{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Titre du document" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2+2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10\n" ] } ], "source": [ "x=10\n", "print(x)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20\n" ] } ], "source": [ "x = x + 10\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Petit exemple de completion" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "mu, sigma = 100, 15" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "x = np.random.normal(loc=mu, scale=sigma, size=10000)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD8CAYAAACVZ8iyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAEGRJREFUeJzt3X+s3XV9x/Hna1TY/LFQ1gvDtu5WU7eBUSQdspEtKBMKGIvJTEqMNI6kZoFNF/ejaDKchgQ3lY2EsVTpKJuDMcXRSCd2nZnxD34UhoVaGXfQwaUdrUPRjQQF3/vjfBoP7bm395x7e889+HwkJ+d83+fzPd/PJ5/b+7rfH+fbVBWSpJ9sPzXsDkiShs8wkCQZBpIkw0CShGEgScIwkCRhGEiSMAwkSRgGkiRg0bA7MJ0lS5bU+Pj4sLshSSPlvvvu+3ZVjfWzzoIOg/HxcXbs2DHsbkjSSEnyX/2u42EiSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCSxwL+BLC1k4xvuGMp291x94VC2q5c29wwkSYaBJMkwkCRhGEiSMAwkSRgGkiS8tFQjbliXd0ovNe4ZSJIMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSSJGYRBkuVJvppkd5JdST7Q6h9N8mSSB9rjgq51rkgykeThJOd11Ve32kSSDUdnSJKkfs3kdhTPAx+qqvuTvAq4L8m29t41VfXJ7sZJTgHWAqcCrwb+Jcnr29vXAW8HJoF7k2ypqm/OxUAkSYM7YhhU1T5gX3v9/SS7gaXTrLIGuKWqngMeSzIBnNHem6iqRwGS3NLaGgaSNGR9nTNIMg68Gbi7lS5PsjPJpiSLW20p8ETXapOtNlVdkjRkMw6DJK8EvgB8sKq+B1wPvA44jc6ew6cONu2xek1TP3Q765PsSLLjwIEDM+2eJGkWZhQGSV5GJwg+V1W3AVTVU1X1QlX9CPgMPz4UNAks71p9GbB3mvqLVNXGqlpVVavGxsb6HY8kaQAzuZoowA3A7qr6dFf95K5m7wIeaq+3AGuTHJdkBbASuAe4F1iZZEWSY+mcZN4yN8OQJM3GTK4mOgt4L/Bgkgda7cPAxUlOo3OoZw/wfoCq2pXkVjonhp8HLquqFwCSXA7cCRwDbKqqXXM4FknSgGZyNdHX6X28f+s061wFXNWjvnW69SRJw+E3kCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJKYQRgkWZ7kq0l2J9mV5AOtfkKSbUkeac+LWz1Jrk0ykWRnktO7Pmtda/9IknVHb1iSpH7MZM/geeBDVfXLwJnAZUlOATYA26tqJbC9LQOcD6xsj/XA9dAJD+BK4C3AGcCVBwNEkjRcRwyDqtpXVfe3198HdgNLgTXA5tZsM3BRe70GuKk67gKOT3IycB6wraqerqrvANuA1XM6GknSQPo