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Foreword: The explanations given in this document about the context of the study have been taken from
the excellent book Visual Explanations: Images and Quantities, Evidence and Narrative by Edward R. Tufte, pub-
lished in 1997 by Graphics Press and re-edited in 2005, and from the article Risk Analysis of the Space Shuttle:
Pre-Challenger Prediction of Failure by Dalal et al., published in 1989 in the Journal of the American Statistical
Association.

1 Context

In this study, we propose a re-examination of the space shuttle Challenger disaster. On January 28th, 1986,
the space shuttle Challenged exploded 73 seconds after launch (see Figure 1), causing the death of the seven
astronauts on board. The explosion was caused by the failure of the two O-ring seals between the upper and
lower parts of the boosters (see Figure 2). The seals had lost their efficiency because of the exceptionally cold
weather at the time of launch. The temperature on that morning was just below 0°C, whereas the preceding
flights hat been launched at temperatures at least 7 to 10°C higher.

Figure 1: Photographs of the Challenger catastrophe.

What is most astonishing is that the precise cause of the accident had been intensely debated several days
before and was still under discussion the day before the launch, during a three-hour teleconference involving
engineers from Morton Thiokol (the supplier of the engines) and from NASA. Whereas the immediate cause
of the accident, the failure of the O-ring, was quickly identified, the underlying causes of the disaster have
regularly served as a case study, be it in management training (work organisation, decision taking in spite of
political pressure, communication problems), statistics (risk evaluation, modelisation, data visualization), or
sociology (history, bureaucracy, conforming to organisational norms).

In the study that we propose, we are mainly concerned with the statistical aspect, which however is only
one piece of the puzzle. We invite you to read the documents cited in the foreword for more information.
The following study takes up a part of the analyses that were done that night with the goal of evaluating the
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Figure 2: Diagram of the boosters of space shuttle Challenger. The rubber O-ring seals (a principal and a
secondary one) of more than 11 meter circumference prevent leaks between the upper and lower parts.

potential impact of temperature and air pressure on the probability of O-ring malfunction. The starting point
is experimental results obtained by NASA engineers over the six years preceding the Challenger launch.

In the directory module2/exo5/ of your GitLab workspace, you will find the original data as well as an
analysis for each of the paths we offer. This analysis consists of four steps:

1. Loading the data

2. Visual inspection

3. Estimation of the influence of temperature

4. Estimation of the probability of O-ring malfunction

The first two steps require only a basic knowledge of R or Python. The third step assumes some famil-
iarity with logistic regression, and the fourth a basic knowledge of probability. In the next section, we give
an introduction to logistic regression that skips the details of the computations and focuses instead on the
interpretation of the results.

2 Introduction to logistic regression

Suppose we have the following dataset that indicates for a group of people of varying age if they suffer from
a specific illness or not. I will present the analysis in R but Python code would look quite similar. The data are
stored in a data frame that is summarized as:

1 summary(df)
2 str(df)

Age Ill
Min. :22.01 Min. :0.000
1st Qu.:35.85 1st Qu.:0.000
Median :50.37 Median :1.000
Mean :50.83 Mean :0.515
3rd Qu.:65.37 3rd Qu.:1.000
Max. :79.80 Max. :1.000

'data.frame': 400 obs. of 2 variables:
$ Age: num 75.1 76.4 38.6 70.2 59.2 ...
$ Ill: int 1 1 0 1 1 1 0 0 1 1 ...

Here is a plot that provides a better indication of the link that could exist between age and illness:
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1 ggplot(df,aes(x=Age,y=Ill)) + geom_point(alpha=.3,size=3) + theme_bw()

Clearly the probability of suffering from this illness increases with age. But how can we estimate this
probability based only on this binary data ill/not ill? For each age slice (of, for example, 5 years), we could
look at the frequency of the illness. The following code is a bit complicated because the computation of the
confidence interval for this kind of data requires a particular treatment using the function binconf.

1 age_range=5
2 df_grouped = df %>% mutate(Age=age_range*(floor(Age/age_range)+.5)) %>%
3 group_by(Age) %>% summarise(Ill=sum(Ill),N=n()) %>%
4 rowwise() %>%
5 do(data.frame(Age=.$Age, binconf(.$Ill, .$N, alpha=0.05))) %>%
6 as.data.frame()
7

8 ggplot(df_grouped,aes(x=Age)) + geom_point(data=df,aes(y=Ill),alpha=.3,size=3) +
9 geom_errorbar(data=df_grouped,

10 aes(x=Age,ymin=Lower, ymax=Upper, y=PointEst), color="darkred") +
11 geom_point(data=df_grouped, aes(x=Age, y=PointEst), size=3, shape=21, color="darkred") +
12 theme_bw()

A disadvantage of this method is that the computation is done independently for each age slice, which
moreover has been chosen arbitrarily. For describing the evolution in a more continuous fashion, we could
apply a linear regression (which is the simplest model for taking into account the influence of a parameter)
and thus estimate the impact of age on the probability of illness:

1 ggplot(df,aes(x=Age,y=Ill)) + geom_point(alpha=.3,size=3) +
2 theme_bw() + geom_smooth(method="lm")
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The blue line is the linear regression in the sense of least squares, and the grey zone is the 95% confidence
interval of this estimation. In other words, given the dataset and the hypothesis of linearity, the blue line is
the most probable one and there is a 95% chance that the true line is in the grey zone.

It is, however, clear from the plot that this estimation is meaningless. A probability must lie between
0 and 1, whereas a linear regression will inevitably lead to impossible values (negative or greater than 1)
for somewhat extreme age values (young or old). The reason is simply that a linear regression implies the
hypothesis Ill = α.Age + β + ε, where α and β are real numbers and ε is a noise (a random variable of mean
zero), with α and β estimated from the data. This doesn’t make sense for estimating a probability, and therefore
logistic regression is a better choice:

1 ggplot(df,aes(x=Age,y=Ill)) + geom_point(alpha=.3,size=3) +
2 theme_bw() +
3 geom_smooth(method = "glm",
4 method.args = list(family = "binomial")) + xlim(20,80)

Here the ggplot library does all the computations for us and only shows the result graphically, but in
the Challenger risk analysis we perform the regression and prediction "by hand" in R or Python (depending
on the path you have chosen), so that we can inspect the results in more detail. Like before, the blue line
indicates the estimation of the probability of being ill as a function of age, and the grey zone informs us about
the uncertainty of this estimate, i.e. given the hypotheses and the dataset, there is a 95% chance for the true
curve to lie somewhere in the grey zone.

In this model, the assumption is P [Ill] = π(Age) with π(x) =
eα.x+β

1 + eα.x+β
. This at first look strange formulae

has the nice property of always yielding a value between zero and one, and to approach 0 and 1 rapidly as the
age tends to −∞ or +∞, but this is not the only motivation for this choice.

In summary, when we have event-like data (binary) and we wish to estimate the influence of a parameter
on the probability of the event occurring (illness, failure, . . . ), the most natural and simple model is logistic
regression. Note that even if we restrain ourselves to a small part of the data, e.g., only patients less than 50
years old, it is possible to get a reasonable estimate, even though, as is to be expected, the uncertainty grows
rapidly.
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1 ggplot(df[df$Age<50,],aes(x=Age,y=Ill)) + geom_point(alpha=.3,size=3) +
2 theme_bw() +
3 geom_smooth(method = "glm",
4 method.args = list(family = "binomial"),fullrange = TRUE) + xlim(20,80)
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