From b314c0f813a3949440af62af16b275373a1e8c57 Mon Sep 17 00:00:00 2001 From: cded6f222a164a22601711b16e547edb Date: Mon, 7 Dec 2020 20:47:07 +0000 Subject: [PATCH] Add CHANGELOG --- CHANGELOG | 73 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 73 insertions(+) create mode 100644 CHANGELOG diff --git a/CHANGELOG b/CHANGELOG new file mode 100644 index 0000000..9aa87a5 --- /dev/null +++ b/CHANGELOG @@ -0,0 +1,73 @@ +def print_imported_modules(): + import sys + for name, val in sorted(sys.modules.items()): + if(hasattr(val, '__version__')): + print(val.__name__, val.__version__) +# else: +# print(val.__name__, "(unknown version)") +def print_sys_info(): + import sys + import platform + print(sys.version) + print(platform.uname()) + +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +import statsmodels.api as sm +import seaborn as sns + +print_sys_info() +print_imported_modules() + +data = pd.read_csv("data_shuttle.csv") +data + + +%matplotlib inline +pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas +import matplotlib.pyplot as plt + +data["Frequency"]=data.Malfunction/data.Count +data.plot(x="Temperature",y="Frequency",kind="scatter",ylim=[0,1]) +plt.grid(True) + + + +import statsmodels.api as sm + +data["Success"]=data.Count-data.Malfunction +data["Intercept"]=1 + +logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], + family=sm.families.Binomial(sm.families.links.logit)).fit() + +logmodel.summary() + + + + +logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], + family=sm.families.Binomial(sm.families.links.logit), + var_weights=data['Count']).fit() + +logmodel.summary() + + + + +%matplotlib inline +data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1}) +data_pred['Frequency'] = logmodel.predict(data_pred) +data_pred.plot(x="Temperature",y="Frequency",kind="line",ylim=[0,1]) +plt.scatter(x=data["Temperature"],y=data["Frequency"]) +plt.grid(True) + + + + +sns.set(color_codes=True) +plt.xlim(30,90) +plt.ylim(0,1) +sns.regplot(x='Temperature', y='Frequency', data=data, logistic=True) +plt.show() \ No newline at end of file -- 2.18.1