dYfSoj+ZKpWQHyRlpoHzLTtd38NVoseZZHlMXU0iTRfHU+k1uK\nfJsCtHL7fce1+qMWKgq8Y9F0AMAXz1oEwAhztH/I9hf67OYus6Fx99jtPec5U+qlFcHdGLobjXyx\nhPqAnlmxBJv5S16Zhm1l8OqV2gWYtHdmaire5i/n1BUKQkUyS7HKWjSFUgnZVAozJ9eha0A+EDAf\nYEP/2ElzAVhzK8n8O7mMfO6vXfuNKU5amwwfj2wgYbFUChRuQqs9cvZkMAZs2N1nO2ZcW/iS/AIz\nRotq5q+6TAp1WW8t4bzjZwMAjp3TLNUYB0eKaKpLG0LBIw/GmMO0ah+QKOpLOkXIBZi/CuZ78P8e\n7M9VFv2Vy6TN9yD7NoWwkZkph0aLSBF8zYdCqAnTlVvImVq0T8fRPpFmNk3S8toFsvapJIhrPvoW\nPP7Vd5vCIpdxRqQM2Wyn1/3NW0x/h7vHLtaS/u8L3oqO3mHc89Iuzwr+nQcM88L/XnSikY8tjfgY\npzbkeJ7yOX/SZvSX/N7sZff6eIslm6Ne0oIIlX/etAYAwOt7DjiO281mYcxf5VPfW9PO+M2Rlc0Q\nJtdnpI24vUwNOe8ghEKJYcH0JvOdyyZxFOYvr4ZcrKWyZZ8xfY/MHGcX3O5eq/2+AGAhjySz5yUa\n4fccNYPnIW+EhRbiJ1RGud/FEAjedQIADplaL+2uDOaLaMgZ5i9PZz8/0TR/2ephvsSQTRtadh3X\ndIIWFDN9KpLnJxrdKQ1ZT81HaHCiPIMSf4jIp1jyHmg5OFpEUy5jdvq87l08UxEMITV/+ZhexX2n\nU4SGbBpDEp/KcMBCc9VACxUF5k5twGGtTeb/k+oypskHcKrKR89uNp23boEhzhF2UADocUXyvPBm\nD+57tQMAcOL8qUY+HvbmWc1Gr7RbMhZDRH9l0v5zItmFipdZIF+ytCLZqnei8T5hnlHeviFnBQ9a\nOrXsmkKouJ7faLGE+oxwesvPzaRSgUKl4OoNuv1bQ/mi2Qu0l8k839WYeT1jMbt1iowPv39ENjq9\nhIac/zMWDU1zfbkpTRybxHu+fj17Q+j6+1RGC4bfxRAI5Y3rUL6I+qyRhzykuICmXBrN9Vn0DXkv\nLQAADR6RkoWi5asSJiCZoCx/DxKzFO/QtU7KORpawUihiLqsZf4alvT87ffipa0MjhbQkEub9crr\n+dkXBEuRV93ix30EpRDC9dk0GvnyDF44NRXPJJGjhcoYMBosq3I9/0Y3AODWv18CwLKzux3bPYOG\nAJjGfQ9AeXio3UEvfBT2BksIgaNnNyNFwEvb93uWUQx+zKXJNyTTvhSp+8MtlYzFpxp8ekyANd/U\noS2NRp6jbqES7AuxI5umZbRQQnOD0QitWL8Hbcvuw5tdg2Xn5jIpNOQyDoFZfg2nT8V9b8N5I2pL\ndAD6XRqh+Kgn1cvHJIl7TacIQ/kifv7kVs9G+MBwwTSRycxfu/sMU5q4f3t5hJ+uhZsf/cZHDIwU\n0JhN8xH1clNRLpOSmp4GRwtozGVAkE+hsnpbDxpzaUxtMtb7cN+3aDgbsmkQOTtm+aI1U4HwlcgE\npXjHwtwkEz5Cm25tynk2wEKDE85zr1l/SyWG/tGCr6lycLSIxlzapqnIo+fEM3aX2aybPpFoIg+h\nXck0q+FCEWcdPROPfuXd5vdZbbRQGQOT67N4fU+/2Vjf8NhmAJb5R9hK9w86BcY+Hgo6fVIOd16x\nFADQZYvkeXRjJ775p7Xm/14O/5O/tRwAcFhrIw5rbUJ7Z39Z+VZt6cIb+waQIvIdPPaXV3bhh4+0\nm/+PuCqmMHfJTESCjt5hNGTTmD2lHkC5k9PRCw3oLo0UiuZ13GlHCyXMbjau8ZNHjXK/uL3HkaZQ\nNFZjrJf0sq1yiHvzNm8NcUezEBpuoTJs2sV5xJtHeLhporAFS6ze5izvSKGI1dt6MH0SD3LweFfD\n+SK+9Zd1AICFMyYBAN60Dezs7BtGLpPCLP5sZI7tJzftReeBEb4mkFwgjAhHfdbb/CWc8Jk0edaJ\nRzd2AgAeXt+JbMpoNNd3HCjLAzAmRJxc59Qqjag6IVRSvEz+moOoe7Ie+w8e3sSvl/GsFweGDQ3D\n9IggtDEAABznSURBVKl4pRkpgDFbZ89TUzHMfg1ZuQNd3EtdJo1sOlVu/rKFFAPe2r1dqEyqz0hN\nqwMjBcxsrseC6U2m36naaKEyBt7YNwAA+PGj7Xh0Q6e5fwE3kU1vqkNjLo1XdvQ6zvvTizuN45Pq\n0MqdqnZn8md+8bwjvanx8AZr/+CoYwqLaY1Z9HqYFj5x00qUmNFD9hMqv131puN/d49J+ICmNBgN\npyz665Ud+zFnaj1ymRQyKSr7IAtFZvb4vUwhdrZ3W0EKXuYv0XD2cNOSfe0N4W/KpoWTWa6hCcEn\nJuRzX2u4YDScDdk00ikq+2hFw9Rc7z3Qde3OXuzoMe7lQycegk8snm+U26WZfn+50djt2m8Ihk6P\nWYbtJs4Zk+pQn005nuOevmHMaq4ztRivOgEA3/ij0WHZ1z+CTMpbIGzZ248Nuw+AATwcuLxRHBwx\neuNNuYxnj94eaPIc1+L/4561jjTCF9iUy2BKYxZ7bWNvjPyNexFCZXjU+132DeVRl0lhKq+jsqgt\ngVge2g5jDOs6+nD07Mmo56HUXs9QWCdaRQfAQ4PY1HkAh7Y0mPXC3RkBgK28/Zg9pd70GdkR78XP\ntDqcLyLDzdtuy4lgtFDCvv5Rc/qkuNBCZQyISrGjexCf+aUhCBYfNs1cYzuVIixZ0OIwZa3v6MOj\nG/cCMOziomfa1S+fn0pMpyGEgr2iv2XeFDQ3ZMtmkbX3wuqzQr327pHOmFzn+N/9sYnGbMbkOqQI\nnrborv4RPP9GD849zogIasilyz7sQqlkXmt/gFA5+3uPAwAWzZzkKE+xxFAsMVOoCOzfi30yv/pM\nWqqptHf246t3vwLAGPFtlLFcU6nPpUFEZT40wHrOsgiee1+21qZ/xxHT8YUzjwBQfv9iKpl9/SM4\ncf5UR50R9Ng03oZcGrm0U2Du6RvBrMn1mMmfjWz6+z3chNaYy6A+6/18lv3hVQCGcKmTaSr5Ihrr\nMmisK2+gAZh+r/NPPAR/e+qhAIC3cn+bQDzPproMjpo1Ga/ttDpgfcMF87mKKW7W7y5/LoDxTUxp\nyNrMVuXlEd/NoS2NqM+W18+ewTx6h/JYNHMyiAiHTG3Azp7ycHThKxSDfMtmjigx7OwZwsIZk0wN\n18uvJ76ruVMbPDUVIchFuLCXpjKct0bkN9dnPa8jzPJxOegFWqiMgW9/5HgAlsoNwBQoggXTm7Ct\na8C0JX/21tWOtM31WaRTZFYwr54GYPRWxIciKvVPPnky5k1r9HSCioYDMHqB2XRK6vzd5vJHfPV3\nL5vbxRLDF/gAwJamHFon1WHfAacA7BvO4/TrHwFgCFXA6AmWm78YmuszyKVTjgbSzR9f3GFuv/3w\nVnQPjJrPT3zAM12C0C7oRI9PaCrD+aKnD2PZ718xt4V/y/1hD4wU0cTNfpNc5pmd+4fwGO8gmOYv\nVwNjrw2ZFJmNpFvjEaaUhTOacMTMSdiyt9ycaV+DvI7b4cX1RgpFPLulCz2Do6bAtdcBO0JAvPuo\nGTxiyPmehvNF7OMC6fwT50pHsw+NGn6ZplwGAyOFsmcs3sOy9x1tdjZE714g6v3UxizmTWs0/1+7\nsxcPr99jNqhCGD302h7PexJCRZhovTSnt337YQDAZ89YYNRPlzDdb/o6jXfZ0pTz1FRe2WH4L+e3\nGGZut/mra2AUhRLDnCn1Zr3wCs74/Rqjnk+qy5RFkgLAwKjQgo08vITC/qFR04IgC0oR9eaS09rK\njlUTLVTGwPveMgetTTls3TdgRgftcE1e2NbahMHRotlr3MlNAle8cyEAQ7C0NOWwtWsAj27olJos\npjZYJi63+u1VmcTYCEDE+RP6hvOeJjChcX3kxEMAGD1Ewf1rO7Bht2EHb2nKYVZzHToPOBur36/Z\nYYZMCifgnr4R3Ll6uyNd/3Aek+ozmNqYxf4B7/vsHcrjy3daQm1+SyMKJWYKUtNcVZ9xnGfvlQvT\n0rTGHKY0ZFFicAw2FYgGCLDGdghhN5wv4gcPv47dfcPmscn1GUfj8LEbnsZ/P7jRPAaUCxX7syQi\ns5G8mvtGAODrf3wVt63cBgD48SdPxuEzJqFnMF8W0SfK9i/vPRJEhJytdyt61Ie1NmHGpDpkUoT7\n1+52nP9m1yBOv+4Rq/wnzytrXF/ZsR9Hf/MBbOF14otnHiGNWBPO6BmT61BicJiuAEtwTq7Poo6b\nRN2anlimeM6UesxqrkffcAEdvUP40p1GGLZ438IP8PsXdsCLvuE8mhuyZiiwl/lLCLnm+qynMBXa\no2ikZRFrt63chrpMCifOn+bIFzDe/1PtRkdjdnO9WS/c32exxPAyN4vXZ1OOdykYGCmAyCqPl4Wg\ndzBvzmAxuT7r2SkVPtyZzXVlx6qJFipj5H1vmY371+42TS5nHTPLcbyNq+1vdA2a9uNPLJ6PK993\ntJmmtSmH+17pwGd++Tze2GcIpQ+fcIgjn9ZJdXijy/jQhalL9GCaG7LoGhh1rineZ6ntx8xpxrTG\nHHb0DOGE/3rI3L+vfwTHfPMB9A7l8Z8fOhY/uOgkHD+32dQ2ADjU/9nN9Zg5uR57+pyNhz0GX5gp\n3PQO5vHCm/vBmGFG65D0orfxewSA+/7pHWaDLnxOYoaBpjqnUNmy1zpPNMbTmnI4ZKrRm3x60z5H\n+j+/vAtP8n2zmuvQXG+Mpfjzy7uwp28Ytz27zXTqijK4NRX7c5hUZ2hg7sbD7TsR/jHAeI8/fXyz\nw6c1fVIdjj+kGYARaCEoFEv4wm9fBAB85vQ2Iy9b71Y0zp89YwFyfP2Nx1/fi5dtUYE3Pt5udmou\nPe0wAECjy6T3l1c6zO2LlxwKIsLCGU3Y0TPk6P2//doVeG1XHxpyaRzaanQk7BF43QOjuOav641r\nZNOmQHWPpxLlntVcjxPmTwFgdHJEsMtnz1gAN+6xKrc+8waebu/i5i/vQYsX/uxZc/uMRdPNqECR\n1ys79uNjNzwDAJgzxbh2c0O5r/LJTXvx2q4+jNiCRcTy4QBw1+rtZqdo9hRvodLVP4Jr+bMBjM7G\nlIZsmfb+RtcgpjZkzQ6U11i0/UOWUJnSkMXAaLEsmOG5rd1IkWWui4uaFipEdB4RbSSidiJaFue1\nP8pHXAv+40PHOv4Xg9Su/MMrppnpnUfOcEybImyiALC9x0hzwSnzHPmcd/xsrNnWgx09g2bvV1RY\n4Q9Y+PW/YuWWLhSKJXTwj/WJr74HHzlprlmh7B/b0+37zF7qe46eCcCw767e1oNO3uiL3tvFS+aj\ndVIdZjXXYeu+AYepY/PefqQIePbKM5HhjeYH3jrHUf73ft/wkWzrGsQJ86di5eYuxwebL5bwoR89\nhQ//+GkAwL1fOB3HHTLF9MH85ZUOdPYN4/oHNgAwzFRfO+9ozJ3agLlTG8yBhYA16LKlKYfTDzdm\nQfh/v3nB1LD2D47ii7e/aD7DVV8/2+z5v7yjF2d/93FstpmfRBkMTcX6sN/NBxkCxjucMbkOj23c\ni5882o5ebnLo9jDz3fSpU4wy/XoNrrt/Q9nxkw+bhmya8P9+8wK+t/x19A3nccQ37jePC5NKLm05\nd5/gAnK2y9d0/k+eNrf7R6x3Lzo7c6c2YNd+a7oX0cgDxjsHgKNmGaP3heDee2AEu2wahtBO7ZFo\nS69dYW4Lk7CXT+q5N7qRThHqs2nM5R2ArfsGTLPix062voN/4jNZ7Oq1OjrFEsNV974GAOg8MGxq\nn/YG+NnNXXhua7f5f+ukOtOXKXrxN/LITcDQjgFgSkMGb3QNom3ZfXhj3wCKJYZP3fwcAOCt86Zg\n6cIWNOXSWGkT/s+0W9tzpzagLmOEo9s16f95aCP+76mtxv3x9mNWcz06bZ2UVVu68OeXd+G0w1vN\n4Ba7YBotlPDPd7yINdt6zLE8QhDvcPmBNu45gLbpTeYUQHFRs0KFiNIAfgLgfQCOBXAxER3rf1Z0\nnHJYC/7hXQvN/+09UcB60Zv3DuDyXxn+lLbpzjhxse4HAFzJHaTiQxX2/HcdaTRg77j+Ufwbdy6L\nxu6YOc3m+RfdtBJf/+OruPP57ZhclzF7kV886wgzzdqdvWjv7Mdm3kjk0ilzUOdpC1sBAB+94Rl0\n9A5hT+8wDplSj2s/9lYAwCFTGjCUL+Knj28x81u1tQtnLJph9vAAS5h+96GN6B3Km9FMv/jM2/CB\nt8zBaLGERzbswUihiOF8Ebt7h/Eqd9IuXdhi2tDFc/je8tcdjdZb5k7B/3v34Xh62Zk4dUELXt3R\ni9FCCWt39prO95amnGMs0M1PGh/yy7ZoPKHtAVb46IGRgmPOtbe1tQAwGvOufsO/s2L9HrPhAwy7\n+s79Q9i45wD++8GNOOHqh8AYQ8/AKGY31+Opr73HTPv2IwxB97StAQKAs7hgz6ZTpo/lhys24V9s\n5sC3tVlaZEMujYfXdeKZzftMDU88r/cea2nMF9+0En96cadj6vkz+bXaWhuRLzIsX2f4KnoGRzGp\nLoMPvnUOjp7dbD5HAHjwtd1gjOHh9ZZf47NnLMS8aQ0gMnrEm7hAF6acL529yEw7pSGLzTz0vaN3\nCPe/2oEnN+0zBZoou4hOcyOez19e6UDvYB5Pbdrn8D119o0gl07h0JZGM9oMAJ61Nfov/cd7AQDz\npxnX2t4ziHyx5DAVikbcXjce2dCJf7eF+f/i029Dhn83G3cfQC8fgyMGLH/0pLlmZOf8lkbTyjA0\nWsTtzxl164T5U/HdC08AYHzL9oi/T9y0EgBw+IxJps9WzLABACu3dOGel4wgEDEWRrQH9qCf3656\nE+2d/WWWjzjIBCdJLEsAtDPGtgAAEd0B4HwA63zPipB/O/do/OzxLTiDzw1mh4jwhfccgR8/apke\nDudjDARXffA4DOeL+OurRsVuyKZxaEsjnl52pilUjjukGW6EhnPGohn49w8cg2/fZ6jUd6027M7C\nzwMYsfC3XbYEn7r5OXzwR08BAM4+ZibmTm3Ak/9mNXifOq0N//nnddi5fwinXWvY399+eKt5/JK3\nt+G3z72J6x/YYGoNAPDptzvNFMJk9KNH2vEjPgZm2fuOxpGzJptO9i/f+bLDfwIYGs5/ffg48//5\nLY1YurAFK7d0m73Jh//lnThi5mQzzTnHzcYfXtyJ065dYQ6Wmzu1AW1coN5++VJc/POV+NkTW3Dr\ns284zHV2zfLwGU143WbKeM9RM/DDi08yNYMF05tw78u7sODKvzrKnCLg0NZGnLqgBatsPeIzv/s4\ntu4bwEdPmot506yOxKS68s/tincuNHvigFi/xWhkRCOeS6fw28uXmmlOOWwaXtnRi0/+fBUAYMmC\nFlNT/OnfnYLDv26U89ktXWbD+qETDsGPLj7JzOMt8wyT0z/+eo25b0lbC378yZPN/5u5Tf9Hj7Rj\nX/+IqbHMndpgBgWkiXDH89txx/PbcdKhRofgoyfNxZfOPtLM5+TDpuLXK990rDkEwHzfRIQlbS2m\nQBDTEwmOn2tortfdv6FMw2ttyuEHnzgRRITzTzwEP3qkvew6Zyyabs5LJ5zsf3Pjs440W699v7lt\n76zZfWDfeP8xpsAAjOd7wtWWWXlyXQbf/4RV9r0HhrG+ow//dPuLZljvZ05vw1fPPcq0WMyb1oD+\nkUJZmT+19DDMbK5HfTaFdR19uOGxdjzdvs/RIRHPWFgjLvzZs7jobfPRVJfBzVwjOttllo+DmtVU\nAMwFYPcI7+D7YiOdIrz6n+fg5kvf5nn8K+ceZTrbLl4y32HuAoApjVnc8LenmPbgu/7hNKRShLlT\nG8yPgIjw3NfPMs/56d+d7Mjjs2csxIvffK+pTgPAVR86zpFm8WEtjv8fXt+JUxe0OCLW0inCY195\nN46YaQk+0WMFjN7mv3+gXBG84GSnue6DLvMXYPmJpjbmHOW0818fPs4USIKvv/8YAMCKDZ04evZk\ntLU6/TanH9GK1qYcugZGsadvBM31GTy97Ezzgz3t8FYzCMEuULZe+34zKgkArnz/MQ6t84JT5psC\nBbAmFLXzly++A1uu/QCmNGRx++VL8bXzLF+ZCIA4zSaUzbyOcOb1lXOOcgibqz58nPsUbPz2eQ5N\n+FNLD3McX2B7LukU4dkrz8RbudAQiHEyAvu7FZy60FlP7Jr07c9tx6qt3Th1QYujMyLMpwDw4puG\nH8dehwDv6KOzjp6JS99u7b/9iqX49Nvb8K/vPRLnn+isI+kUmYOF7SyY3oTnv3G2qQFe/s6FZWm+\n8J4jHN/nYa3lvr+/fPEdDrP0O4+cUZbm1AUtjvw/8Tbn88ymCcv/5V2Off92rlEn7n15F/7EtYsv\nnrnIMbbqvONnlz2vR/71XWZ4+NUfNiJNv/PARlOgLJzRhKe+9h5T+Nn9mXc8vx03P7UVh7U24hef\neRuOn+usB3FAfjOaJhkiugDAeYyxz/L/PwXgVMbYF1zprgBwBQAceuihp2zbti3WcvYN5/HHF3bi\n/BMPMQWFm+F80Zw5thIe3dCJkw6d6nmd59/oxubOfry0fb/hTP3oW8rGqQjuf7UDRcbw3mNnmdNk\nCArFEjJpY0W6EmNlZj9B98AoeofyOKylsSzcemCkgJ89vhmdB0Zw2uGtOPe42WUCV7Cnbxh3r9mB\njy+eh5mT68uO9w3nsXJzFx5/fS8+vni+OV+aYLRQwrauAby8oxf7+kfwmdPbyu5JsGnPAXQNjGLp\nwnJhMJwvoj6bxjPt+3DioVMdDYOdB9buxncf2oj/+vBxOO3wVs+lB3qH8vjK717GZ05vw9sPLxdY\nALBuVx9WbunCGYumY9GsyWXHu/pH0NE7jBfe7MEH3jLH0YO2MzhawOt7+sueC2CEIw+PlnD/2g7M\nndaA0w+fXvauAGBHzyA+esMzSBPh3i+eXvYedvcO456XduKu1duxdGErrnz/MWVa2c79Q7j3JcNX\n0D9cwCmHTXNE4amwf3AU+/pHsL1nCCu3dOHLZx9ZVm8GRgroPDCCe17aiY8vnm/6a+x09A6hb6iA\nQqmEedMazY6fnafb92FKQxZrd/aiuSGL9x0/u+xdFksMW/b2Y9aUevQMjHoKrFKJYWvXAJ54fS/q\nMml8ko/bcdM9MIrHNnbixPlTzVkTAKPe/fyJLegbzuPo2c04dWELpjXmygJWXtmxH398cSfee8ws\ndA2M4vQjppvmyyggojWMscVKaWtYqJwG4D8ZY+fy/68EAMbYtbJzFi9ezFavXi07rNFoNBoPwgiV\nWjZ/PQ9gEREtIKIcgIsA3DvOZdJoNJoJTc066hljBSL6AoAHAaQB3MIYe22ci6XRaDQTmpoVKgDA\nGPsrgL8GJtRoNBpNLNSy+Uuj0Wg0CUMLFY1Go9FEhhYqGo1Go4kMLVQ0Go1GExlaqGg0Go0mMmp2\n8ONYIKIDADb6JJkCoNfnOAAcCuBNn+MqecSZJqi8UV2r1sobVZpaKy+g60S109RaeYHgMh/FGCuf\n2sELxtiE+QOwOuD4TQp57I0gjzjT+JY3qmvVWnkjvO+aKq+uE7pOjKXMQW2n/U+bv5z8WSHN/oDj\nKnnEmSaovFFdq9bKG1WaWisvoOtEtdPUWnkBtTIrMdHMX6uZ4vw11cwjTnR5q0utlReovTLr8laf\noDKHuaeJpqnclJA84kSXt7rUWnmB2iuzLm/1CSqz8j1NKE1Fo9FoNNVlomkqGo1Go6kiE16oENEt\nRNRJRGtt+04gomeJ6FUi+jMRNfP9WSK6le9fL9Zw4cceI6KNRPQS/5vpdb2Yy5sjol/w/S8T0btt\n55zC97cT0Q/JazWpZJU3ruc7n4geJaJ1RPQaEf0z399CRMuJaBP/nWY750r+HDcS0bm2/XE94yjL\nXPXnHLa8RNTK0/cT0Y9deVX9GUdc3kTWYyJ6LxGt4c9yDRGdacsr3DNWDRM7WP8AvBPAyQDW2vY9\nD+BdfPvvAXyLb38SwB18uxHAGwDa+P+PAVicsPJ+HsAv+PZMAGsApPj/zwFYCoAA3A/gfQkvb1zP\ndw6Ak/n2ZACvAzgWwHcALOP7lwG4nm8fC+BlAHUAFgDYDCAd8zOOssxVf85jKG8TgHcA+EcAP3bl\nVfVnHHF5k1qPTwJwCN8+HsDOsT7jCa+pMMaeANDt2n0kgCf49nIAfyOSA2giogyABgCjAPriKKcg\nZHmPBfAIP68TRtjgYiKaA6CZMbaSGbXmVwA+ktTyVqNcMhhjHYyxF/j2AQDrAcwFcD6AW3myW2E9\nr/NhdDRGGGNbAbQDWBLzM46kzNUoWxTlZYwNMMaeAjBszyeuZxxVeeNkDGV+kTG2i+9/DUADEdWN\n5RlPeKEi4TUYDx8APg5gPt++G8AAgA4Yo0//hzFmbzBv5SrtN6tl6pAgK+/LAD5MRBkiWgDgFH5s\nLoAdtvN38H1xEba8glifLxG1wejBrQIwizHWwQ/tBjCLb88FsN12mniW4/KMKyyzILbnrFheGbE/\n4wrLK0hiPbbzNwBeYIyNYAzPWAsVb/4ewOeIaA0M1XGU718CoAjgEBhmg38looX82N8yxo4DcAb/\n+1QCynsLjEqwGsAPADwDo/zjzVjKG+vzJaJJAH4P4EuMMYc2yntsiQubjKjMsT3nWnvGtfZ8gfBl\nJqLjAFwP4B/Gek0tVDxgjG1gjJ3DGDsFwO0wbM6A4VN5gDGW5+aZp8HNM4yxnfz3AIDfIl5zgmd5\nGWMFxtiXGWMnMsbOBzAVhm11J4B5tizm8X1JLW+sz5eIsjA+xN8wxv7Ad+/hpgBhdunk+3fCqU2J\nZxnrM46ozLE955DllRHbM46ovEmuxyCieQD+COASxpho80I/Yy1UPBARGUSUAvDvAH7KD70J4Ex+\nrAmG82oDN9dM5/uzAD4IYK0737jLS0SNvJwgovcCKDDG1nH1t4+IlnL1+xIA9yS1vHE+X/48bgaw\nnjH2PduhewFcyrcvhfW87gVwEbc/LwCwCMBzcT7jqMoc13MeQ3k9iesZR1XeJNdjIpoK4D4YTvyn\nReIxPWM/L/5E+IPRU+4AkIdherkMwD/D6CG/DuA6WINEJwH4HQyfwDoAX2VWtMcaAK/wY/8LHk0z\nzuVtgzEr83oADwM4zJbPYhgVejOAH4tzkljemJ/vO2CYBF4B8BL/ez+AVgArAGziZWuxnfMN/hw3\nwhYZE+MzjqTMcT3nMZb3DRgBH/28Hh0b1zOOqrxJrscwOncDtrQvAZg5lmesR9RrNBqNJjK0+Uuj\n0Wg0kaGFikaj0WgiQwsVjUaj0USGFioajUajiQwtVDQajUYTGVqoaDQJgYj+kYguCZG+jWyzP2s0\nSSAz3gXQaDTGwDjG2E+DU2o0yUYLFY0mIvjEfQ/AGOB2MowBbpcAOAbA92AMnt0H4NOMsQ4iegzG\nILN3ALidiCYD6GeM/Q8RnQhjpoFGGIPO/p4x1kNEp8CYIw0AHorp1jQaZbT5S6OJlqMA3MAYOwbG\nsgifB/AjABcwY66zWwBcY0ufY4wtZox915XPrwB8jf3/9u6fFcMwiuP49yQzBqtXIKzEC/AWSDLL\nG7Aom8xmiUVWm+nZjP4kmb0Aj2Q+hvt6UkrpcfwZvp/xdHd13dOvc19358qcAW6BnVY/BLYyc/Yn\nX0Ialp2KVOsx32cnnQDbdJceXbQp5yN0Y2sGTj8uEBFjwHhm9lrpCDhr85nGs7ujBuAYWK5/BWl4\nhopU6+PcoxfgLjPnP3n+9Yf3I/0qP39JtaYiYhAgK8AlMDmoRcRou7PiU5n5DDxFxFIrrQG9zOwD\n/YhYbPXV+u1L32OoSLUegM2IuAcmaOcpwF5EXNMdzC98YZ11YD8iboA5YLfVN4CDiLiiuzNc+lec\nUiwVaX9/nWfm9B9vRfozdiqSpDJ2KpKkMnYqkqQyhookqYyhIkkqY6hIksoYKpKkMoaKJKnMGyOn\nATTAOcE6AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A zoom on the last few years shows more clearly that the peaks are situated in winter."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXl8XPV57/9+ZtMuWZIl7wvGZjGbiY1xE5omkAChSSEt\nodAm0JQbkkLT5vb23kJ6e8lyaSHN3l9CS4ITQnIDNE0CSYHUgSQECAZDAC94w8Z412ptI836/P44\n50gjeSSNNKOZ0czzfr3mpePvnHPmO8cz8znP8n0eUVUMwzAMIxN8hZ6AYRiGMXsw0TAMwzAyxkTD\nMAzDyBgTDcMwDCNjTDQMwzCMjDHRMAzDMDLGRMMwDMPIGBMNwzAMI2NMNAzDMIyMCRR6Arlm7ty5\nunz58kJPwzAMY1bx4osvdqhqy2T7lZxoLF++nC1bthR6GoZhGLMKETmQyX7mnjIMwzAyxkTDMAzD\nyJiMRUNE/CLyWxH5qfvvJhHZJCJ73L+NKfveJiJ7RWSXiFyWMr5WRLa6z31VRMQdrxCRB93xzSKy\nPOWYG9zX2CMiN+TiTRuGYRjTYyqWxl8Dr6X8+1bgCVVdBTzh/hsRWQ1cC5wFXA58XUT87jF3Ax8B\nVrmPy93xG4FuVV0JfAm4yz1XE3A7cCGwHrg9VZwMwzCM/JKRaIjIYuD3gW+mDF8J3Odu3wdclTL+\ngKpGVHU/sBdYLyILgHpVfU6dJh7fGXOMd64fAJe4VshlwCZV7VLVbmATI0JjGIZh5JlMLY0vA/8L\nSKaMzVPVo+72MWCeu70IOJiy3yF3bJG7PXZ81DGqGgd6gOYJzjUKEblJRLaIyJb29vYM35JhGIYx\nVSYVDRF5L9Cmqi+Ot49rORSsBaCq3qOq61R1XUvLpGnGhmEYxjTJxNJ4G/AHIvIG8ABwsYh8Fzju\nupxw/7a5+x8GlqQcv9gdO+xujx0fdYyIBIAGoHOCcxmGYZQlm/d1svt4X8Fef1LRUNXbVHWxqi7H\nCXA/qaofBB4BvGymG4CH3e1HgGvdjKhTcALez7uurF4R2eDGK64fc4x3rqvd11DgZ8ClItLoBsAv\ndccMwzDKklt/uJWv/HxPwV4/mxXhdwIPiciNwAHgGgBV3S4iDwE7gDhwi6om3GNuBr4NVAGPuQ+A\ne4H7RWQv0IUjTqhql4h8FnjB3e8zqtqVxZwNwzBmNR39EcLReMFef0qioaq/BH7pbncCl4yz3x3A\nHWnGtwBnpxkfAj4wzrk2AhunMk/DMIxSJBpP0jcUZyiWnHznGcJWhBuGYcwSToSjAAzFE5PsOXOY\naBiGYcwSujzRMEvDMAzDmIyuAUc0IjGzNAzDMIxJ8ERjyETDMAzDmIxuTzTi5p4yDMMwJqFrIAaY\npWEYhmFkQNdABHBEw1n/nH9MNAzDMGYJXWHH0kgqxBImGoZhGMYEeDENKNxaDRMNwzCMWUJXqmgU\nKK5homEYhjFL6BqIEvAJAJECLfAz0TAMw5gFqCpd4Sjz6isBszQMwzCMCQhHE0TjSRbO8UTDLA3D\nMAxjHLx4xsI5VYAFwg3DMIwJ8ERjQYMrGuaeMgzDMMbDq3Bb9O4pEakUkedF5BUR2S4in3bHPyUi\nh0XkZfdxRcoxt4nIXhHZJSKXpYyvFZGt7nNfddu+4raGfdAd3ywiy1OOuUFE9riPGzAMwyhDvF4a\n8wscCM+kc18EuFhV+0UkCDwtIl6b1i+p6udTdxaR1TjtWs8CFgI/F5HT3JavdwMfATYDjwKX47R8\nvRHoVtWVInItcBfwxyLSBNwOrAMUeFFEHlHV7uzetmEYxuzCsywaa0Luv4vUPaUO/e4/g+5jovXr\nVwIPqGpEVfcDe4H1IrIAqFfV59QpmvId4KqUY+5zt38AXOJaIZcBm1S1yxWKTThCYxiGUVbEEo5o\n1FcGgcJVus0opiEifhF5GWjD+RHf7D71cRF5VUQ2ikijO7YIOJhy+CF3bJG7PXZ81DGqGgd6gOYJ\nzjV2fjeJyBYR2dLe3p7JWzIMw5hVRF2RqK9yHESFasSUkWioakJV1wCLcayGs3FcTSuANcBR4Asz\nNsvJ53ePqq5T1XUtLS2FmoZhGMaMEXFFo86zNIpZNDxU9QTwC+ByVT3uikkS+Aaw3t3tMLAk5bDF\n7thhd3vs+KhjRCQANACdE5zLMAyjrPAsjeqgH58Ud/ZUi4jMcbergHcDO90Yhcf7gW3u9iPAtW5G\n1CnAKuB5VT0K9IrIBjdecT3wcMoxXmbU1cCTbtzjZ8ClItLour8udccMwzDKimgiSdAv+HxCZdBf\n1NlTC4D7RMSPIzIPqepPReR+EVmDExR/A/gogKpuF5GHgB1AHLjFzZwCuBn4NlCFkzXlZWHdC9wv\nInuBLpzsK1S1S0Q+C7zg7vcZVe3K4v0ahmHMSmLxJCG/c59fGfQXbEX4pKKhqq8C56cZ/9AEx9wB\n3JFmfAtwdprxIeAD45xrI7BxsnkahmGUMtFEklDAFY2Ar3jdU4ZhGEbhicZTRCPoHw6M5xsTDcMw\njFlANJ4k6LqnKgoY0zDRMAzDmAVEUt1TQZ+JhmEYhjE+0dRAeMBvnfsMwzCM8YklklSkWhrWT8Mw\nDMMYj7GBcHNPGYZhGOOSGgh3RMPcU4ZhGMY4RC0QbhiGYWRKaiC8ImDuKcMwDGMCRlsa/uLup2EY\nhmEUltGBcB/ReJJkcqJ+eDODiYZhGMYsIDqmYCFQkFIiJhqGYRizgLEFC6EwjZhMNAzDMGYB6SyN\nQizwM9EwDMOYBcTGBMKhMN37TDQMwzCKnGRSiSV0VCAcitQ9JSKVIvK8iLwiIttF5NPueJOIbBKR\nPe7fxpRjbhORvSKyS0QuSxlfKyJb3ee+6rZ9xW0N+6A7vllElqccc4P7GntE5AaMvPDywRPsONJb\n6GkYhoETzwCGV4R74hFLFKelEQEuVtXzgDXA5SKyAbgVeEJVVwFPuP9GRFbjtGs9C7gc+LrbKhbg\nbuAjOH3DV7nPA9wIdKvqSuBLwF3uuZqA24ELgfXA7aniZMwc//Djbfzjo68VehqGYTAiGl7BQk88\nilI01KHf/WfQfShwJXCfO34fcJW7fSXwgKpGVHU/sBdYLyILgHpVfU5VFfjOmGO8c/0AuMS1Qi4D\nNqlql6p2A5sYERpjBukaiHK8d6jQ0zAMAycIDiMWhica0XiRrtMQEb+IvAy04fyIbwbmqepRd5dj\nwDx3exFwMOXwQ+7YInd77PioY1Q1DvQAzROcy5hhToSjtPdHCj0NY5bx3L5OPvf4zkJPo+QYFg2/\nJxoCFKmlAaCqCVVdAyzGsRrOHvO84lgfBUFEbhKRLSKypb29vVDTKBmi8SQD0QQnwjEiBarZb8xO\nHt92jG/8el+hp1FyeOIw1tIoWtHwUNUTwC9wXETHXZcT7t82d7fDwJKUwxa7Y4fd7bHjo44RkQDQ\nAHROcK6x87pHVdep6rqWlpapvCUjDScGo8Pbnf3RCfY0jNGEo3FiCbWbjRzjWRpB/1jRKEL3lIi0\niMgcd7sKeDewE3gE8LKZbgAedrcfAa51M6JOwQl4P++6snpFZIMbr7h+zDHeua4GnnStl58Bl4pI\noxsAv9QdM2aQnnBseLutz1xURuaEo45YhCMmGrkkMk5MoxCWRiCDfRYA97kZUD7gIVX9qYj8BnhI\nRG4EDgDXAKjqdhF5CNgBxIFbVNX7BN0MfBuoAh5zHwD3AveLyF6gCyf7ClXtEpHPAi+4+31GVbuy\necPG5JwYHBGNdhMNYwp4ojEQjdNYEyrwbEqH6EnuqcLFNCYVDVV9FTg/zXgncMk4x9wB3JFmfAtw\ndprxIeAD45xrI7BxsnkauaN7YMQlZaJhTIVwNA7AgFkaOcVzT1Wc5J4q8piGUR6YpWFMl8EUS8PI\nHeMFwqPFGNMwyg8vphEK+Gjvt7UaRuZYTGNmGBsI91Jv42ZpGMXAicEoAZ+wrKnaLA1jSoTN0pgR\nTlrcFyjydRpGedEdjjGnOkhrfYWJhjElRmIaJhq5ZGwgPOAr4pRbo/zoCcdoqArSWldpq8KNKTFi\naZh7KpdExlkRHrXOfUYxcGIwypzqEC11jqXhLJkxjIlJJHX4xy1slkZOiY0pWCgiBP1i7imjOOge\niDGnKkhLbQVDsST99gNgZMBgSm8Hc0/llrGBcG87njT3lFEE9AzGaKgO0lJXAdiqcCMzUq0Lc0/l\nlrGBcHBEw9xTRlFwIhylsTpEc62zotfqTxmZEE4RirBlT+WU9KJh7imjCPAq3M6pClId8voQ212j\nMTmpomErwnNLNJFEBAI+GR4L+n0mGkbh8SrczqkOEvI7olEIE7iYeGZvB3/z0MskC+A/nk0MxlLc\nUxbTyCnRRJKQ34fbIRvwRMNiGkaB8VaDN1SHqHCb10fKWDRUlc/+dAc/fOkwO45az/SJ8CwNv09s\ncV+OicaTw+m2HuaeMooCr+5UY3VwOL2vnHsjPL23g53H+gD41W5r8DURnktqbm1olKvKyJ5oPDkq\nngHmnjKKBK/CbUNVcPhDWs7uqXue2kdLXQWnz6sz0ZgEzz01t7bC0rRzzPiiYe4po8B0uJlSLXUV\nVAScmEa5uqee3tPBr/d0cONFp3DJma28dKCb3qHY5AeWKZ51Mbe2wgoW5phoIp1omHvKKAK8WlPN\nNRVl7Z6KxBP8n0e2sbSpmj9763J+77QW4knl2b2dhZ5a0TKYIhoW08gt6WMaRbpOQ0SWiMgvRGSH\niGwXkb92xz8lIodF5GX3cUXKMbeJyF4R2SUil6WMrxWRre5zX3XbvuK2hn3QHd8sIstTjrlBRPa4\njxswZpS2viGaakKEAr7hO5tIrPwsjQeeP8i+9gE+/QdnURn085ZljYT8Pn57sLvQUytavJhGS10F\n4WjCys/kkFgiOWo1ODhrNgqxIjyTdq9x4H+o6ksiUge8KCKb3Oe+pKqfT91ZRFbjtGs9C1gI/FxE\nTnNbvt4NfATYDDwKXI7T8vVGoFtVV4rItcBdwB+LSBNwO7AOUPe1H1FV++bOEO19EVpqnZXgAZ/g\nk5EKm+XEtsM9tNZV8M4zWgHnrq6+KkDfkN1Bj0c4FicUcK6TV4eqMugv9LRKgkiamEbAV6TuKVU9\nqqovudt9wGvAogkOuRJ4QFUjqrof2AusF5EFQL2qPqfOLch3gKtSjrnP3f4BcIlrhVwGbFLVLlco\nNuEIjTFDtPVFaK13RENEqAj4yzKm0dYXYX5D5aixmoqAFeKbgMFoguqQn5qQcy9qazVyx3iB8KJ0\nT6Xiuo3Ox7EUAD4uIq+KyEYRaXTHFgEHUw475I4tcrfHjo86RlXjQA/QPMG5jBki1dIAxwSOlOGK\n8OO9Q7TWVYwaqw4F6LcA77iEowmqg/7hSgKWdps7oonkcIzRIxgo8pRbEakF/gP4hKr24riaVgBr\ngKPAF2ZkhpnN7SYR2SIiW9rbLS1yuqiqIxr1Iz+WFQFfWbqn2vsitNSNtjRqK/xWU2kCBqMJqkJ+\naiocS8PSbnNHukB4qJhTbkUkiCMY31PVHwKo6nFVTahqEvgGsN7d/TCwJOXwxe7YYXd77PioY0Qk\nADQAnROcaxSqeo+qrlPVdS0tLZm8JSMNvYNxoonkKEujIugru0B4LJGkcyCa1tIwl8v4DETjVIcC\nw6JhAps70gXCg34pzh7hbmzhXuA1Vf1iyviClN3eD2xztx8BrnUzok4BVgHPq+pRoFdENrjnvB54\nOOUYLzPqauBJN+7xM+BSEWl03V+XumPGDNDWNwRAa/3IHXY5xjQ63G6FrfWjRaO2ImAlvycgPBzT\ncNxTVrQwd6SLaQT8PqIFsDQyyZ56G/AhYKuIvOyOfRK4TkTW4GQ1vQF8FEBVt4vIQ8AOnMyrW9zM\nKYCbgW8DVThZU4+54/cC94vIXqALJ/sKVe0Skc8CL7j7fUZVu6b3Vo3J8NZojIpp+H1lJxptvc51\nmDfGPVUd8pulMQGD0QRza0NUh8zSyDXpRCNUoDIik4qGqj4NSJqnHp3gmDuAO9KMbwHOTjM+BHxg\nnHNtBDZONk8je7xmS6l32BVBX9kt7kt3HcDJnjLRGJ9wNE51qJqaCsfSsKSB3GErwo2iZNjSqBsd\nCC83S+N4r+umqxubcuu3RWsTEB4TCDdLI3cMxZJUBkavebGChUbBae+PUBn0UVcxYoCGyjCm0dYX\nQcSp1ppKdShA3F20ZpxMeMw6Dcueyh2ReGK4VYFHwM2eyvdNjImGMUxb7xAtdRWjGr1UBAqzgKiQ\ntPcN0VwTIjAmW6V2+A7a3C7pcBb3BagM+gj5ffQMWnHHXJBIKrGEnrROI+R3vqf5LiViomEM094f\nOckl47inyutHsq335OsADC9as7jGycQTSaKJJNUhPyJCY02QLustnxO8m7axJVm8FNx8u6hMNIxh\n2nojJ7lknBXh5WVppJZSScWzNKyC68mE3aoBnrA21VTQNWCikQuG3Gt70opwTzTiZmkYBaKjPzIq\nCA7OOo1yWxHe1ndyCRGA6gqrqTQe3g+bdzfcXBOi00QjJ3gxtIqxgXCvSZpZGkYhiCeSdIdjNNeM\nFY3yqj2VSCod/dG07ilbtDY+njXqpYU21YTM0sgRnnu4ckwgPOjzYhomGkYB6Ao7X/C5J1ka5ZVy\n2zUQJZHUkywuYDiV1CyNkxm5GzbRyDVDsXEsDXNPGYWko88VjZrRMQ2vYGG5rE3wfujm1qYRDa/k\nt2VPnYR3N+z9sDXXhOiPxMsuiWImGLm2J1e5BXNPGQWic8Bt8zrmx7Ii6EeVglTTLATedWgaI57A\n8EpnszROxsvw8dYSNLkJFd0DlnabLZFxsqe8lFvLnjIKglek76TsKX959QnvdNNEm2vTiYZlT43H\nWPdUsyu6nggb02c4e2psTMNSbo1CMvJjOdbScE3gMolreO6pdJZGRcCH3yeELRB+EmMzfJrchAqL\na2RPJDZakD0Cw6JhMQ2jALT3Rwj5fdRXjq5h6X1QyyUY3jkQRQQaq08WDRGhOuS38hhpiIxZS+CJ\nrolG9oznngqae8ooJJ39UZprQ6NKiMBICmW5iEbXQITG6hB+X7rCzk4w3ArxnUy67Ckw0cgF4y3u\nC5l7yigknf2RtH58z91QTjGNdK4pj5oKv63TSEN0jHtqTlUQn5ho5IJxF/cVSDQyacJklDBf+fke\nzl3SQEd/NG2aqXd3Uy4xjc6ByUQjYIHwNETGZE/5fEJjta0KzwXjLe4LuO6paLGt0xCRJSLyCxHZ\nISLbReSv3fEmEdkkInvcv40px9wmIntFZJeIXJYyvlZEtrrPfdVt+4rbGvZBd3yziCxPOeYG9zX2\niMgNGDmjeyDKl5/YzTee2udYGjUni0b5uaeiw5k/6aixPuFpSbeWoKkmZEULc8B4i/s891QxrgiP\nA/9DVVcDG4BbRGQ1cCvwhKquAp5w/4373LXAWcDlwNdFxHu3dwMfwekbvsp9HuBGoFtVVwJfAu5y\nz9UE3A5cCKwHbk8VJyM7nnm9A1V48UC3a2lM4J4qk6KFXZNaGuaeSod3UxEaKxpmaWSNJ8gnd+4r\n0piGqh5V1Zfc7T7gNWARcCVwn7vbfcBV7vaVwAOqGlHV/cBeYL2ILADqVfU5dZYXf2fMMd65fgBc\n4lohlwGbVLVLVbuBTYwIjZElv97dAThf+GgiObF7KlH6P5SJpNIdjp6UdpyKuafSM1x7KqUHSXNt\nyNZp5IBIPEnQLyclZ3grwou6jIjrNjof2AzMU9Wj7lPHgHnu9iLgYMphh9yxRe722PFRx6hqHOgB\nmic4l5ElqsrTezvYsKIJL2EqbSDc9aOWg6XRHY6iyoTuqepQwCyNNEQTCQI+GdW4qqkmRHfYVoRn\nSyRNq1cYSbkt2jIiIlIL/AfwCVXtTX3OtRwKVmdCRG4SkS0isqW9vb1Q05hV7OsY4PCJQd533kJO\nn1cHnLywD1JXhJe+aEy0sM+jJuS3lNs0RGLJk1JCm2sq6A5HC9LHupQYStPqFSDoK1L3FICIBHEE\n43uq+kN3+LjrcsL92+aOHwaWpBy+2B077G6PHR91jIgEgAagc4JzjUJV71HVdaq6rqWlJZO3VPY8\nu9dxTV20ci4bVjQDJ5cQAaf2FJRH9tTwqvhJsqfC0QTJPLfYLHYi8eTwZ8VjaVM1qnCwK1ygWZUG\njiCnsTRckY4X24pwN7ZwL/Caqn4x5alHAC+b6Qbg4ZTxa92MqFNwAt7Pu66sXhHZ4J7z+jHHeOe6\nGnjStV5+BlwqIo1uAPxSd8zIkh1He5lTHWRpUzVXrlnIOYsaWN5cc9J+IyvCS98l41kaE8c03KKF\nZm2MIhJPnGRprGhxPk+vtw8UYkolQ2Q8S6NA7qlM1mm8DfgQsFVEXnbHPgncCTwkIjcCB4BrAFR1\nu4g8BOzAyby6RVW9X5ybgW8DVcBj7gMcUbpfRPYCXTjZV6hql4h8FnjB3e8zqto1zfdqpLDzWB+n\nz6tDRDh/aSM/+fhFafcrp5TbiSrcelS5d9NDsSRp+jSVLZF48qTsnhUttQDsa+9nJORpTJWh8SyN\nArmnJhUNVX0aSF9TAS4Z55g7gDvSjG8Bzk4zPgR8YJxzbQQ2TjZPI3OSSWXXsT6uWbdk0n3LqfaU\n555qrA6Ou4/35S23FriTEY2fHNNoqAoyt7aC19v7CzSr0iCdFQfOAsqAT4ozpmGUFoe6BwlHE5w+\nv27SfcstED6nOjgqA2gsI9lkpe+umwqRePq74RUtNewz91RWROLJk1aDewT8YlVujZnntWNO8tsZ\nGYiGiBAK+MoiptE7FKO+cnwrA8pLRKfCeHfDp7bUmqWRJZFYIq0gg7PAzywNY8bZdawPgNPmTS4a\n4PYJL4N1GgORxHCjpfEYtjRMNEYRiSXTBmtPbamhOxyzleFZEEnj+vMImWgY+WDnsV6WNVdP+gPp\nURHwl4UPfyASp7Yi/R2dx0hZldK3vKbCeO6pU0cFw43p4LinJrA0inlFuFEaeJlTmVI2lkY0Prml\nMVxWpfSvx1SIxpOjSoh4jKTdmmhMl6FYetcfeDENszSMGSSRVA50hlnZWpvxMRVlEtPoj2QiGuVV\nwDFTxltLsLixmuqQnwdeOEjvkJUUmQ7Owsnx3VNFW0bEKA06ByIkksr8hswXGYQCvrJYER6OJKgJ\nTeKesphGWsbzu/t9wueuPpeth3r44Dc3EzcLbcpMFggvuhXhRmnR1ussYGudwso0x9Io/S/7QAaW\nxkj2VOlbXlNhvJgGwHvPXcg/vHc1rx7qYV+Hpd9OlaEJUm6DAXNPGTNMW98QAPPqxy+VMZaKgL/k\nfyRVlYFonFrLnpoWkQn87gAXLG8CnHiakTnxRJJEUie0NMw9Zcwoxz1Lo34KlkbQN9w9rFQZjCVI\nKhnHNMrBXTcVoomTy4ikcmprDX6fsNtEY0qM9AdPf20rA36G8pzJZ6JRZnjuqZYJivKNpTKY/w9m\nvul3W7hOGtMoowKOmZJIKrHE+HfD4IjtKXNr2HXcRGMqeKIxXsptZQFu6Ew0yozjfUM01YQmvCsc\nS1XQX/LumLDbWCnTlFvLnhrBs7rGy/DxOH1eHbtNNKaEd7M2nqVRFfIzaJaGMZO09UZorcvcygBH\nNAajpX1nPWxpTCIaAb8Pn1hMIxXP6poopgFOBYI3u8LWxGoKRCYRZHNPGTNOW98Q86YQz4DC3M3k\nmwFXNCYLhEN5JAZMhRG/+8SuvdPn16EKe47bQr9M8T5n6dq9gtMkzdxTxowyHUujMlgGouHe/VZP\nEtMA567PAuEjRCcJ1np4VZUtrpE5niCMZ2lUFSDeaKJRRiSSSnt/ZOqWRtBPNO6k/pUqA25MIzNL\nozzWrWSKdzc8WZxsaVM1lUHfcMFMY3IiwzGNiQLhRSYaIrJRRNpEZFvK2KdE5LCIvOw+rkh57jYR\n2Ssiu0TkspTxtSKy1X3uq27LV9y2sA+645tFZHnKMTeIyB734bWDNaaJtxq8dQprNACqQs7HpJQz\nqAYyjGmA554y0fAYvhueRDT8PmHF3Fr2tpl7KlNGsqfGtzTiSc3rAr9MLI1vA5enGf+Sqq5xH48C\niMhqnFatZ7nHfF1EPIm8G/gITs/wVSnnvBHoVtWVwJeAu9xzNQG3AxcC64Hb3T7hxjSZzmpwGGlx\nWsouqkwD4UDZ9BfJlJFg7eSuvZWtJhpTYWhSS8M/ar98MKloqOpTOH27M+FK4AFVjajqfmAvsF5E\nFgD1qvqcqirwHeCqlGPuc7d/AFziWiGXAZtUtUtVu4FNpBcvI0O81eBTtTS8D2YpZ1B57qnJ1mlA\n+VT9zZRMs6fAEY3DJwYtgypDJl3cF/S8AMVlaYzHx0XkVdd95VkAi4CDKfsccscWudtjx0cdo6px\noAdonuBcxjTxLI3pZE9BibunonEqAr4JW716VATyX7qhmJnshy0Vr7qytYDNjMky04rS0hiHu4EV\nwBrgKPCFnM1oGojITSKyRUS2tLe3F3IqRU1739RXg0N5uKecBkyZN6UyS2MEL3sqkwWjnmiYiyoz\nPDEYL6Yxa0RDVY+rakJVk8A3cGIOAIeBJSm7LnbHDrvbY8dHHSMiAaAB6JzgXOnmc4+qrlPVdS0t\nLdN5S2VBfzROKOCb0mpwSBGNknZPTV7h1qMiaDGNVDJdpwGwvNmpQWWikRmZxzSK3D3lxig83g94\nmVWPANe6GVGn4AS8n1fVo0CviGxw4xXXAw+nHONlRl0NPOnGPX4GXCoija7761J3zJgmQ9HEsABM\nhcpQ6Vsa/ZFERms0wCmPbtlTI0QmKXWRSijgY1lTtYlGhng3alXjfDYL4QWY9NZKRL4PvAOYKyKH\ncDKa3iEiawAF3gA+CqCq20XkIWAHEAduUVXv3dyMk4lVBTzmPgDuBe4Xkb04Afdr3XN1ichngRfc\n/T6jqpkG5I00hKOZ/zCmUlUAEzjfTMk9VQa1uKbCZKUuxnJqay172/v52fZjLGmsZvXC+pmc3qwm\nHEsQ8Mm43oGRQHgRiYaqXpdm+N4J9r8DuCPN+Bbg7DTjQ8AHxjnXRmDjZHM0MiMcS4x7xzIR5RDT\nCEfjzKmYdgp7AAAgAElEQVQOZbRvRZl0MsyUqbinwIlrbNpxnI/e/yLnLW7g4b+8aCanN6sZjE78\nnZ01MQ1jdjJd95T3oR2Mlu4PZf+UAuEW00gl0zIiHhcsb0QE1iyZwyuHejjUHZ7J6c1qwtH4hN6B\nygLc0JlolBHTdU8V4oOZbwamENOw7KnRDJcRySBdGeDiM+ax49OX85Vr1wDw+LZjMza32c5gLEl1\naPybGc89lc/Po4lGGeG4pzK7m06lXGIamWZPhaz21Cgi8SQhvw+fTzI+pirkZ1lzDWctrOfRrUdn\ncHazm8FofELvQCFcxyYaZYTjnpr6f3nQL/h9UrIpt5n2B/fwFvc5SX5GJJbM2DU1livOWcBLb57g\neO9QjmdVGkzmHbCYhjGjhGPxCU3d8RARpxFTiVoaQ7FkRv3BPbwsIbM2HCLxRMaZU2O5YHkTADut\n8m1awhkHws09ZcwAk2ViTEQp99QYKVaYeUwDTDQ8hmLJjDOnxrK0qRqAg10WDE/H4CSWht8nhPw+\nc08ZM8PgNLOnwCmPPlSi7qnhsugZWmHDfcItgwpwMnwyFdyxtNZVEAr4TDTGIRPvQEWee2qYaJQJ\nqko4Nr3sKaCk3VN9Q45o1FcFM9p/WDQsgwqAgWhiWm5PAJ9PWNxYxUFLu03LYDQx7IIaj6pgftsP\nm2iUCZF4EtXxyxFMRimLRu9QDIC6ysyzpwCrdOsSjkzf0gBY0ljNm2ZppCWTNPnKoD+vSSomGmXC\ncA2babqn8v3BzCd9rmjUV2ZqabgxDbM0gOwsDXDiGge7BnM4o9JAVRnMwDvgtHy1QLiRY8KulTBt\n91Qo/w3s80XvoOOeytTSGMmeKs3rMVXC0XhGzavGY0lTFT2DMXoGYzmc1exnKJaZdyDfXgATjTJh\n0O2UNp3FfVAe7qkpxzQsewpwV9NnmK6cDsugSo/X3bB6Eu9ARTC/N3QmGmWCVzdqsg/geJS2aDhf\nzqk0YQITDY9sLY3FjSYa6Rgc9g5M/LmsCvoZyuNn0USjTAgPWxrTjGmE/CVbsLB3MEZdRQB/hmUw\nPEvDKt1CMun43adrwQIsbXZFwzKoRjFZLw2PymB+0+FNNMoEL6aRTfZUqcY0+obiGbumwNZppDIU\nT6BKVpZGfWWQhqqgZVCNIRzNLA5ZGfQzZCm3Rq4ZyvADOB6ee6oU6y31DsUyDoKDZU+lMhBxP1dZ\nxDTAiWsc6DTRSCWcoaWR7xu6SUVDRDaKSJuIbEsZaxKRTSKyx/3bmPLcbSKyV0R2ichlKeNrRWSr\n+9xX3bavuK1hH3THN4vI8pRjbnBfY4+IeC1hjWkQzjLltirkJ5FUYonSE42+oVjG6bZgtadS8dye\n2VgaAKsX1LPtcE9J3pRMl8GYGwifxPVXjOs0vg1cPmbsVuAJVV0FPOH+GxFZjdOu9Sz3mK+LiPdp\nuhv4CE7f8FUp57wR6FbVlcCXgLvcczXhtJa9EFgP3J4qTsbUyNY9Vco9NXoH41O0NMw95TFsaWQR\n0wA4Z3ED3eEYh7ptvYbH1NxTRRQIV9WncHp3p3IlcJ+7fR9wVcr4A6oaUdX9wF5gvYgsAOpV9Tl1\nbiW+M+YY71w/AC5xrZDLgE2q2qWq3cAmThYvI0NG3FPTT7mF0uyp0ReJTSmmEbJA+DDDlkYWK8IB\nzl3cAMC2wz1Zz6lUyNQ7UBl02g8nkvmx0qYb05inql7nlGPAPHd7EXAwZb9D7tgid3vs+KhjVDUO\n9ADNE5zLmAbZu6ecj0oprgqfqqXhdagz95SzGhyytzROn19H0C+8aqIxTObZU14KeH6+m1kHwl3L\noaCOSBG5SUS2iMiW9vb2Qk6laAnH4oQCvozTSsdSiA5h+UBVpxzTCPh9BHxi7imculOQvaVREfBz\n+vw6th4y0fDI1D1VleeeGtMVjeOuywn3b5s7fhhYkrLfYnfssLs9dnzUMSISABqAzgnOdRKqeo+q\nrlPVdS0tLdN8S6XN0DT7g3uUakxjIJogqZmXEPGoCPgse4oUSyOYnaUBcM6iObx66IQFw128Kg6V\nk/Qq8fqE5+u7OV3ReATwspluAB5OGb/WzYg6BSfg/bzryuoVkQ1uvOL6Mcd457oaeNK1Xn4GXCoi\njW4A/FJ3zJgG4Sx6aUDK3UyJuaf6plhCxKMi6Df3FCM/bNVZWhrgxDV6h+KWeuvifWcn672e75av\nk94eiMj3gXcAc0XkEE5G053AQyJyI3AAuAZAVbeLyEPADiAO3KKq3ju5GScTqwp4zH0A3AvcLyJ7\ncQLu17rn6hKRzwIvuPt9RlXHBuSNDAnHpt+1D0b8qgMlJhpescKpuKfAccd4glPOeJ+HTBtYTcTp\n8+sAeL29n+Vza7I+32wnkwq3UISioarXjfPUJePsfwdwR5rxLcDZacaHgA+Mc66NwMbJ5mhMTrbu\nqQb3Try3xCqRTrWXhsfc2go6+qMzMaVZRTgSR2TERZINCxoqATjWO5T1uUqBTNsz51s0bEV4mZCt\ne2pOVQig5MpXT9c95YhGZCamNKsYiCaoCQVw1+pmRUttBT6B4z0mGpBZAyYYKbTpFd6caUw0yoRw\nlkXl6ioDiMCJEhONqfbS8DDRcAhH41lZsKkE/D5a6io4aqIBZP6dba2rAKC9Nz+fRxONMmEomph2\nWXRwejnXVwbpCZeWS2aqXfs8WmpDdA1E87agqlgZiCSoybLuVCrzG6rMPeUyGI1n9J1tcUWjrS8/\n181Eo0wIx+JZBcIB5lQHS8495Zn0U7Y06ipIKnQNlJaITpVcWhoA8+srOGaWBpC5e6oy6KehKshx\nszSMXJJpUG0iGqqCpeeeGooRCviGg4mZMrfWubsrdxfVQCS7BIuxLDBLY5ipfGdb6yrM0jByy2CW\n7ilwRSNcYqIxGJ+yawqgucZJDCh30XAsjdy5p+bVV9I3FGcgkp+gbjGTqaUBznVr6zNLw8gRqpr1\nOg2AOdWhkky5rZ+iawoc9xRAZ5mn3Q5EE1mXEEnF0m5HCEfjGWc8ttZV0GbuKSNXDESd7mqZ9sAe\nj4aqQMm5p7oHojS6VsNUMPeUw2A0kVNLY74nGmUe14glkvRH4sProyajpb6C9r5IXkqwmGiUAW3u\nXVtrfUVW55lTFaJnMFZStYE6+6PDrqapUF8ZIOT30V7mojEQjWfdgCmV+fUmGuC8/6TCosaqjPZv\nraskmkjmxX1solEGeFkV8+oqszrPnOogiaTSX0L+5s6BCM21UxdTEWFubYiOvvJ2T4UjiaxbvaYy\n39xTAMPNqBbNqc5o/9bhtNuZv4kx0SgDvKyKbC0Nb9V0qQTDk0mla2B6lgY4cY1ydk9F40miiWRO\nLY3KoJ851cGytzQOn3BFI0NLY55roeUjg8pEowzwAmSt9VlaGq5olMpajRODMZIKzbXTFI0yXxU+\nmKMGTGOZX19Z9qvCD7uWhpcYMBnDlkYeguEmGmVAW98QlUEfdVm6EeZUl1b9qU73B3867inAcU+V\nsWgMeGXRc2hpACxurGJ/R39OzznbOHwiTEtdRcbrhzwvgrmnjJxwvDdCa11l1kXlGkrMPeVVqZ07\nXfdUbQWd/VGSZVpKxFsN791M5IrzlzbyevsA3WW82v7IiSEWzcnMNQWOtVdbEeB4HmJBJhplQFvf\nEPOyjGeAEwgHODFYGl9m70evKQv3VDypJWN5TZVhv/sUftwyYe2yRgBePNCd0/POJg6fGMw4nuHR\nWuek3c40JhplQJtraWRLqVkanQOue6pmeoLakseMlWLkiCsaC+dk/9lK5bzFcwj6hS1lKhrJpDqi\nMUUxbslTKZGsRENE3hCRrSLysohscceaRGSTiOxx/zam7H+biOwVkV0iclnK+Fr3PHtF5KtuS1jc\ntrEPuuObRWR5NvMtV9r6IllnToGT2VIR8JXMqvCO/igi0Fg99TIikN+MlWLkyIlBKgI+mqbp3huP\nqpCfsxY2sOWN8mzU2TEQIRpPTlk0rlu/lA+sWzJDsxohF5bGO1V1jaquc/99K/CEqq4CnnD/jYis\nxmnlehZwOfB1EfGiPHcDH8HpKb7KfR7gRqBbVVcCXwLuysF8y4qBSJz+SDwnlgY4LqqSsTT6IzRW\nhwj4p/c18Fx++aouWmwc6Rli4ZyqnDRgGssFyxt59VBP3rrRFROHu6fn9rvq/EVcM0tEYyxXAve5\n2/cBV6WMP6CqEVXdD+wF1ovIAqBeVZ9TZ6nxd8Yc453rB8AlMhOf0BLGc53kIqYBzqrwUoppZHOX\n7AlxPoKPxciRE4M5d015rF3WRDSRZNvhnhk5fzEz1TUa+SZb0VDg5yLyoojc5I7NU9Wj7vYxYJ67\nvQg4mHLsIXdskbs9dnzUMaoaB3qA5iznXFZ4P2i5sjQaqkqnp8Z0S4h4VIX81FcGhsu0lBtHTgyy\nsGFmftjOXdwAwGvH+mbk/MXM8GrwIhWNbFflXKSqh0WkFdgkIjtTn1RVFZEZz0d0BesmgKVLl870\ny80qcm1pNFQHOdgVzsm5Ck3HQIQz59dndY559ZVl6Z6KJZK09UVYmOPMKY/59ZVUh/y83lZ+6zV+\n+2Y3S5qqplWyPx9kZWmo6mH3bxvwI2A9cNx1OeH+bXN3PwykOtwWu2OH3e2x46OOEZEA0AB0ppnH\nPaq6TlXXtbS0ZPOWSo62HFsaCxsqOdw9WBJFCzv7s3NPgSsaZRgIP9YzhGruM6c8fD5hRUsNr7eX\nl2gkk8rz+7u48JTidahMWzREpEZE6rxt4FJgG/AIcIO72w3Aw+72I8C1bkbUKTgB7+ddV1aviGxw\n4xXXjznGO9fVwJNaCr9WeaKtb4ifvHqUmpCf+qrclHpY0lRNXyQ+64PhsUSSnsHYtEuIeLTW56+P\nQTExkm47cy6UlS217GsfmLHzFyN72vrpDse48JSmQk9lXLL5JZkH/MiNSweA/6eqj4vIC8BDInIj\ncAC4BkBVt4vIQ8AOIA7coqpeasTNwLeBKuAx9wFwL3C/iOwFunCyr4wMGIoleP/XnqVzIMLnrj4v\nZxkuy5prAHizKzytPhTFgrfaeLolRDycjmlDJJOKz1c+ORpHemZeNE5tqeXHLx9hIBKnJoeVdIuZ\nzfsdR8qGFcVraUz7f0JV9wHnpRnvBC4Z55g7gDvSjG8Bzk4zPgR8YLpzLGd2Huvj8IlBvnLtGv7g\nvIU5O+/SJqdU84GuMOctmZOz8+YbL9aTTSAcYF5dBbGE0h2OZi1As4kjJxyX3EwFwgFWttYCsL9j\ngLMXNczY6xQD7X0RXj10gqf3dLCwoZLFRRoEh+wD4UaRsutYL+Csrs0lS5qcD/NsD4bv73DcHstd\ny2m6eJWDj/dOry/HbOXIiUEaq4NZtxCeiFNd0Xi9vb/kRePzP9vFg1uc5NL3n79oRta+5AoTjRJl\n57E+qoL+YcsgV1SHAsytreDNztktGnuO9+ETWNGSnWgML/DrG2I12WVizSZ2H+9j+dzsrt1kLGuu\nxieUfAaVqvLrPe2ct2QOixur+NMLizsD1ESjRNl1rI/T5tXOiJ99WXM1B7pmd4By9/F+ljXXZFx6\nejy8rLRyWqsxFEvwysEePvy25TP6OhUBP8uaa9hb4hlUb3SGOdIzxM3vXMkHNywr9HQmxQoWlii7\nj/dx+vy6GTn30qZqDnYNzsi588Xutj5Wue6PbGgtw1IiLx88QTSRZH0eMnxOball59HSXuD39N4O\nAC5aObfAM8kME40Sob0vMuwy6uiP0NEf5fQsF66Nx5Kmao70DBKNJ2fk/DNNJJ7gQGeY0+ZlL6oV\nAT+N1cGyKiXy/P4uRGDdspkXjbee2sy+jgEOdM5uy3YintnTwaI5VSxrzq0reaYw0SgB+oZiXPNv\nv+G6bzyHqrLLLb1weg5+FNOxtKkaVTjUPTvjGvs7BkgklVXzsrc0wCn38OYsTwyYCs/v7+KM+fU0\nTLM68FR415lOFaKfv9Y2yZ6zk0RSefb1Di5aObeog9+pmGjMclSV2364lf0dAxw+McjWwz0jojFD\n7invjmi2/lDuPu74yHNhaQCcMb+e14725uRcxU4skeTFA915W3y2tLma0+bV8vMdx/Pyevnm6b0d\n9A7FeecZs6eShYnGLOffntrHT189ykd/bwV+n/D4tmM8vbeDubUVw02Ccs2pLc4d+vYjs/OHcm+O\nMqc8Vi+op6M/WhZ9NbYe7mEwlshLPMPjXWfO4/k3uuiZ5VUI0vHQloM0Vge5+Ix5k+9cJJhozGIe\n23qUOx/byfvOW8itl5/Bhac08d3nDvDkzrYZzWxpqgmxqrWWzftnX5Oczfs6+c+tR1neXENFIDdr\nDM5c4MSOdsxSEZ0Kz7pB23yuWH7X6nkkksrj249OvvMs4kQ4yqbtx7lyzSJCgdnzUzx7ZlpGxBKT\nB5i7BqLc+sOtrFkyh3+++lxEhMvOmk/vUJxFc6q48aJTZnSOG1Y0s+WNrozmWiw8uvUof3zPc/QM\nxvmfl52es/OudkXjtRLP8gHHnbJ6QX3Ou/VNxPlL5nDmgnr+7al9JJKzv/RcPJHkW8/s52///RWi\niSRXr108+UFFhIlGkbHx6f2cffvP+MYkX5C7HtvJQCTO564+d3itwXvOns/8+ko+9QdnZb3+YDI2\nrGgmHE3MmiY5PYMxbn9kO+csauDpv3sn7zlnQc7O3VAdZNGcKnaUeFxjMJrgpQMnuGhVflNDRYRb\n3nkq+9oHeHzbsby+dq5RVW5/ZDuf/skOnt/fxXvOnj/rVrvb4r4i4mjPIJ//r11Uhfzc8ehrPL79\nGP989bmsaBnJ8jnWM8S//up1HtxykJvevmJUMLe1vpLnPpm27FfO8Xzaz+3r4vyljZPsXTiSSeWn\nW4/y/c1v0tkf4Vt/dsGMCOqZC2ZnMDyRVI71DmXUWvSFN7qIJpK89dT8F9N7z9kLWNGym3976nV+\n/9zcCX6++fazb/C9zW/ysd87lVvfc0ahpzMtTDSKgKFYgp+/dpz/t/lNEknlJ395EVsOdPGpR3Zw\n6Zee4m0r53LFOfOpDgX4+x9tJRxNcM26xXziXasKNueWugpWttayeX8nf/GOUws2D4+O/ggPbTnI\nnuP9zG+o5H3nLmT1wnrufXo/dzz6Go3VQT55xZkzdle3ekEdT+48Tjgapzo0O75WyaTyNw+9zMMv\nH+Gmt6/gry5ZRW2aarJHTgzyfx7eRltfhKBf8hoE9/D7hGvWLeHOx3bS1js0XPNrNvF6ez//9NhO\nLjmjlf+VQ/dovpkdn+4SRlX5xAMv8/j2Y/gE/uG9q1nSVM2SpmreeupcNj69n0e3HeXv/mMrAGct\nrOdrf/KWGa/7kwlvX9XC/c+9wb72/lHWUL450DnAh+59nje7wixoqKStL8K//up17vzDc/jaL/fy\nu6vmct+H189o6fILTmki+SRc/PlfcdsVZ3DlmkWTH1RA4okkdz62k4dfPsLaZY3c89Q+7nlqH611\nFXzxmjWjXFB3Pb6TX+1uJ+Dz8Y7TWwsmit6K6Wde7+D958+eOMCJcJQX3ujm7l/upTLg45/+8JxZ\nXUZfSq2n0bp163TLli2FnsaEdA9EqQj6qA4F+PFvD/OJB1/mb959Gje9fUVa14mqsv1IL7uP93HF\nOQtmPF6RKW19Q1z8+V9xwfJGvvXh9QWZw4lwlMu//GuG4gk2/tkFvGVpI90DUf7bd7bw4oFuAH76\n8Yvy4jd+cudxvvLEXrYf7uGBmzYMv2ax/H957Dnex83fe4k9bf18cMNSPnvl2fxmXyevHOzhR789\nxOvtA3zmyrP40wuX8crBE1z5tWe45Z2n8jfvPh2fULBFaMmksvb/buLiM+bxhWtO6spQlISjcX7/\nq0+zv2MAEfjiNecVreCJyIuqum6y/czSyDOHusNc8oVfEYknqQz6GIolWbuskVveuRL/OHcfIsLZ\nixqKLmDWWlfJJ961iv/7n6/xk1eO8L4c9u3IlM/8dAcd/RF+dPPbOGexc30aa0J84/p1XHvPb1iz\nZE7ertvFZ8xj3fIm3vcvT/Pn336BaCKJX4Q/WLOIv//9M9O6fgrBHY++Rnt/hH/70FouXT0PEeGt\np87lrafO5YMblvJX3/8tf/+jbfx6dwcvHzzB3NoQf/GO8T+f+cLnE966ci7Pvt6BqhZ0BXXXQJQn\nXjtORdBPNJ7kqLuwNppIssB1j15wShN3PraT/R0D/Mt157P+lCbmzUK32liK41M8CSJyOfAVwA98\nU1XvnInXCUfj/GpXOycGY1xxzgIaqnJfJuG+Z98gnlQ+8a5VDETizKkO8YF1iwv+hZwuN7x1Of+5\n9Sh/+++vsHBOFWuXNfLSm91s2nGcaDzJ8rk1nLe4AVVoqAqycE4VoYCPX+9p57Ftx/jv7zptWosQ\nk0nl/ucO8MOXDvPxi1cOC4ZHU02Ix//67eT7d6W+Msjdf7qWW3/4KuctnsNQLMEDL7xJc02Iv82x\nH7tvKMbTezqoCvk5Y3498xsm/0Ha29bHL3e18zfvPo3Lzpp/0vN1lUG+ecMF3PGfr7Hxmf1sWNHE\n3156etEI3kUr5/Kfrx5lX8fA8CLTfLP1UA8fvX8LR3pGL+ZcMbeGmooAL77RzfefPzg8/uG3LS/I\nDdVMUfTuKRHxA7uBdwOHgBeA61R1R7r9p+ueOtgV5l1fdCwAgKqgnz+5cCkf2rAMEacwXX1VgKqg\nf9w7nKFYgp7B2Lh3E/2ROL/zj0/wjjNa+Zfrzp/yHIuVzv4If3T3s7zZFWZlay27j/cT8AlBv4/B\nWGLUvj5xWqy2u53zzphfxwM3bWBOdYh97f08vbeDYz1DvNcNZHucCEf55a52VrbWEk0k+dQj23n1\nUA9vPbWZb334gpwt1JsJPnb/izz7egfP3HoxdZUn34gMROI8vu0YTTUhLjilacIf6FgiyWPbjvHs\n3g5++upR+iNxwLmu7zy9lbcsa+SUuTWcMreG5c01VIX8qCqReJJwNME/PfoaD79yhN/cevGkTaP6\nhmJp51tIDnaF+d3P/YLfXTWX/3nZ6Ww73MvbVjazrLmGaDxJIqlEE0l2HOnl1NYaWusqefXQCe7+\n5ev8clc7Zy+qZ+2yJs6YX8flZ8+fkuuwayDKV36+m+9tfpN59ZV88ZrzaKoJURHw01wbGm5JOxRL\n8Pi2Y05L5OogH1i3pOhclOnI1D01G0Tjd4BPqepl7r9vA1DVf0q3/3RFQ1X54qbdvPXUudRWBPjW\ns/v58W8PM3apRMAn1FcFqasMUF8ZZCiWoHMgSiyepM/9Ap+zqIG3nzaX6lCAcxY1sHZZI0G/jzsf\n28nGZ/bz41vexppZ3Co1Hcd6hvjucwd48UA3609p4qa3r6A65OeNzjC7jvUR9AtdA1EOdg9yqCvM\n6oX1rGip4WPffYn6ygAXLG/iv3YcH7U25W0rm1nVWse+jgGe29c5qqpua10Fn7ziTK5cs7DoC715\ncYG/unglH3vHqew81sezezt44Y1u+iNxdh/vo2/I+ezUhPx87PdO5axF9Rw5McSxniFiyST1lUHO\nXFDH137xOi8e6KauIsDFZ7Zy3fqlBHzCkzvbePjlIxw+MbpkfU3Iz2AsMepzfO0FS7jzj87N5yXI\nKd/bfIBP/2TH8OehrjLANeuW8NALB4e/gwB1FQHeeUYrP3n1CPWVQS5dPY+dx/rYeayXWEKZV1/B\nO05rpSscTbsmSoBlzTUsbqyivT/Cd587QDia4Lr1S/ibd5+e1wWO+aCURONq4HJV/W/uvz8EXKiq\nf5lu/1wGwve19/ObfZ1UBvxEE0l6B2P0DsXoHYy7f2OEAj6aayuoCPhorA4RCvj48W8Ps/t436gv\nal1FgL5InKvWLOTL15aOlZEtLx5wskqe2dvJ1WsXc9PbV1BXGeCbv97PEzvbeKNjgGXN1WxY0cz7\nzlvo/sDG+JMLlxWNyyQTrt/4PE/tbh81dsb8OpprQ8yrq+S6C5cSiSX57nMHeHz7yAI2v08I+GTY\nAq4J+fnHPzyH9567MK1LcyASZ3/HAG90DrC/fYDucIyaCj9VIT81oQA1FQHefea8vFSonUl2H+/j\npQPdrJpXx//+8TZeO9rLJWe0sna5s2ZoZUst33rmDX6zr5MPbljK311+xrDVFEskeeGNLr788z3s\na+9nbm0FQf/J65zjSWV/Rz9DMefav/P0Fj55xZmsmqHq0YWmrERDRG4CbgJYunTp2gMHDhRkrmMZ\niMR58UA3rxw8wcHuML9/7kJ+77TZU83SyB1evGzX8T5WtdaxYUXTuO6hHUd6GYonWNhQRUtdBX6f\n0DsU45WDJzhlbg2LG2dH34V8MRRL8GbXyf1Rkkmloz+S1ZqOeCJJz2CMmorArHAxZUMpiUZe3FOG\nYRjlTKaiMRtqT70ArBKRU0QkBFwLPFLgORmGYZQlRe8UVtW4iPwl8DOclNuNqrq9wNMyDMMoS4pe\nNABU9VHg0ULPwzAMo9yZDe4pwzAMo0gw0TAMwzAyxkTDMAzDyBgTDcMwDCNjTDQMwzCMjCn6xX1T\nRUT6gF1pnmoActnQutjPNxfoyOH5iv39ltP1K/Zr55Grazgb3u9s//zNBWpUdfKSFapaUg9gyzjj\n9+T4dYr9fGmvQxHNr9jPV7TXr9ivXa6v4Wx4v7P98zeV1ysn99RPyux8uabY3285XT+7dsV1vpk6\nZy7J2fxK0T21RTOon1Lq2HXIDrt+2WPXcPrk+9pN5fVK0dK4p9ATKBLsOmSHXb/ssWs4ffJ97TJ+\nvZKzNAzDMIyZoxQtDcMwDGOGMNGYJYjIEhH5hYjsEJHtIvLX7niTiGwSkT3u30Z3vNndv19E/r8x\n5wqJyD0isltEdorIHxXiPeWTXF0/EakTkZdTHh0i8uVCva98kuPP4HUislVEXhWRx0VkbiHeU77I\n8bX7Y/e6bReRu/L+Xsw9NTsQkQXAAlV9SUTqgBeBq4A/A7pU9U4RuRVoVNW/E5Ea4HzgbOBsHd3p\n8O5gHP0AAARUSURBVNOAX1X/t4j4gCZVzWVOeNGRy+s35rwvAv9dVZ/KyxspILm6hiISAI4Aq1W1\nQ0Q+B4RV9VP5f1f5IYfXrhn4LbBWVdtF5D7gO6r6RL7ei1kaswRVPaqqL7nbfcBrwCLgSuA+d7f7\ncD6IqOqAqj4NDKU53Z8D/+Tulyx1wYCcXz8AROQ0oBX49QxOvWjI4TUU91EjIgLU44hIyZLDa7cC\n2KOqXsP5nwN59RSYaMxCRGQ5zl3IZmCeqh51nzoGzJvk2Dnu5mdF5CUR+XcRmfCYUiOb6zeGa4EH\ntQzN9WyuoarGgL8AtuJaHMC9MzXXYiPLz99e4HQRWe5abFcBS2Zoqmkx0ZhliEgt8B/AJ1S1N/U5\n98drsh+wALAYeFZV3wL8Bvj8TMy1GMnB9UvlWuD7OZzerCDbaygiQRzROB9YCLwK3DYzsy0usr12\nqtqNc+0exLFw3wASMzLZcTDRmEW4X7b/AL6nqj90h4+7/lLPb9o2yWk6gTDgHf/vwFtmYLpFR46u\nn3eu84CAqr44I5MtUnJ0DdcAqOrr7g/lQ8BbZ2jKRUOuPn+q+hNVvVBVfwenzt7umZpzOkw0Zgmu\n7/de4DVV/WLKU48AN7jbNwAPT3Qe90v6E+Ad7tAlwI6cTrYIydX1S+E6yszKyOE1PAysFhGvON67\ncXz8JUsuP38i0ur+bQRuBr6Z29lOQq4KYtljZh/ARTim66vAy+7jCqAZeALYgxMUa0o55g2gC+gH\nDuFkqwAsA55yz/UEsLTQ7282XT/3uX3AGYV+X7P1GgIfwxGKV3FuYpoL/f5m0bX7Ps6N3g7g2ny/\nF0u5NQzDMDLG3FOGYRhGxphoGIZhGBljomEYhmFkjImGYRiGkTEmGoZhGEbGmGgYRp4RkY+JyPVT\n2H+5iGybyTkZRqYECj0BwygnRCSgqv9a6HkYxnQx0TCMKeIWnHscp7z1W4DtwPXAmcAXgVqgA/gz\nVT0qIr/EWcx1EfB9tzR2v6p+XkTWAP8KVAOvA3+uqt0ishbY6L7kf+XprRnGpJh7yjCmx+nA11X1\nTKAXuAX4F+BqVfV+8O9I2T+kqutU9QtjzvMd4O9U9Vycqq+3u+PfAj6uqufN5JswjKliloZhTI+D\nqvqMu/1d4JM4DXM2OWWG8ANHU/Z/cOwJRKQBmKOqv3KH7gP+3S1fP0dHGjvdD7wn92/BMKaOiYZh\nTI+x9Xf6gO3qVB5Nx8AMz8cw8oK5pwxjeiwVEU8g/gR4DmjxxkQkKCJnTXQCVe0BukXkd92hDwG/\nUtUTwAkRucgd/9PcT98wpoeJhmFMj13ALSLyGtCIG88A7hKRV3AC35n0iLgB+GcReRWnz8Rn3PEP\nA18TkZdxWqMaRlFgVW4NY4q42VM/VdWzCzwVw8g7ZmkYhmEYGWOWhmEYhpExZmkYhmEYGWOiYRiG\nYWSMiYZhGIaRMSYahmEYRsaYaBiGYRgZY6JhGIZhZMz/Dzkq6nIsGZ92AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Study of the annual incidence"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Since the peaks of the epidemic happen in winter, near the transition\n",
+ "between calendar years, we define the reference period for the annual\n",
+ "incidence from August 1st of year $N$ to August 1st of year $N+1$. We\n",
+ "label this period as year $N+1$ because the peak is always located in\n",
+ "year $N+1$. The very low incidence in summer ensures that the arbitrariness\n",
+ "of the choice of reference period has no impact on our conclusions.\n",
+ "\n",
+ "Our task is a bit complicated by the fact that a year does not have an\n",
+ "integer number of weeks. Therefore we modify our reference period a bit:\n",
+ "instead of August 1st, we use the first day of the week containing August 1st.\n",
+ "\n",
+ "A final detail: the dataset starts in October 1984, the first peak is thus\n",
+ "incomplete, We start the analysis with the first full peak."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
+ " for y in range(1985,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Starting from this list of weeks that contain August 1st, we obtain intervals of approximately one year as the periods between two adjacent weeks in this list. We compute the sums of weekly incidences for all these periods.\n",
+ "\n",
+ "We also check that our periods contain between 51 and 52 weeks, as a safeguard against potential mistakes in our code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_august_week[:-1],\n",
+ " first_august_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And here are the annual incidences."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+QldWd5/H3B0FxElEg6CCokNKkBs0sDl1oldndqDVA\nflTAWcewOkrVWDEpnCQzm1rRSbbMKFsVU5NhlnVDQsaMqKOtY2LJZmRIG0mNsxuBJvgLDEPPSpAu\nlA6NEqcKxsbv/vF87/hwA923m0vfe7s/r6pb/fR5zjn39EPT33t+PM9RRGBmZnaixjS6AWZmNjI4\noJiZWV04oJiZWV04oJiZWV04oJiZWV04oJiZWV04oJiZWV04oJiZWV04oJiZWV2MbXQDhtMHPvCB\nmDFjRqObYWbWUrZs2fLLiJgyUL5RFVBmzJhBZ2dno5thZtZSJP2ilnwe8jIzs7pwQDEzs7pwQDEz\ns7qoKaBI2iXpJUnPS+rMtK9J6s605yV9opT/DkldknZIml9Kn5P1dElaKUmZfpqkRzN9o6QZpTJL\nJO3M15JS+szM25VlTz3xy2FmZkM1mB7KlRExOyLaSmkrMm12RDwFIGkWsBi4GFgAfEvSKZl/FfBZ\n4KJ8Lcj0m4EDEXEhsAK4J+uaBNwJXAbMBe6UNDHL3JPvfyFwIOswM7MGORlDXguB9og4HBGvAl3A\nXElTgQkR8VwUu3o9ACwqlVmTx48DV2fvZT7QERG9EXEA6AAW5LmrMi9ZtlLXiLDv4CGu+85P2fer\nQ41uiplZTWoNKAE8LWmLpFtK6V+Q9KKk75V6DtOA10p59mTatDyuTj+qTET0AW8Bk/upazLwZuat\nrmtEWPnjnWze1cvKp3c2uilmZjWp9T6Uj0ZEt6SzgQ5JP6cYvrqbItjcDXwT+MOT08yhywB4C8D5\n55/f4NYM7MNfXcfhvnf/7fuHNu7moY27OW3sGHYs/3gDW2Zm1r+aeigR0Z1f9wFPAHMj4o2IOBIR\n7wLfpZjjAOgGzisVn55p3XlcnX5UGUljgTOB/f3UtR84K/NW11Xd9tUR0RYRbVOmDHijZ8M9e9uV\nfHr2uYwfV/zTjB83hoWzz+XZZVc2uGVmZv0bMKBIep+kMyrHwDzg5ZwTqbgGeDmP1wKLc+XWTIrJ\n900RsRc4KOnynAO5CXiyVKayguta4JmcZ1kPzJM0MYfU5gHr89yGzEuWrdTV0s6eMJ4zThvL4b53\nOW3sGA73vcsZp43l7DPGN7ppZmb9qmXI6xzgiVzhOxZ4OCL+XtKDkmZTDHntAj4HEBHbJD0GbAf6\ngFsj4kjWtRS4HzgdWJcvgPuAByV1Ab0Uq8SIiF5JdwObM99dEdGbx8uAdknLga1Zx4jwy7cPc8Nl\nF3D93PN5eNNuejwxb2YtQMWH/dGhra0t/CwvM7PBkbSl6paRY/Kd8mZmVhcOKGZmVhcOKGZmVhcO\nKGZmVhcOKGZmVhcOKC3Mz/sys2bigNLC/LwvM2smo2pP+ZHCz/sys2bkHkoL8vO+zKwZOaC0ID/v\ny8yakYe8WpSf92VmzcbP8qrBvoOH+KNHtnLv9Ze6F2Bmo46f5VVHXk1lZjYwD3n1w6upzMxq5x5K\nP7yaysysdg4o/fBqKjOz2tUUUCTtkvSSpOcldWbaJEkdknbm14ml/HdI6pK0Q9L8UvqcrKdL0src\nCpjcLvjRTN8oaUapzJJ8j52SlpTSZ2berix76olfjl9XWU31xNIruOGyC+h5+/DJeBszs5ZX0yov\nSbuAtoj4ZSntG0BvRHxd0u3AxIhYJmkW8AgwFzgXeBr4UEQckbQJ+CKwEXgKWBkR6yQtBX47Ij4v\naTFwTUR8RtIkoBNoo9hqeAswJyIO5DbDP4iIdknfBl6IiFX9/RzesdHMbPCGY5XXQmBNHq8BFpXS\n2yPicES8CnQBcyVNBSZExHNRRLEHqspU6nocuDp7L/OBjojojYgDQAewIM9dlXmr39/MzBqg1oAS\nwNOStki6JdPOiYi9efw6cE4eTwNeK5Xdk2nT8rg6/agyEdEHvAVM7qeuycCbmbe6LjMza4Balw1/\nNCK6JZ0NdEj6eflkRISkprxDMgPgLQDnn39+g1tjZjZy1dRDiYju/LoPeIJifuSNHMYiv+7L7N3A\neaXi0zOtO4+r048qI2kscCawv5+69gNnZd7quqrbvjoi2iKibcqUKbX8uGZmNgQDBhRJ75N0RuUY\nmAe8DKwFKquulgBP5vFaYHGu3JoJXARsyuGxg5IuzzmQm6rKVOq6Fngm51nWA/MkTcxVZPOA9Xlu\nQ+atfn8zM2uAWoa8zgGeyBW+Y4GHI+LvJW0GHpN0M/AL4DqAiNiWK7C2A33ArRFxJOtaCtwPnA6s\nyxfAfcCDkrqAXmBx1tUr6W5gc+a7KyJ683gZ0C5pObA16zAzswbxwyHNzKxffjikmZkNKwcUMzOr\nCwcUMzOrCwcUMzOrCwcUMzOrCwcUMzOrCwcUMzOrCwcUMzOrCwcUMzOrCwcUMzOrCwcUMzOrCwcU\nMzOrCwcUMzOrCwcUMzOrCwcUMzOrCwcUMzOrCwcUMzOri5oDiqRTJG2V9MP8/muSuiU9n69PlPLe\nIalL0g5J80vpcyS9lOdW5t7y5P7zj2b6RkkzSmWWSNqZryWl9JmZtyvLnnpil8LMzE7EYHooXwJe\nqUpbERGz8/UUgKRZFHvCXwwsAL4l6ZTMvwr4LHBRvhZk+s3AgYi4EFgB3JN1TQLuBC4D5gJ3SpqY\nZe7J978QOJB1mJlZg9QUUCRNBz4J/FUN2RcC7RFxOCJeBbqAuZKmAhMi4rkoNrJ/AFhUKrMmjx8H\nrs7ey3ygIyJ6I+IA0AEsyHNXZV6ybKUuMzNrgFp7KH8J3Aa8W5X+BUkvSvpeqecwDXitlGdPpk3L\n4+r0o8pERB/wFjC5n7omA29m3uq6zMysAQYMKJI+BeyLiC1Vp1YBHwRmA3uBb9a/eSdO0i2SOiV1\n9vT0NLo5ZmYjVi09lCuAT0vaBbQDV0l6KCLeiIgjEfEu8F2KOQ6AbuC8Uvnpmdadx9XpR5WRNBY4\nE9jfT137gbMyb3VdR4mI1RHRFhFtU6ZMqeHHNTOzoRgwoETEHRExPSJmUEy2PxMRf5BzIhXXAC/n\n8Vpgca7cmkkx+b4pIvYCByVdnnMgNwFPlspUVnBdm+8RwHpgnqSJOaQ2D1if5zZkXrJspS4zM2uA\nsQNnOa5vSJoNBLAL+BxARGyT9BiwHegDbo2II1lmKXA/cDqwLl8A9wEPSuoCeikCFxHRK+luYHPm\nuysievN4GdAuaTmwNeswM7MGUfFhf3Roa2uLzs7ORjfDzKylSNoSEW0D5fOd8mZmVhcOKGZmVhcO\nKGZmVhcOKGZmVhcOKGZmVhcOKGZmVhcOKGZmVhcOKGZmVhcOKGZmA9h38BDXfeen7PvVoUY3pak5\noJiZDWDlj3eyeVcvK5/e2eimNLUTeZaXmdmI9uGvruNw33vbQD20cTcPbdzNaWPHsGP5xxvYsubk\nHoqZ2XE8e9uVfHr2uYwfV/ypHD9uDAtnn8uzy65scMuakwOKmbWU4ZzPOHvCeM44bSyH+97ltLFj\nONz3LmecNpazzxh/0t+7FTmgmFlLGe75jF++fZgbLruAJ5ZewQ2XXUDP24eH5X1bkR9fb2YtoXo+\no8LzGSefH19vZiOK5zOanwOKmbUEz2c0v5oDiqRTJG2V9MP8fpKkDkk78+vEUt47JHVJ2iFpfil9\njqSX8tzK3Fue3H/+0UzfKGlGqcySfI+dkpaU0mdm3q4se+qJXQoza3aez2huNc+hSPovQBswISI+\nJekbQG9EfF3S7cDEiFgmaRbwCDAXOBd4GvhQRByRtAn4IrAReApYGRHrJC0FfjsiPi9pMXBNRHxG\n0iSgM983gC3AnIg4kPvW/yAi2iV9G3ghIlb19zN4DsXMbPDqOociaTrwSeCvSskLgTV5vAZYVEpv\nj4jDEfEq0AXMlTSVIhg9F0UUe6CqTKWux4Grs/cyH+iIiN6IOAB0AAvy3FWZt/r9zcysAWod8vpL\n4DagvMTinIjYm8evA+fk8TTgtVK+PZk2LY+r048qExF9wFvA5H7qmgy8mXmr6zqKpFskdUrq7Onp\nqemHNTOzwRswoEj6FLAvIrYcL0/2OJpy/XFErI6ItohomzJlSqObY2Y2YtXSQ7kC+LSkXUA7cJWk\nh4A3chiL/Lov83cD55XKT8+07jyuTj+qjKSxwJnA/n7q2g+clXmr6zI7IX6yrNnQDBhQIuKOiJge\nETOAxcAzEfEHwFqgsupqCfBkHq8FFufKrZnARcCmHB47KOnynAO5qapMpa5r8z0CWA/MkzQxV5HN\nA9bnuQ2Zt/r9zU6InyxrNjQn8rThrwOPSboZ+AVwHUBEbMsVWNuBPuDWiDiSZZYC9wOnA+vyBXAf\n8KCkLqCXInAREb2S7gY2Z767IqI3j5cB7ZKWA1uzDrMh85NlzU6MH71ilvYdPMTyp17hR9te59A7\n7zJ+3BjmX/ybfOWTv+Wb52xU86NXzAZpMHdit/o8S6u335qTA4pZSa13Yrf6PEurt9+ak4e8zAah\n1Z942+rtt8bwkJfZSdDqT7xt9fZbc3NAMRuEVn/ibau335rbiSwbNhuVKvMs1889n4c37aanxSa2\nW7391rw8h2JmZv3yHIqZmQ0rBxQzM6sLBxQzs2E0km8qdUAxMxtGI/mmUq/yshFh38FD/NEjW7n3\n+ku9BNaa0mh4+Kh7KDYijORPfTYyjIabSt1DsZY2Gj71DYZ7as1rNNxU6h6KtbTR8KlvMNxTa261\nPny0VbmHYk1toE/co+FTXy3cU2sN37nxvXsDly+6pIEtOTkG7KFIGi9pk6QXJG2T9GeZ/jVJ3ZKe\nz9cnSmXukNQlaYek+aX0OZJeynMrcytgcrvgRzN9o6QZpTJLJO3M15JS+szM25VlT63PJbETVc9l\nkbV84h7pn/pq4Z6aNYNaeiiHgasi4m1J44B/lFTZundFRPx5ObOkWRRb+F4MnAs8LelDuQ3wKuCz\nwEbgKWABxTbANwMHIuJCSYuBe4DPSJoE3Am0AQFskbQ2Ig5knhUR0S7p21nHqqFfCquXchBYfs1H\nhlTHYD5xj/RPfbVwT82awYA9lCi8nd+Oy1d/DwBbCLRHxOGIeBXoAuZKmgpMiIjnoniA2APAolKZ\nNXn8OHB19l7mAx0R0ZtBpANYkOeuyrxk2Upd1iAf/uo6Ztz+dzy0cTcRRRCYcfvf8eGvrhu4cBV/\n4h4899Ss0WqaQ5F0CrAFuBD4XxGxUdLHgS9IugnoBL6cf/SnAc+Viu/JtHfyuDqd/PoaQET0SXoL\nmFxOryozGXgzIvqOUZc1yLO3XXncPdkHy5+4B889NWu0mlZ5RcSRiJgNTKfobVxCMbz0QWA2sBf4\n5klr5QmQdIukTkmdPT09jW7OiFbvIOBP3KPPSH4syWgwqFVeEfGmpA3AgvLciaTvAj/Mb7uB80rF\npmdadx5Xp5fL7JE0FjgT2J/pH6sq85M8d5aksdlLKddV3ebVwGooHl8/mJ/XBq+ee234E/foU4/5\nN2ucAfdDkTQFeCeDyenAjygmxLdExN7M8yfAZRGxWNLFwMPAXIpJ+R8DF0XEEUmbgC/y3qT8/4yI\npyTdCnwkIj6fk/K/FxHX5aT8FuB3sjk/A+ZERK+kvwW+X5qUfzEivtXfz+L9UMyak/e6b2617odS\nSw9lKrAm51HGAI9FxA8lPShpNsUE/S7gcwARsU3SY8B2oA+4NVd4ASwF7gdOp1jdVZmtvQ94UFIX\n0EuxSowMHHcDmzPfXRHRm8fLgHZJy4GtWYeZtaB6zr9Z4wwYUCLiReDSY6Tf2E+Z/w7892OkdwK/\nNnYREYeA3z9OXd8DvneM9P9H0QsysxbnRRgjg++UN7Om4L3uW5/3lDczs355T3kzMxtWDihmZlYX\nDihmZlYXDihmZlYXDihmZlYXDihmZlYXDihmZlYXDihmZlYXDihmZlYXDihmDeY9QGykcEAxa7Dy\nHiBmrcwPhzRrkOo9QB7auJuHNu72HiDWstxDMWuQZ2+7kk/PPpfx44r/huPHjWHh7HN5dtmVDW6Z\n2dA4oJg1iPcAsZHGAcVGjWac/K7sAfLE0iu44bIL6Hn7cKObZDZkAwYUSeMlbZL0gqRtkv4s0ydJ\n6pC0M79OLJW5Q1KXpB2S5pfS50h6Kc+tlKRMP03So5m+UdKMUpkl+R47JS0ppc/MvF1Z9tT6XBIb\nqZpx8vs7N7axfNElzDp3AssXXcJ3bhxwywmzpjXgBlv5R/99EfG2pHHAPwJfAn4P6I2Ir0u6HZgY\nEcskzQIeodie91zgaeBDEXFE0ibgi8BG4ClgZUSsk7QU+O2I+LykxcA1EfEZSZOATqCNYu/6LcCc\niDiQ+9b/ICLaJX0beCEiVvX3s3iDrdGpevK7wpPfZrWp2wZbUXg7vx2XrwAWAmsyfQ2wKI8XAu0R\ncTgiXgW6gLmSpgITIuK5KKLYA1VlKnU9DlydgWw+0BERvRFxAOgAFuS5qzJv9fubHcWT343XjMON\nVn81zaFIOkXS88A+ij/wG4FzImJvZnkdOCePpwGvlYrvybRpeVydflSZiOgD3gIm91PXZODNzFtd\nV3Xbb5HUKamzp6enlh/XRhhPfjdeMw43Wv3VdB9KRBwBZks6C3hC0iVV50NSU25OHxGrgdVQDHk1\nuDnWIJXJ7+vnns/Dm3bT40/Kw8L32owug7qxMSLelLQBWAC8IWlqROzN4ax9ma0bOK9UbHqmdedx\ndXq5zB5JY4Ezgf2Z/rGqMj/Jc2dJGpu9lHJdZr+mPNm9fNEl/eS0enr2titZ/tQr/Gjb6xx6513G\njxvD/It/k6988rca3TQ7CWpZ5TUleyZIOh34XeDnwFqgsupqCfBkHq8FFufKrZnARcCmHB47KOny\nnAO5qapMpa5rgWdynmU9ME/SxFxFNg9Yn+c2ZN7q9zezJuHhxtGllh7KVGCNpFMoAtBjEfFDST8F\nHpN0M/AL4DqAiNiWK7C2A33ArTlkBrAUuB84HViXL4D7gAcldQG9wOKsq1fS3cDmzHdXRPTm8TKg\nXdJyYGvWYWZNxsONo8eAy4ZHkpO9bHjfwUP80SNbuff6S/0JzKzBWvn/Y7O1vW7Lhq12Xsli1jxa\n+f9jq7bdPZQ68I1zZs2jlf8/Nmvb3UMZRr5xzqx5tPL/x1ZuOzig1MVgVrL4jmEbaZrtd7qVV5a1\nctvBAaVuan1qbKuOjZodTzP+TrfyU5xbue2eQxkmzTo2ajZU/p0ePTyH0mRafWzUrJp/p1vDcA5J\nOqAMk1YfG61otvFya5yR8js90g3nkOSgnuVlJ2Yk3DFc/uVcfs1HGt0ca7CR8Ds9UjXiwZyeQ7Ga\neLzcrLXsO3jouA/mHGwv0nMoVlceLzdrLY0YkvSQl9XE4+VmrWe4hyQdUKxmHi83ay3DvQ+Q51AM\naL6nm5pZ8/Acig1KM97tbGatxUNeo5z3/D653POz0aSWLYDPk7RB0nZJ2yR9KdO/Jqlb0vP5+kSp\nzB2SuiTtkDS/lD5H0kt5bmVuBUxuF/xopm+UNKNUZomknflaUkqfmXm7suyp9bkko4tXb51c7vnZ\naFJLD6UP+HJE/EzSGcAWSR15bkVE/Hk5s6RZFFv4XgycCzwt6UO5DfAq4LPARuApYAHFNsA3Awci\n4kJJi4F7gM9ImgTcCbQBke+9NiIOZJ4VEdEu6dtZx6qhX4rRyau3Tg73/Gw0GrCHEhF7I+Jnefwr\n4BVgWj9FFgLtEXE4Il4FuoC5kqYCEyLiuShWAjwALCqVWZPHjwNXZ+9lPtAREb0ZRDqABXnuqsxL\nlq3UZYPUyk83bVbu+dloNKg5lByKupSih3EF8AVJNwGdFL2YAxTB5rlSsT2Z9k4eV6eTX18DiIg+\nSW8Bk8vpVWUmA29GRN8x6rJBGu6lhaOBe342GtW8ykvS+4HvA38cEQcphpc+CMwG9gLfPCktPEGS\nbpHUKamzp6en0c2xUcQ9PxttauqhSBpHEUz+JiJ+ABARb5TOfxf4YX7bDZxXKj4907rzuDq9XGaP\npLHAmcD+TP9YVZmf5LmzJI3NXkq5rqNExGpgNRT3odTy85rVg3t+NtrUsspLwH3AKxHxF6X0qaVs\n1wAv5/FaYHGu3JoJXARsioi9wEFJl2edNwFPlspUVnBdCzyT8yzrgXmSJkqaCMwD1ue5DZmXLFup\ny8zMGqCWHsoVwI3AS5Kez7Q/Bf6zpNkUq692AZ8DiIhtkh4DtlOsELs1V3gBLAXuB06nWN21LtPv\nAx6U1AX0UqwSIyJ6Jd0NbM58d0VEbx4vA9olLQe2Zh1mZtYgfvSKmZn1y49eMTOzYeWAYmbWoppt\nS24HFDM7pmb7Y2W/rtke7eOHQ5rZMZX/WC2/5iONbo6VNOujfTwpb2ZHqf5jVdHoP1b2nnruF18L\nT8qb2ZD4OWTNr1kf7eOAYtYihmtOo1n/WNnRmvHRPp5DMWsRwzmnUfljdf3c83l40256PDHfdJrx\n0T6eQzFrcp7TsEbzHIrZCOE5jZPHS6PrywHFrMl5TuPkabb7OFqd51DMWoDnNOqrWe/jaHWeQzGz\nUWe47+NodZ5DMTM7Dg8jnhwe8jKzUcnDiPXnIS8zM+uXh7zMzGxY1bKn/HmSNkjaLmmbpC9l+iRJ\nHZJ25teJpTJ3SOqStEPS/FL6HEkv5bmVubc8uf/8o5m+UdKMUpkl+R47JS0ppc/MvF1Z9tT6XBIz\nMxuKWnoofcCXI2IWcDlwq6RZwO3AjyPiIuDH+T15bjFwMbAA+JakU7KuVcBngYvytSDTbwYORMSF\nwArgnqxrEnAncBkwF7izFLjuAVZkmQNZh5mZNciAASUi9kbEz/L4V8ArwDRgIbAms60BFuXxQqA9\nIg5HxKtAFzBX0lRgQkQ8F8XEzQNVZSp1PQ5cnb2X+UBHRPRGxAGgA1iQ567KvNXvb2ZmDTCoOZQc\niroU2AicExF789TrwDl5PA14rVRsT6ZNy+Pq9KPKREQf8BYwuZ+6JgNvZt7quszMrAFqDiiS3g98\nH/jjiDhYPpc9jqZcLibpFkmdkjp7enoa3RwzsxGrpoAiaRxFMPmbiPhBJr+Rw1jk132Z3g2cVyo+\nPdO687g6/agyksYCZwL7+6lrP3BW5q2u6ygRsToi2iKibcqUKbX8uGZmNgS1rPIScB/wSkT8RenU\nWqCy6moJ8GQpfXGu3JpJMfm+KYfHDkq6POu8qapMpa5rgWey17MemCdpYk7GzwPW57kNmbf6/c3M\nrAFquVP+CuBG4CVJz2fanwJfBx6TdDPwC+A6gIjYJukxYDvFCrFbI+JIllsK3A+cDqzLFxQB60FJ\nXUAvxSoxIqJX0t3A5sx3V0T05vEyoF3ScmBr1mFmZg3iO+XNzKxfvlPemp43NzIbWRxQrGG8uZHZ\nyOKnDduw8+ZGZiOTeyg27LxHutnI5IBiw86bG5mNTB7ysobw5kZmI4+XDZuZWb+8bNjMzIaVA4qZ\nmdWFA8oo4BsIzWw4OKCMAr6B0MyGg1d5jWC+gdDMhpN7KCOYbyA0Gz4eWnZAGdF8A6HZ8PHQsoe8\nRjzfQGh2cnlo+T2+sdHM7ATsO3iI5U+9wo+2vc6hd95l/LgxzL/4N/nKJ39rxIwG1O3GRknfk7RP\n0sultK9J6pb0fL4+UTp3h6QuSTskzS+lz5H0Up5bmdsAk1sFP5rpGyXNKJVZImlnvpaU0mdm3q4s\ne2otF8XMrN48tPyeWuZQ7gcWHCN9RUTMztdTAJJmUWzfe3GW+ZakUzL/KuCzFHvMX1Sq82bgQERc\nCKwA7sm6JgF3ApcBc4E7c195Ms+KLHMg6zAza4jK0PITS6/ghssuoOftw41uUkMMOIcSEf9Q7jUM\nYCHQHhGHgVdzj/i5knYBEyLiOQBJDwCLKPaUXwh8Lcs/DtybvZf5QEdlD3lJHcACSe3AVcD1WWZN\nll9VYxvNzOrqOze+Nxq0fNElDWxJY53IKq8vSHoxh8QqPYdpwGulPHsybVoeV6cfVSYi+oC3gMn9\n1DUZeDPzVtdlZmYNMtSAsgr4IDAb2At8s24tqjNJt0jqlNTZ09PT6OaYmY1YQwooEfFGRByJiHeB\n71LMcQB0A+eVsk7PtO48rk4/qoykscCZwP5+6toPnJV5q+s6VltXR0RbRLRNmTJlsD+qmZnVaEgB\nRdLU0rfXAJUVYGuBxblyaybF5PumiNgLHJR0ec6P3AQ8WSpTWcF1LfBMFGuZ1wPzJE3MIbV5wPo8\ntyHzkmUrdZmZWYMMOCkv6RHgY8AHJO2hWHn1MUmzgQB2AZ8DiIhtkh4DtgN9wK0RcSSrWkqxYux0\nisn4dZl+H/BgTuD3UqwSIyJ6Jd0NbM58d1Um6IFlQLuk5cDWrMPMzBrINzaamVm/ar2xcVQFFEk9\nwC+OceoDwC+HuTn10spth9Zufyu3HVq7/a3cdmi99l8QEQNOQo+qgHI8kjprib7NqJXbDq3d/lZu\nO7R2+1u57dD67T8eP23YzMzqwgHFzMzqwgGlsLrRDTgBrdx2aO32t3LbobXb38pth9Zv/zF5DsXM\nzOrCPRQzM6uLERlQjrOHy7+T9NPck+V/S5qQ6eMkrcn0VyTdUSrzk9zXpbLvy9lN1vZTJf11pr8g\n6WOlMsfcf6aF2t+Ia3+epA2StkvaJulLmT5JUkfuy9NRehjqoPf/aaH2D+v1H2zbJU3O/G9Lureq\nrqa/9gO0f9h/9+smIkbcC/gPwO8AL5fSNgP/MY//ELg7j6+neOQ+wG9Q3Pk/I7//CdDWxG2/Ffjr\nPD4b2AKMye83AZcDongqwcdbrP2NuPZTgd/J4zOAfwJmAd8Abs/024F78ngW8AJwGjAT+GfglEZd\n/zq3f1iv/xDa/j7go8DngXur6mqFa99f+4f9d79erxHZQ4mIf6B4jEvZh4B/yOMO4D9VsgPvU/Gw\nydOBfwUODkc7j2WQbZ8FPJPl9gFvAm0qnrU2ISKei+I3tLL/zElXj/YPQzOPKSL2RsTP8vhXwCsU\nWyMspNh+KSTKAAACrUlEQVR3h/xauZb/tv9PRLwKVPb/acj1r1f7T3Y7j2WwbY+If4mIfwQOletp\nlWt/vPa3uhEZUI5jG8U/LsDv896TjB8H/oXiMfy7gT+P954ZBrAmu53/bbiGjY7heG1/Afi0pLEq\nHsY5J8/1t/9MIwy2/RUNu/YqNpW7FNgInBPFA04BXgfOyeOh7P8zLE6w/RUNuf41tv14WuXaD6QZ\n/u4M2mgKKH8ILJW0haJL+q+ZPhc4ApxL0e3/sqQP5rkbIuJi4N/n68bhbfK/OV7bv0fxH6YT+Evg\n/1L8LM1mKO1v2LWX9H7g+8AfR8RRvdX81NvUSyPr1P6GXH9fe6B5/u4M2qgJKBHx84iYFxFzgEco\nxouhmEP5+4h4J4dd/g857BIR3fn1V8DDNG444Jhtj4i+iPiTiJgdEQuBsyjGbvvbf2bYDaH9Dbv2\nksZR/EH4m4j4QSa/kUMplSGVfZk+lP1/Tqo6tb8h13+QbT+eVrn2x9Usf3eGYtQElMpKCUljgK8C\n385Tuyn2qEfS+ygm836ewzAfyPRxwKd4b9+XYXW8tkv6jWwzkn4X6IuI7dH//jPDbrDtb9S1z2t1\nH/BKRPxF6VR5z57y/jtD2f+n6dvfiOs/hLYfUwtd++PV0zR/d4ak0asCTsaL4lPwXuAdiiGVm4Ev\nUXz6/Sfg67x3U+f7gb+lGOffDvzXeG8VxhbgxTz3P8gVME3U9hnADooJwKcpnghaqaeN4hfxn4F7\nK2Vaof0NvPYfpRiSeBF4Pl+fACYDPwZ2Zjsnlcp8Ja/xDkqriRpx/evV/kZc/yG2fRfFApC383dt\nVotd+19rf6N+9+v18p3yZmZWF6NmyMvMzE4uBxQzM6sLBxQzM6sLBxQzM6sLBxQzM6sLBxQzM6sL\nBxQzM6sLBxQzM6uL/w8T9rXtfaQJQwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A sorted list makes it easier to find the highest values (at the end)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2014 1600941\n",
+ "1991 1659249\n",
+ "1995 1840410\n",
+ "2012 2175217\n",
+ "2003 2234584\n",
+ "2006 2307352\n",
+ "2017 2321583\n",
+ "2001 2529279\n",
+ "1992 2574578\n",
+ "1993 2703886\n",
+ "2018 2705325\n",
+ "1988 2765617\n",
+ "2007 2780164\n",
+ "1987 2855570\n",
+ "2016 2856393\n",
+ "2011 2857040\n",
+ "2008 2973918\n",
+ "1998 3034904\n",
+ "2002 3125418\n",
+ "2009 3444020\n",
+ "1994 3514763\n",
+ "1996 3539413\n",
+ "2004 3567744\n",
+ "1997 3620066\n",
+ "2015 3654892\n",
+ "2000 3826372\n",
+ "2005 3835025\n",
+ "1999 3908112\n",
+ "2010 4111392\n",
+ "2013 4182691\n",
+ "1986 5115251\n",
+ "1990 5235827\n",
+ "1989 5466192\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Finally, a histogram clearly shows the few very strong epidemics, which affect about 10% of the French population,\n",
+ "but are rare: there were three of them in the course of 35 years. The typical epidemic affects only half as many people."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGaBJREFUeJzt3X2UJXV95/H3h5kBhmkYjODFDMpoZFmRFnAuusqGdGN0\n0VFzYjiLig/4kCbGB6KTs5l1JUZ3WUd0ksUNJplEhajQxgFOIqMGE2iMqEgPKM2DEAOzyiCDSBho\nnAVHvvvHr1pvevvhVt17u4qfn9c5c+Y+1K361K/rfm/Vr351ryICMzPLxz51BzAzs/5yYTczy4wL\nu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZWT7ImR9yyCGxdu3aOZ97+OGHWbVq\n1SAXX1mTs0Gz8zlbdU3O52zVlc23ffv2+yLi0J4WGhED+7du3bqYz1VXXTXvc3VrcraIZudztuqa\nnM/ZqiubD5iMHmuvu2LMzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzpQq7pHdJulnSTZIulrT/oIKZ\nmVk1XRd2SWuAdwLtiDgGWAa8alDBzMysmrJdMcuBlZKWAwcAd/c/kpmZ9UJR4jdPJZ0FnAPsAa6I\niNPnmGYMGANotVrrxsfH55zX9PQ0Q0NDVTIPXJOzQf/zTe3c3bd5tVbCrj3dTz+8ZnXflr2YX7S/\naz85W3Vl842Ojm6PiHYvy+y6sEt6AnAJcBrwAPA5YGtEfHq+17Tb7ZicnJzzuYmJCUZGRsrmXRJN\nzgb9z7d247a+zWvD8F42T3X/TRU7Nq3v27IX84v2d+0nZ6uubD5JPRf2Ml0xvw7cGRE/jIifAJcC\nL+hl4WZm1n9lCvv3gP8g6QBJAl4I3DqYWGZmVlXXhT0irgW2AtcDU8Vrtwwol5mZVVTqa3sj4n3A\n+waUxczM+sBXnpqZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXG\nhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llpuvCLukoSd/q+PegpN8b\nZDgzMyuv65/Gi4jbgOMAJC0DdgKXDSiXmZlVVLUr5oXAv0TE/+lnGDMz650iovyLpE8A10fEn87x\n3BgwBtBqtdaNj4/POY/p6WmGhoZKL3spNDkb9D/f1M7dfZtXayXs2tP99MNrVvdt2YvpbLd+rnMZ\nC61vk7c7Z6uubL7R0dHtEdHuZZmlC7ukfYG7gWdFxK6Fpm232zE5OTnncxMTE4yMjJRa9lJpcjbo\nf761G7f1bV4bhveyearrHj52bFrft2UvprPd+rnOZSy0vk3e7pyturL5JPVc2Kt0xbyEtLe+YFE3\nM7N6VCnsrwYu7ncQMzPrj1KFXdIq4EXApYOJY2Zmveq+MxSIiIeBJw4oi5mZ9YGvPDUzy4wLu5lZ\nZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2