6Z5BkHHgzcDdwUlXtg05gACe2ZkuBJ7pWm2y1qeqSpCGbcRgkeSXwBeCDVfW96Zr2qNU09UO3sz7JjiQ7Dhw4MNPuSZJmYUZhkORldILgc1V1Wys/1Q7/0J73t/oksLxr9WXA3mnqL1JVG6tqVVWtGhsb62cskqQBzeRqogA3ALur6tNdb20BDl4RtA64vat+Sbuq6EzgmXYY6U7g3CSL24njc1tNkjRki2bQ5izgvcCDSR5otQ8DVwO3JrkUeBx4d3tvK3ABMAE8C7wPoKqeTvJx4N7W7mNV9fScjEKSNCtHDIOq+jq9j/cDnNOjfQGXTfFZm4BN/XRQknT0+Q1kSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEliZv/TmaQFZHzDHUPb9p6rLxzatnV0uWcgSTIMJEmGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkiRmEQZJNSfYneair9tEkTyZ5oD0u6HrviiQTSR5Ocl5XfXWrTSTZMPdDkSQNaiZ7BjcCq3vUr6mq09pjK0CSU4C1wKltnb9KckySY4DrgPOBU4CLW1tJ0gJwxLuWVtXXkozP8PPWALdU1XPAY0kmgDPaexNV9ShAklta22/23WMtSMO8k6ak2ZvNOYPLk+xsh5EWt9pS4ImuNpOtNlVdkrQADBoG1wOvA04D9gGfavX0aFvT1A+TZH2SHUl2HDhwYMDuSZL6MVAYVNVTVfVCVf0I+Aw/PhQ0CSzvaroM2DtNvddnb6yqVVW1amxsbJDuSZL6NFAYJDm5a/FdwMErjbYAa5Mcl2QFsBK4B7gXWJlkRZJj6Zxk3jJ4tyVJc+mIJ5CT3AycDSxJMglcCZyd5DQ6h3r2AO8HqKpdSW6lc2L4eeCyqnqhfc7lwJ3AMcCmqto156ORJA1kJlcTXdyjfMM07a8CrupR3wps7at3kqR54TeQJUmGgSTJMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEnMIAySbEqyP8lDXbUTkmxL8kh7XtzqSXJtkokkO5Oc3rXOutb+kSTrjs5wJEmDmMmewY3A6kNqG4DtVbUS2N6WAc4HVrbHeuB66IQHcCXwFuAM4MqDASJJGr4jhkFVfQ14+pDyGmBze70ZuKirflN13AUcn+Rk4DxgW1U9XVXfAbZxeMBIkoZk0HMGJ1XVPoD2fGKrLwWe6Go32WpT1Q+TZH2SHUl2HDhwYMDuSZL6MdcnkNOjVtPUDy9WbayqVVW1amxsbE47J0nqbdAweKod/qE972/1SWB5V7tlwN5p6pKkBWDQMNgCHLwiaB1we1f9knZV0ZnAM+0w0p3AuUkWtxPH57aaJGkBWHSkBkluBs4GliSZpHNV0NXArUkuBR4H3t2abwUuACaAZ4H3AVTV00k+Dtzb2n2sqg49KS1JGpIjhkFVXTzFW+f0aFvAZVN8ziZgU1+9kyTNC7+BLEkyDCRJhoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kSsGjYHZA0OsY33DGU7e65+sKhbPcniXsGkqTZhUGSPUkeTPJAkh2tdkKSbUkeac+LWz1Jrk0ykWRnktPnYgCSpNmbiz2Dt1bVaVW1qi1vALZX1Upge1sGOB9Y2R7rgevnYNuSpDlwNA4TrQE2t9ebgYu66jdVx13A8UlOPgrblyT1abZhUMBXktyXZH2rnVRV+wDa84mtvhR4omvdyVaTJA3ZbK8mOquq9iY5EdiW5FvTtE2PWh3WqBMq6wFe85rXzLJ7P3mGdbWHpNE2qz2DqtrbnvcDXwTOAJ46ePinPe9vzSeB5V2rLwP29vjMjVW1qqpWjY2NzaZ7kqQZGjgMkrwiyasOvgbOBR4CtgDrWrN1wO3t9RbgknZV0ZnAMwcPJ0mShms2h4lOAr6Y5ODn/H1VfTnJvcCtSS4FHgfe3dpvBS4AJoBngffNYtuSpDk0cBhU1