#### Mon ordinateur m'indique que π vaut *approximativement*
# En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r pi, include=TRUE}
```{r}
pi
pi
```
```
## En utilisant la méthode des aiguilles de Buffon
# En utilisant la méthode des aiguilles de Buffon
Mais calulé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
#### Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
```{r}
```{r Buffon, include=TRUE}
set.seed(42)
set.seed(42)
N = 100000
N = 100000
x = runif(N)
x = runif(N)
...
@@ -33,11 +26,9 @@ theta = pi/2*runif(N)
...
@@ -33,11 +26,9 @@ theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
2/(mean(x+sin(theta)>1))
```
```
## Avec un argument "fréquentiel" de surface
# Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y \sim U(0,1)$ alors $P[X^2+Y^2 \le 1]=pi/4$ (voir [méthode de Monte Carlo sur Wikipédia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
#### Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si **X∼U(0,1)** et **Y∼U(0,1)** alors **P[X²+Y²≤1]=π/4** (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: