diff --git a/module2/exo1/toy_document_en b/module2/exo1/toy_document_en index c2abb93927a60dec5d3bcb12d4ea0a03c6b1b589..0119720d909a9c2aa1d65ecaa26e1795b4ddd8d8 100644 --- a/module2/exo1/toy_document_en +++ b/module2/exo1/toy_document_en @@ -1,10 +1,48 @@ -# On the computation of pi +--- +title: "On the computation of pi" +output: + html_document: + df_print: paged +--- -## Asking the maths library +## Asking the math library -My document tells me that π is *approximately* +My computer me that π is *approximatively* +```{r} pi +``` + +## Buffon's needle + +Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem) we get the **aproximation** + +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) +``` + +## Using a surface fraction argument + +A method that is easier to understand and does not make use of the **sin** function is based on the fact that if $X∼U(0,1)$ and $Y∼U(0,1)$, then $P[X2+Y2≤1]=π/4$ (see ["Monte Carlo method" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The Following code use this approach: + +```{r} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +``` +It is therefore straightforward to obtain a (not really good) approximation to π by counting how many times, on average, $X2+Y2$ is smaller than 1 : + +```{r} +4*mean(df$Accept) +``` +