aPAm3rU/wc4p0e9gMsG3Z4k6ejxG8iSJMNAkmQYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJErBo2B2QpCMZ33DH0La95+oLh7bt+eSegSTJMJAkGQaSJDxncFQM8/imJA3CPQNJ0vyHQZLVSR5OMpFkw3xvX5J0uHkNgyTHANcB5wOnABcnOWU++yBJOtx87xmcAUxU1aNV9QPgFmDNPPdBknSI+T6BvBR4omt5EnjL0dqYJ3Ilzdawfo/M95fd5jsM0qNWL2qQrAfWt8X/TfLwNJ+3BPj2HPVtIXFco8VxjZaRGFc+0fcq3eP6hX5Xnu8wmASWdy0vA/Z2N6iqjcDGmXxYkh1VtWruurcwOK7R4rhGi+Pqbb7PGdwLrEyyIsmxwFpgyzz3QZJ0iHndM6iq55NcDtwJHANsqqpd89kHSdLh5v0byFW1Fdg6Rx83o8NJI8hxjRbHNVocVw+pqiO3kiS9pHk7CknSaIVBkmOS/HuSL7XlFUnuTvJIkn9oJ6VHTpLjk3w+ybeS7E7yq0lOSLKtjW1bksXD7me/kvx+kl1JHkpyc5KfHsU5S7Ipyf4kD3XVes5POq5tt1vZmeT04fV8elOM68/bz+HOJF9McnzXe1e0cT2c5Lzh9PrIeo2r670/SFJJlrTlkZ6vVv/dNie7kvxZV72v+RqpMAA+AOzuWv4EcE1VrQS+A1w6lF7N3l8CX66qXwLeRGeMG4DtbWzb2/LISLIU+D1gVVW9gc4FA2sZzTm7EVh9SG2q+TkfWNke64Hr56mPg7iRw8e1DXhDVb0R+A/gCoB225i1wKltnb9qt5dZiG7k8HGRZDnwduDxrvJIz1eSt9K5i8Mbq+pU4JOt3vd8jUwYJFkGXAh8ti0HeBvw+dZkM3DRcHo3uCQ/C/wGcANAVf2gqr5LZ4I3t2YjOTY6Fyj8TJJFwMuBfYzgnFXV14CnDylPNT9rgJuq4y7g+CQnz09P+9NrXFX1lap6vi3eRee7QNAZ1y1V9VxVPQZM0Lm9zIIzxXwBXAP8ES/+outIzxfwO8DVVfVca7O/1fuer5EJA+Av6Ezkj9ryzwHf7frBnaRzu4tR81rgAPA37RDYZ5O8AjipqvYBtOcTh9nJflXVk3T+SnmcTgg8A9zHS2POYOr56XXLlVEd428D/9xej/S4krwTeLKqvnHIWyM9LuD1wK+3Q6//luRXWr3vcY1EGCR5B7C/qu7rLvdoOoqXRi0CTgeur6o3A//HiB0S6qUdQ18DrABeDbyCzi75oUZxzqbzkvi5TPIR4HngcwdLPZqNxLiSvBz4CPAnvd7uURuJcTWLgMXAmcAfAre2oyZ9j2skwgA4C3hnkj107nT6Njp7Cse3QxDQ49YWI2ISmKyqu9vy5+mEw1MHd1fb8/4p1l+ofhN4rKoOVNUPgduAX+OlMWcw9fwc8ZYrC12SdcA7gPfUj689H+VxvY7OHyXfaL9DlgH3J/l5Rntc0On/be0w1z10jpwsYYBxjUQYVNUVVbWsqsbpnBT516p6D/BV4Ldas3XA7UPq4sCq6r+BJ5L8YiudA3yTzm061rXaKI7tceDMJC9vf6kcHNfIz1kz1fxsAS5pV6mcCTxz8HDSKEiyGvhj4J1V9WzXW1uAtUmOS7KCzgnXe4bRx35V1YNVdWJVjbffIZPA6e3f3kjPF/BPdP44JsnrgWPp3Kyu//mqqpF6AGcDX2qvX9sGOAH8I3DcsPs34JhOA3YAO9vkLqZzTmQ78Eh7PmHY/RxgXH8KfAt4CPhb4LhRnDPgZjrnPX5I5xfJpVPND53d8+uA/wQepHM11dDH0Me4Jugca36gPf66q/1H2rgeBs4fdv/7Gdch7+8BlrxE5utY4O/av7H7gbcNOl9+A1mSNBqHiSRJR5dhIEkyDCRJhoEkCcNAkoRhIEnCMJAkYRhIkoD/B8IGXPTxqh8eAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "plt.hist(x)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Utilisation