\nM7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLTNmfxjtY0lZJ35F0q6TnDyqYmZlVU+qn8YDzgC9FxKmS\n9gUOGEAmMzPrQdeFXdJq4CTgDICIeBR4dDCxzMysKkVEdxNKxwFbgFuAY4HtwFnFD1x3TjcGjAG0\nWq114+Pjc85venqaoaGh6skHqMnZoP/5pnbu7tu8With157upx9es7pvy15MZ7v1c53LWGh9m7zd\nOVt1ZfONjo5uj4h2L8ssU9jbwDeAEyPiWknnAQ9GxNnzvabdbsfk5OScz01MTDAyMlI+8RJocjbo\nf761G7f1bV4bhveyear7Hr4dm9b3bdmL6Wy3fq5zGQutb5O3O2errmw+ST0X9jInT+8C7oqIa4v7\nW4Hn9LJwMzPrv64Le0TcA3xf0lHFQy8kdcuYmVmDlB0V8w7gM8WImDuAN/Y/kpmZ9aJUYY+IbwE9\n9f2Ymdlg+cpTM7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiw\nm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8yU+gUlSTuAh4CfAnt7/SVt\nMzPrv7K/eQowGhH39T2JmZn1hbtizMwyo4jofmLpTmA3qSvmLyJiyxzTjAFjAK1Wa934+Pic85qe\nnmZoaKhK5oFrcjbof76pnbv7Nq/WSti1p/vph9es7tuyF9PZbv1c5zIWWt8mb3fOVl3ZfKOjo9t7\n7eYuW9jXRMROSU8Cvgy8IyK+Mt/07XY7Jicn53xuYmKCkZGRknGXRpOzQf/zrd24rW/z2jC8l81T\n3ffw7di0vm/LXkxnu/VznctYaH2bvN05W3Vl80nqubCX6oqJiJ3F//cClwHP7WXhZmbWf10Xdkmr\nJB04cxt4MXDToIKZmVk1ZUbFtIDLJM287qKI+NJAUpmZWWVdF/aIuAM4doBZzMysDzzc0cwsMy7s\nZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlm\nXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzpQu7pGWSbpB0+SACmZlZb6rssZ8F3NrvIGZm1h+l\nCrukw4H1wF8NJo6ZmfVKEdH9xNJW4IPAgcDvR8TL5phmDBgDaLVa68bHx+ec1/T0NENDQ1UyD9TU\nzt20VsKuPXUnmV+T85XNNrxm9eDCzNK5zU3t3L1ky+200Po29T0BztaLsvlGR0e3R0S7l2Uu73ZC\nSS8D7o2I7ZJG5psuIrYAWwDa7XaMjMw96cTEBPM9V6czNm5jw/BeNk913TRLrsn5ymbbcfrI4MLM\n0rnNnbFx25Itt9NC69vU9wQ4Wy/qyFemK+ZE4BWSdgDjwMmSPj2QVGZmVlnXhT0i/mtEHB4Ra4FX\nAVdGxGsHlszMzCrxOHYzs8xU6qiNiAlgoq9JzMysL7zHbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZm\nmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzY\nzcwy03Vhl7S/pG9K+rakmyW9f5DBzMysmjK/oPQIcHJETEtaAXxV0hcj4hsDymZmZhV0XdgjIoDp\n4u6K4l8MIpSZmVWnVK+7nFhaBmwHngGcHxF/MMc0Y8AYQKvVWjc+Pj7nvKanpxkaGpp3WVM7d3ed\nq99aK2HXntoWv6gm5yubbXjN6sGFmaVzm6tr+1pofRd7T9Tp8ZqtCX/nsm03Ojq6PSLavSy/VGH/\n2Yukg4HLgHdExE3zTddut2NycnLO5yYmJhgZGZl3GWs3biudq182DO9l81Sl3/leEk3OVzbbjk3r\nB5jm3+rc5uravhZa38XeE3V6vGZrwt+5bNtJ6rmwVxoVExEPAFcBp/SycDMz678yo2IOLfbUkbQS\neBHwnUEFMzOzasoczz8ZuLDoZ98H+JuIuHwwsczMrKoyo2JuBI4fYBYzM+sDX3lqZpYZF3Yzs8y4\nsJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZm\nmXFhNzPLjAu7mVlmXNjNzDLjwm5mlpkyv3n6FElXSbpF0s2SzhpkMDMzq6bMb57uBTZExPWSDgS2\nS/pyRNwyoGxmZlZB13vsEfGDiLi+uP0QcCuwZlDBzMysGkVE+RdJa4GvAMdExIOznhsDxgBarda6\n8fHxOecxPT3N0NDQvMuY2rm7dK5+aa2EXXtqW/yimpzP2aobdL7hNasrv3ax92udFspWVx3pbOuy\nbTc6Oro9Itq9LL90YZc0BFwNnBMRly40bbvdjsnJyTmfm5iYYGRkZN7Xrt24rVSuftowvJfNU2V6\nqZZWk/M5W3WDzrdj0/rKr13s/VqnhbLVVUc627ps20nqubCXGhUjaQVwCfCZxYq6mZnVo8yoGAEf\nB26NiD8eXCQzM+tFmT32E4HXASdL+lbx76UDymVmZhV13aEXEV8FNMAsZmbWB77y1MwsMy7sZmaZ\ncWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjN\nzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzZX7z9BOS7pV00yADmZlZb8rssV8AnDKgHGZm1iddF/aI\n+Apw/wCzmJlZHygiup9YWgtcHhHHLDDNGDAG0Gq11o2Pj8853fT0NENDQ/Mua2rn7q5z9VtrJeza\nU9viF9XkfM5W3aDzDa9ZXfm1i71f67RQtrrqSGdbl2270dHR7RHR7mX5fS/sndrtdkxOTs753MTE\nBCMjI/O+du3GbV3n6rcNw3vZPLW8tuUvpsn5nK26QefbsWl95dcu9n6t00LZ6qojnW1dtu0k9VzY\nPSrGzCwzLuxmZpkpM9zxYuDrwFGS7pL05sHFMjOzqrru0IuIVw8yiJmZ9Ye7YszMMuPCbmaWGRd2\nM7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwz\nLuxmZplxYTczy4wLu5lZZlzYzcwyU6qwSzpF0m2Svitp46BCmZlZdWV+83QZcD7wEuBo4NWSjh5U\nMDMzq6bMHvtzge9GxB0R8SgwDvzGYGKZmVlViojuJpROBU6JiLcU918HPC8i3j5rujFgrLh7FHDb\nPLM8BLivSugl0ORs0Ox8zlZdk/M5W3Vl8x0REYf2ssDlvbx4LhGxBdiy2HSSJiOi3e/l90OTs0Gz\n8zlbdU3O52zV1ZGvTFfMTuApHfcPLx4zM7MGKVPYrwOOlPQ0SfsCrwL+bjCxzMysqq67YiJir6S3\nA38PLAM+ERE397DsRbtratTkbNDsfM5WXZPzOVt1S56v65OnZmb2+OArT83MMuPCbmaWGRd2M7PM\nPC4Lu6Q1ktbUnWMukp4u6d2STq47y2xNzgbNzuds1TU5X5OzQfV8j6vCLmmtpKtJI3M+LOlX687U\nSdJ/BL4MPBP4HUlvrTnSzzQ5GzQ7n7NV1+R8Tc4GPeaLiEb/A/bvuP1K4CPF7TcAnwOGi/uqIdvJ\nwNNmlg/8IfDa4v7zgM8DI3Xka3K2pudztjzzNTlbv/M1co9d0kGS/lzS7cBHJB1RPPWbwPeK2+PA\nd4G3zLxsCfMdLelG4I+AT0o6OVJrHw0cBhAR1wJfA960lPmanK3p+Zwtz3xNzjaofI0s7MApwP6k\nFXsU+ENJK0mHJS8HiIhHgK3AScX9xwYVRtLhkg7qeOg04JKIOIn0AfMaSUcCF83kK1wGHCNpv0Hl\na3K2pudztjzzNTnbUuWrrbArWS7pzZL+SdJZkn6lePoZwKMRsRf4E+BfgdOBK4AnS/qlYrrbge9J\nev6AMj5T0heArwIfkDTzNcX/FziguP03wD3AetIn6hM7jjDuB74DHPuLlK3p+Zwtz3xNzrbU+Wor\n7MWhxq8BrwfOBfYD/rJ4+h7g3uKT6fukr/49ktQAN/PzrwVeAfyoeLwvJK3quHsccFdErAWuBD5S\nPH4/8IikAyPifuCfgTVFjq8B7y6m2xf4KbAj92xNz+dseeZrcrY68y1ZYZf0fEkfknRGcV+ks71f\niojPR8S5wBGSXkD61sgDSF0xALcCq4rHzgdeKunlpA+FFvDtHrM9QdIFkq4DNkk6tMg3DFwjSRHx\nd8ADktaTjhQOLJ6nuH8o8BjpCONJkv4SuBjYGxH35pit6fmcrbom52tytqbkW5LCLulZwJ8BDwH/\nWdK7i2WvAR4qVhrgAlKXy7eBnwAzXSzXk84Y/zgivgJsBM4ATgT+e0Q81jGPKk4qlvdS0kmJ9wAH\nkb7s7LDi6ALgwiLfN4t1eQlARHy9mMfyiLgVOJN0ZPE/I+KNPeRqeram53O2PPM1OVsz8s03XKbq\nP2CINFLluCIYwB8D7yxut4GPAqcCLyLtsc+89imkQxVIhfwG0q8wHQ/8LfDkjmlLD0cqGvZM4GpS\nd84hxeOf68j3NGBT8fwJwD8ByzrW7YfFfNaQjiTeDnwS+Biwqod2a2y2pudzNv9d3Xb/9l9f99gl\nHUc6wfkbwPuA9xZP7SSNw4T0yXMN8FvAPwCHSXq2pBWR+tN3SvrViLiS9HWXHwIuBS6OiB/MLCuK\nlinpZcArgPeTjgbOLR6/AnhBcfv7pMZ/aURcR/rEHS2WOQ1cC5wQETuB15G6gu4B3hsRD5cN1HGk\n8fKmZZvFbVdN49oN3Ha9ZHs8tF1PP40n6bmkk5pXRMQPSXvjt0fEGZKeA5wjqU36RPtPkg6IiB9L\n+jZpiM9hpH6j3wY+KmkPMAXcWSziz4GLImJ3iUyKiJB0AvAaUqNuizQ88t8Bd0TElZLuJF29+mJg\nO/Cbkg6JiPsk/TMwLempwJ8Cr5X0JNKvRv2IdOhEREwCkxXarU06qnkI+DBwL/D0urO57aplezy0\nm9suv7ZbSKk9diUrJL1e0g2kjv2DgZnC+1NgR7H3fT3p0OL5wDTwA9IQHkj9T/eSPp22ADeR+tev\nBu6LiLsg7ZVXLOonAZ8gnVX+deCDxSSPAbdLWhkRdxb5ng08CNxN+rCZWY9lpPa5pMh4OrAO2BIV\nx7hKWi3pk8U87wTOi4h7Je1D+iSvM9uyou1+jXQo2Ji2K7a7IUkX0LC2K5YZkkZo5ja3n6RVDW27\ngxredkOS9pd0IQ1ru0V1019DGpHyguL2wUWwj84x3Vmky2DXFPdPJfWnH0H6CoCri8f3B/6Rok+q\neOx4YN9u8sxa5gGkfq6LSHv+K4DfA95WPP8E4MZi/qeR+rvWFs+tJw2xPIR02HcjsJrUv/+FzjzA\nPj1kuxh4I6lP7UPAmR3TzJyHeDvwP5YqW8ff9S2kjW0D6QRPU9puJtulxXZ1aMPa7kBgG+mXxADe\n1YR2m5XvC8BfFPfPbULbkd4TbyC9/y9pWtt15LsS+GzxWGO2u27/LbrHLuk9wB3ANkmtiHiA1C90\nd9E3/gr9/AKhr5MOL2YuNLqGdBL1xxFxIXC/pE+RToreBvysDykiboiIRxfLMyvbYcDlwAjwKdIJ\nileSjhL2FvP9V9Jvs55FunL1UNIwS0iHfSeRLoa6nLTXsJU0pPJC0pHFTL5Sn6qzsv018NYi2+3A\nUZI2FXtRb1K64OqLpK6pgWcr8q0ivblOJm2MLyad9ziBtKdUZ9t1ZttCGi3wSuAW4Jl1t11hJena\ni1+RdAhpm19WzLOWdpsj376kbe2Xi+UOS/pgXW0naQXpHNupwIcj4reKp47vmGdtbTcr37kRMbPH\nPQUcXWfbldbFJ9gI6fDir4B3FY+dQCpaO4vgFwGbi+fOAT7Q8frrgOOL2/uRhgCd0I9PJdLG+7yO\n+2eQ9kzeAHyz4/FfBu4ubr+NdNnuE4rXfx54ase0hwwo2+tJZ7qPBD5LusLs1cD/ohgZtFTZOuZ3\ncMft/wK8k2L4VZ1tN0e23ycNGXt6g9ruDaS+1rOBN5NOpF1Xd7vNke+9pCL5xKLdPltn25GOwE6f\n9dhpwLVNaLt58j21yFD7dtf1enSxojNDc04DJorbK0h7U6uL+0eQ9tZPIB0CbiXtaX2R9Em130DC\npz4uwc9+u/U5/Ly750ekMaMz036ZotCSDp+uKKb5gyXKdjzw1ZkNt2O6FcAEcHJx/5xBZ5uV8yDS\n+Y1dwAeK+z8CWnW13RzZ7imWu4qim6+utuv4e74R+B3SkcRnisfuq7vd5sk3XjzWOVy4lu2O1EVx\nO2kI9FWkrtsjSFdfPqkB29zsfH9E6oWodbsrvR4lVviJpAuFnlXcXz7r+QuAU2c2IFLXw5kMqKjP\nszFfCJxV3P4U8KHi9i+Rjjie2vGHOYaOrwReomxv63ysuH1Y0XbPXupsHRl+lzTedgupX/trxRtO\ndbbdrGznk4aVPaMJbUcaq7yM1Id6NWnP+Cbg7Lq3uTny/SNphNlzGtJ2fw/8N9J1K58lHVF8vUHb\nXGe+z5Au/T+yCW3X7b+ZotMVSR8DHoyIjcX9fUgjW94GPAs4LUr2k/eLpMOBjwPviIjblb5QbKzI\ntQa4ISLetNA8liDbWyPijuKx40ndUuuBb0XE79aRrZOkY0kfxt8g9RseQ9pbqa3tOrIdQ+qO+d/A\nj0l7VrW0naQhUjfHfqR2+vekL3Z6D2lP+UhqbLc58h1JOj/xItI5rxeS2q+W7U7FsOfi9rGk9+k1\npEvqa9/mZuU7hnSl+3mkb5qtbbsro+w49i3AecVJhmeSNuITSX+U99RV1AvHU4yBl/QW4C7SG+00\n4DuRhl/Wne17RbY7SRvHXtJe/A01Zut0P+mbNc+OiL+W9Frg5obke4A02uAm0t91BfW13V7S6Imf\nkPbUf0ra/qeAdxftdkuN29x8+R6R9ApSwa9tu5spmoUHSOPVz46Ii5qwzc3K9xBp5/VW0l58ndtd\n18rusb+KdKL0EdI3jl0ZEbcNKFspkq4hnVzbQRpD+v6IuLHWUIVZ2e4BNjao3VaT9uBeQ/rStS3A\n+RHxkwVfuATmyPbxiNhcb6r/X3HhyUxf9j1155mtyHcq8MlIo07qzrMf6TcXXkc6ov4z4GORvqa7\ndnPk2xIRf1JvqnK6LuySnk0az7mVdLKob1+V26viCOJ9pD3hT0e6aq0RmpwNQNJyUvfLI6R8Tfq7\nNjYbpIu6gMeizN7REmpyPklnkobVfqppf1dofr7FlNpjNzOz5mvqT+OZmVlFLuxmZplxYTczy4wL\nu5lZZlzYzcwy48JuZpYZF3Yzs8z8P8EmcTPhydjjAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}