d'autres langages" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "%load_ext rpy2.ipython" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAACAgIDAwMEBAQFBQUICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///88pmfTAAAXMUlEQVR4nO2deWAUVZ7H4+IxLqITBnDVdZVZZ1xcRlaHpEM6CUkgECAG5RIE5DAcKjeKhlPliqKIAuGQUS4JlyCow30GQQ4FwhGJyBHOXBBD0un0+2ermjh0upvqrq73qqp//f388Tq+fvWrn3zSnbre+4UxQJowoxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4yjJgApbbRAn+sstsYDyWn4UJ/iTwbQE3enEQ7Ljm8NILwaZAs+Dy0X++M6xWwzEV7m9AsCnQLPillJ2FlYXZnXq6vwHBpkCz4PAbzhf7I+5vQLAp0Cy48Wrny9an3d+AYFOgWfDeBk917N3p6Qf3ub8BwaZA+1F05YbMyZkbKj36IdgUcDhNKnK2xe7dEKwLBZeU39csOOfJOx5bKZ0teYyEYB242ialY/M8pRGaBVun2DbX3wnBxtB1B2PHWyiN0Cy4ThVjq/5qcxH8/SQn7fr7mSQInBi5aefx59EFzYIb7paa9gNcBJ/Z4CQ1xa8UgRacgpPKFEZoFpxVO66AFT7TxGPkoI4+twVaGTqbsa87K43QfhSdv6qUMVvWSPd+CNaB8pFWa5rSNzSXu0negWBTAMHE0Sz4+O+4vwHBpkCz4BZhd9d34v4GBJsC7V/Rr6R574dgU6Bd8NbJ3vsh2BTgIIs4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJo64sjoQbArEldWBYFMgrqwOBJsCcWV1INgUiCurA8GmQFxZHQg2BeLK6kCwKcBpEnFwmkQcnCYRR8Bp0vJ4J4/EaUoM8AGnScTBaRJxcJpEHNwuJA4EEwdldYiDsjrEQVkd4qCsDnFwkEUcCCYOBBMHgokDwcSBYOJAcHDzS8akI4oDIDio2Ry3+ps2i5RGQHBQE1fEWEWEt2cefweCg5qYz5NaTH/hksIICA5qGg4sLZ/YAJ9gsjRqsW1PpydsCiMgOKiJOfz2yOz2VxVGQHBQ00bSd7WZ0ggIDmpOWt4ab9mjNAKCg5uK7ZtKFQdAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTI6ff8x+Uu/w3BNPiR+uBK/PaujzDA8G06CmvtDDgwK0OCBbD0TbW6LkG7DdRXlJy2upbHRAshOuWX5it12rfA3kzYr3UJJ++1QHBQtjwjtRc6KT/jout4xa0n+rSAcFCWJshNYXPGbDnym8+O+H63xAshKvR1xmbMMfoNBgEi2Jj5IvWEUozDvQCgkVxzmOJdEPAkv7EwZL+xMGS/sRB5TMv/FZldAb8wJL+HhyOb2UZZjc6C15gSX93KixnGcvIMDoNXghY0v+n2U6aJ2tMzSD2D5EaW4LRafCC03nwFZefTyxz0rptwEkZysHBDIJduNTzmeFX/nbn4x6rNQXrV7QtKo+xdz8yOg1eaBac/PzyNnUzHR96lMEKVsHsWKuEqHQyx9GaBdcuZmfurmC/3e/+RtAKlo6zjE6AI5oFN/yKfRF2nB16zP2NIBZMCc2CV95Vv96MJ19v6PFHC4JNgfaj6Cvfl7JtY9Z79EOwKcDtQkHY864bnYITCBbDNxE9E14zw6E4BAvhsrWMsSkzjU6DQbAg1rwvNUUpRqfBIFgQGydIzfkuRqfBIFgQpZYT7MZL64xOg0GwKE6mxlkXGp2EDAQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwUGN47OWidOUCp9BcHDz/pDfKqa+rjQCgoMaq/zQSBxqF5IlRm5Qu5AubXMZuxKtNAKC9aJw3YYb3IPmWkaNs3yvNAKCdWJL1JTxlpPcw1bs2PSb4gAI1omIEsZOGTCjFoL14ea6lTH67xiC9aFCnl5badV/xxCsE4PeK73aJ1P//UKwTthntXpuhcptjr8Qk7RZ434h2LwUSEfdV1se8D1QCQg2L0s/lZp9Q7UFgWDzMnux1OT21hYEgs3LsXZVjKUv0RYEgg2jZHGm8j8+mxs9OGmIxr34J7jCpfUXCFbmZMQni1r/Q3nM9QNKN4r8wj/BjeSm/CFVkSFYmdRcxiojy30P1IY/gmvVCqslk6oqMgQr47xsOfCw6N349wluE0BkCFYmseT3Rih+HmSdYLYV8xUf7vIAgpX5Z8tDp98eLHw3/glOv8c+6cm/91UVGYJ9sH9AjyXiC+/4J/iPeeyhPUV/UhUZgk2Bf4IfKPyhQdX1OrcZhLI6JsY/wX0bPz7lclOvS7ijrI658U+wPWtJZf4kr0d8KKtjblBWx5OtY6df8T0qSPBH8L07Gt3E2wh6ZXVGv7JlSdNco7PghT+Cvy08chNvI8iV1bmYJDXHzLBIHRcElNX5somTes01pmYQ29Pl1oDnH8Xgj+Dwm9RNvO2wwmuefcH6Cc6XH17+OUiT98QfwcXFE5P2XNzb1uvquCdjTuU9+2+1rGfc3whWwWzo4L1rI48anQUv/PuK/s9SqSn7L28jItIrk98uLx+T5P5G0Apm64dPOm90DtzwT/CDx6TmxMPeRtSpYI9eZ6wq3P2N4BVMCv8ET20wdsG4Bh94GxG7iHX5irGNdE6TaOHnUfTGAe1f3eJ1xC+NmrSu1TKhwR73NyDYFHB46G73/MmzvvG8VwzBpgBPVYrBvqDf2HzlITkjB64VnwgEi6FDxrFvIvKURmxrvvPwoLeEJwLBQtjfT2r2DVAa0rJQapp7uULEFwgWQtYMqbnRUmmI82Loqz+JzgSChXCss9RsGK40JOVXxqos/NdlcQOC/eH8ObVbDE1b97FFcVrC0Yh/rE6drTJsVZ7aqQ4Q7JuzCZ1fjP9V5UY7pn5RpjziauY0tY+977P0aNdBeVUddyDYNymHGDsSyLP/vLFHXGZslbrpaBDsk8p4uW0hfBaRb472l1t1t6oh2CeOWLltbjc6D8ZOd5cae5yqbSDYN/0/Y2yhumkdgkjcweyjPla1CQT7pmxETMwwdYc2/rC9e/tMlV8LF3vERn+gbroLBBvF2pSfr05KE74bCDaKBPkpmVZFoncDwUZhqgnggQDBynTIYawiQt26JwEAwXw4u/2iyi1+iZycmZAlJBlXIJgLw9qlt5ygcpuyNYtVX+JWDwTzYM0wqem10+g0vAHBPBi+V2q+e8/oNLwBwTyYuF5qFs0yOg1vQDAPfok+zY5HqT3M0gUI5sKh9jFdjqvcJispfoKPW8YcgGCj+Pzla/YFnYXvBoKNorl8jeM54WtFQLBROC9V9hc+TRWCjaK7dGpV2rTS90BtQDDLWX5Qj90UrP1njUOqS9Yh46M2CN8tBA/t8nGfblXCd7OpWcY7lhOuPfa9G4XPa4BgtlWeXzJxofD9yLUL8wx4NDPkBU9ZJzWHB4reTb7zhAi1C/XnC/kC49fCLyNXyI9monahAZRYttj2WcQvujLknWuXe80RvhsPQl4wuzA4vp/iRF4+2Gcnt18lfjceQDBxIJg4EEwcCCYOBAvihxkrhD8S6w8QLIa3ey6b0kz4tAU/4CEYVVc8OPGC1Kx/w+g0GAfBqLriDecqO2UeK/AagGbBqLrijX2vSs0B8XMHfYOqK0JwpHx6ZqvlpNFpMA6C6VVd8YMMS0xKjbosa6Nj4za7dthmdht5Wt+kvKNZMLmqK34wd0QVO97M5ajjUOtSVtT8lHEZ3R4BVVdOLXPSup3G1MxLK3k9h2Euv9Jjt0jNyo8MSkcRTufBu11+3jfJSVTrgJMyO4nyh3fUrlsdzp+/nmpUPkpwEnyvZxfhr+ip0mf1isXlEbodXe3M1k74wqKBoFlw7btkwu66y/0NwoLtA2NfiN7r2jMrolPTxUalo4hmwUee6ZJ38eI9Fz1mXhEWzFjFZbeOqgvii3kHhPavaPvERttC7Cs6mODxNzgnYiAEmxUuB1lV73f17IRgU4DbhV4oFbLwaJkh94ch2IMf45KbDeGu+EzrpPhuOkxVcQeC3amQH5L+cArvsC1/ZGzNK7yj+gaC3flhKPt9EXCOFD0nt5i6YgIODZKaitsXww6MEueVeQg2AbZmucwxXt2q237QdhdjC1/nHdU3xASv7Tdc7RXhgtQnWtW4c3siOc4yjvt1qYudYq0DxC+q4wEtwaNfO7KnxUZVm5Tc3/u7obVr3psXU57BmKIPpASXyX/jShJUbTNInpQ9qK2QfMwAKcEnnJUz1B3JJMmLxK5+SkQ6poCUYFtEJWNnk1VtM9YiNZ29XGolAinBbH7blQsi1R1lVT3SdEx8+HWVOyo46fYXtfSY+jKTl34Wv/YLMcEsZ/octdUbq95t84bKq8S2l9r0jtzq2jM5Oi1qprog11NTX47ar26bACAmWB8mzGfsmqX0VsfGPtIvSscfVAUZuE46d7II/wxDcAAk2KQmffutjjeypWb9ZFVBnMeCfU/4GqYVCA6AZPlP9uADtzomyOfey2aoChIrf3i7CF/9BYIDYHFaBdsf4/IoeE7CVZZvPaMqyLS3q9jmVpwz8wSCA2GONbbrWdeOrYmxrfbebrR3HBnRsX2EryYMwdSBYOJAMHEgmDjUBdsP7HG7CZu7rcCYVIyBuODz1lfftGS7dFR2fnFM7HzD8tEf4oI7HmSswOLSMW0WY1VJpph7rw/EBTuvB3ZzuQKRKn8/z1xqUDoGQF2wfD2wlcvNwD5yfbJx6p7qCWqIC/5oSIVjfg+XjuxWV1h2tPp7t0ELLcFlE5q3rDEP2zE3PnZ8jcPoLcnWtHzXjrweMZ1rPCNQ8kZc669dO+wzEhKmCy9wJAhagrvOt5emqVs3v8ByiOU2c1ny3dF6laOwwxqXIeljK2zvmmFZwkAgJbhYfkKyMk7VNgvmSc13LuXZT/aSmhLXB7ui5cZq0hn8viAl+GfZjcqnKqfK38Y/vnarY9coqXHE3uqwOZ/DTTLgoXUekBJc1fQaYwdeVLXN7pelZvSyWx3XoioY+3awy5AWvzJ2jvdsNL0gJZhtsYweYr2gOMSxM6vminRj277Tob9rx8rocQNalLh0HLW8OcpymFuS+kJLMLu+ZZ/yDJGypCEzUmquWHb2O7eqOkWbDtb8g1u+a2c5l/QMgJhgn7wrn0U9Z4ZlYHUi1ASnyMvszzbnmmVCCDXB/X+UmlHbjE5DP0JN8GHrkfKV8cF6WSoATCx4Voy1r/uKgdr56eWWY0p8DyODeQXPfc3GtiYG6fUj82DesjoJ8oywXrk+xwFFzFtWJ1b+rRkifvodccxbVmfYKsaKI01RHi6YMW9ZndLUF/pbdmqL4YWKrOnfq93m/Jw557gnohNmLqtzPsemNYQHxdapK3oPV7fN5ujPv4jZwD0VfQi1sjrp8p38F4+o2sZaxNi1ZmLyEY6AsjpfNnFSr7nG1ITQrlhqMhep2eTm/WBnKZ0ghMNp0s0iqsXu3eb8BL++R2oG7/I5zpUo6bfXHikmH+FoFpzz5B2PrZTOljxGmlNwXsSm05+2VXf5ZG6XozkvqVxixTRoFmydYttcf6dJBOd3iIkaqXxkdnZU95lqj9229EvbFHhSxqJZcJ0qxlb91WYOwS2kM6Dpo/Xfr4nRLLihXNWu/QBTCL7YSW5rPHRn358dpEdHnNAsOKt2XAErfKaJGQSf6Sa3roLPWV97M3L3bYaHBNqPovNXlUqnElkj3fuN+Iq2Sv83y11X3e54iLGCYD0A5oJ5bxd6UjZn1FLlleFOJqQkvOT6lewxuzDkCCLB16Izd01M8bH2X1HNeWUeswtDjiASnCE/Kpe+XtU2Hw0ud8zr4XscXYJIcB/5Ydc176vaxjEvIWZCkE464UMQCc6Q5+WPXsc5KnWCSPC1qHnfT22ref3dKo+r5qQJIsHst5nDF2kuXTIhIqVZCD0WHVSCebBwhIOVRItfA9Q0hJrgzvLcww9XGZ2GfoSaYOcqwBlrjU5DP0JN8Oq+lexCVJHRaehHqAlmn0bGJYbSw9YhJ5ix0JoNE4KCQwsIJg4EE0cvwaU5pbcbqIHynNC67hgAOgn+MLp/tLr7QP6wzJKWOCi0jplUo4/gXd0czNFz++0HB8Svcom58Qs4RyWGPoKdpd+2pwcezCuLM6XmvLqF7UIOfQRPk6cgrlNXvNE3X8lf+sdf4RyVGPoIzou5yC7FKe9KPSWWXHY9lfcXPzF0OsjKbhWbpG7Glz8cf94a/xX3qLTAeTBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgmFrwyKfatUJ7ZywfzCl7WtcSR1U5bDGBiwS3kab3dQqhWtxjMK9i5vMYwjzVOgTrMK7j/ZsZuRIb07Hwe6CX44OKDKrcvjB8wppm6FTmAJzoJ7ttrZu9eKp9/dBzcei3w3YOb6CN4zZtSk74y8GAgUPQRPFpeNCE7WKukBzX6CJ71udQs+TjwYCBQ9BFcGLntxvbIq4EHA4GiU+Wz/MFJg86rSAvwwryVzwAXBFQ+u/yDk86pmpMD2hFQ+WzbSCfxvTUlBvggrvLZl58EmBLgibjKZxBsCgRUPqsGgk2BuPNgCDYFEEwcCCaOOMHfNo5X5E/3PyCAP9wnImrtfxcR9b4/iIh6f3iNf+YnlC8gahDsCzHFbsZsERH1izkiou5+U0TUSx3UjIZgJxAcABAMwQEAwRAcABAcABBMXHD3cyKijheybNbi+SKi7nlLRNQrndSMFihYzCOxpZoLZ3mjolxEVIeIBXhV/sMKFAzMAAQTB4KJA8HEgWDiQDBxIJg4EEwcYYKjw8LCknkHffa41Ox7um53rtclnFE557v8z3Vij3HPtTqqmlyFCX7oVGnpDb4ht/UJk1RUNlhV1m4076ic871Qe1fV5P/hnWt1VFW5ihJcfi//mJPT7pZUbHiKsZ3/zTsq53xXxTFmu6OIc67VUVXlKkrwsTpN6jTP5R21vqQisyNjhXfyrJYlR+Wcb2kBY5sf451rdVRVuYoSvCcx1zbi/3hHlVVM7i19TYfxvJMhR+Wf7+p6KwTkKkdVlavIo+gbdxRwjuj8BHeSPhW1eH+CZXjmW/j8X3byz/VmVBm/cxUleNdmxiru5H27TFax4WnGshvyjso5X9uz/W2Me67VUVXlKkrwpro5VeMSeUeVVVQ+uNXeeQzvqJzzzWpSLsE71+qoqnIV9hU9tUHdlHzeQZ1fpvv+9jDf82BnVL75vhEmU8w519+jqskVV7KIA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSDYheJwozPgDwS7AMHBjj0tPHw0W9qnW0TUUcY2/2+9Duf+9ZLxH49OguAgJ6txwal7TiyttY8tbOS4Er69cmQcq37ZWD/neksIDnKWPL6f2dlSC2OOernzOjNWca+j+mXAWMayITjIqZzU4OEptqXPSz823jE2vJHE1eqX9gsYuwDBQU7+5arsJ1csfVZS/cCpmT0ZqzrOql9eHcfYXggOciY1LS3++/ylYWuq3mns+DX8YOV7Uaz6ZcuDJ2+0rWt0gvwJLcHFre8L721b2iL5j01zGPvqL/fH5f3r5f2HHp3JfTqk8YSW4Jss7Wp0BjoCwcQJRcEhBQQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJs7/A0ZodobFaD/UAAAAAElFTkSuQmCC\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%R\n", "plot(cars)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }