{
"cells": [
{
"cell_type": "markdown",
"id": "b27d13f8",
"metadata": {},
"source": [
"# Sujet 6 : Autour du Paradoxe de Simpson\n",
"\n",
"### Marie-Félicia Béclin\n",
"\n",
"En 1972-1974, à Whickham, une ville du nord-est de l'Angleterre, située à environ 6,5 kilomètres au sud-ouest de Newcastle upon Tyne, un sondage d'un sixième des électeurs a été effectué afin d'éclairer des travaux sur les maladies thyroïdiennes et cardiaques (Tunbridge et al. 1977). Une suite de cette étude a été menée vingt ans plus tard (Vanderpump et al. 1995). Certains des résultats avaient trait au tabagisme et cherchaient à savoir si les individus étaient toujours en vie lors de la seconde étude. Par simplicité, nous nous restreindrons aux femmes et parmi celles-ci aux 1314 qui ont été catégorisées comme \"fumant actuellement\" ou \"n'ayant jamais fumé\". Il y avait relativement peu de femmes dans le sondage initial ayant fumé et ayant arrêté depuis (162) et très peu pour lesquelles l'information n'était pas disponible (18). La survie à 20 ans a été déterminée pour l'ensemble des femmes du premier sondage.\n",
"\n",
"Les données sont disponibles dans ce fichier CSV. Vous trouverez sur chaque ligne si la personne fume ou non, si elle est vivante ou décédée au moment de la seconde étude, et son âge lors du premier sondage."
]
},
{
"cell_type": "markdown",
"id": "c4aee39e",
"metadata": {},
"source": [
"# Import des différentes bibliothèques utilisées"
]
},
{
"cell_type": "code",
"execution_count": 72,
"id": "aba6c422",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"plt.style.use('ggplot')"
]
},
{
"cell_type": "markdown",
"id": "a5fe499c",
"metadata": {},
"source": [
"### Consignes\n",
"\n",
"Représentez dans un tableau le nombre total de femmes vivantes et décédées sur la période en fonction de leur habitude de tabagisme. Calculez dans chaque groupe (fumeuses / non fumeuses) le taux de mortalité (le rapport entre le nombre de femmes décédées dans un groupe et le nombre total de femmes dans ce groupe). Vous pourrez proposer une représentation graphique de ces données et calculer des intervalles de confiance si vous le souhaitez. En quoi ce résultat est-il surprenant ?\n",
"Reprenez la question 1 (effectifs et taux de mortalité) en rajoutant une nouvelle catégorie liée à la classe d'âge. On considérera par exemple les classes suivantes : 18-34 ans, 34-54 ans, 55-64 ans, plus de 65 ans. En quoi ce résultat est-il surprenant ? Arrivez-vous à expliquer ce paradoxe ? De même, vous pourrez proposer une représentation graphique de ces données pour étayer vos explications.\n",
"\n",
"Afin d'éviter un biais induit par des regroupements en tranches d'âges arbitraires et non régulières, il est envisageable d'essayer de réaliser une régression logistique. Si on introduit une variable Death valant 1 ou 0 pour indiquer si l'individu est décédé durant la période de 20 ans, on peut étudier le modèle Death ~ Age pour étudier la probabilité de décès en fonction de l'âge selon que l'on considère le groupe des fumeuses ou des non fumeuses. Ces régressions vous permettent-elles de conclure sur la nocivité du tabagisme ? Vous pourrez proposer une représentation graphique de ces régressions (en n'omettant pas les régions de confiance)."
]
},
{
"cell_type": "markdown",
"id": "d77e6e53",
"metadata": {},
"source": [
"# I) Import des données"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ea2c1273",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.boxplot(df_alive[\"age\"])"
]
},
{
"cell_type": "markdown",
"id": "12d505cb",
"metadata": {},
"source": [
"# IV) Première analyse"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "45d218f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Le taux de mortalité des femmes non-fumeuses 0.31420765027322406\n",
"Le taux de mortalité des femmes fumeuses 0.23883161512027493\n",
"Le taux de fumeuses parmi les femmes décédées 0.37669376693766937\n",
"Le taux de fumeuses parmi les femmes encore en vie 0.4687830687830688\n"
]
}
],
"source": [
"print(\"Le taux de mortalité des femmes non-fumeuses \"+ str(mortalite(df_nonsmoker)))\n",
"print(\"Le taux de mortalité des femmes fumeuses \"+ str(mortalite(df_smoker)))\n",
"print(\"Le taux de fumeuses parmi les femmes décédées \"+ str(smoke_rate(df_dead)))\n",
"print(\"Le taux de fumeuses parmi les femmes encore en vie \"+ str(smoke_rate(df_alive)))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "5641b18b",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Fumeuse
\n",
"
Non Fumeuse
\n",
"
\n",
" \n",
" \n",
"
\n",
"
décédées
\n",
"
23.883162
\n",
"
31.420765
\n",
"
\n",
"
\n",
"
en vie
\n",
"
76.116838
\n",
"
68.579235
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Fumeuse Non Fumeuse\n",
"décédées 23.883162 31.420765\n",
"en vie 76.116838 68.579235"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAaXUlEQVR4nO3dfVxUdd7/8RfDYGgIDXcq3uQimFnkHaS5FmbTVWu6sV1eljf1S9kb02oTszQNLbUwU5JW81G5bFnrpbuXTmbWVcSKFtVilJp2mab5EPGGOyFUwGHm94e7c12skDADQt/ez3/0nDPnez6Hx5f3HL7nzHf83G63GxERMYqltQsQEZHmp3AXETGQwl1ExEAKdxERAyncRUQMpHAXETGQtbUL+KfCwsLWLsEI4eHhFBcXt3YZIg1SH20+UVFRDW7TlbuIiIEU7iIiBlK4i4gYqM2MuYuIWdxuN1VVVbhcLvz8/DzrT5w4QXV1dStW9uPidruxWCwEBgbW+TlejMJdRFpEVVUVAQEBWK11Y8ZqteLv799KVf04OZ1OqqqqaN++faP30bCMiLQIl8t1QbCLd6xWKy6Xq2n7XOwFK1euJD8/n5CQEJYuXQpAZWUl6enpFBUVERERwfTp0wkKCgJg48aNZGdnY7FYmDRpEv379/fiVETkx64pQwhycU39eV70yn348OE88cQTddY5HA7i4uLIyMggLi4Oh8MBQEFBAbm5uSxbtow5c+awevXqJr/biIhcKpWVlbz22ms0dubzvLw8Pvvss0a373Q6yczMbJV7DBe9cu/bty8nT56ssy4vL4/58+cDkJiYyPz585k4cSJ5eXkMHTqUgIAAIiMj6dy5MwcOHKB3794tUryI/HjU/uaX5/9tpvb8X9nU5H2WLl3K5ZdfzpQpU6ipqWH27Nk89NBDjboq/uqrr1i3bh3PPvtsvdvXrVvHrl27WLRoEXD+Rui8efMYPXo0l112WZNr9ZVXA2Ll5eXYbDYAbDYbFRUVAJSWlhIbG+t5XWhoKKWlpfW2kZWVRVZWFgBpaWmEh4d7UwoAP1/+kdf7itk+/v2w1i4B+Gn20d/2C+GqLv8bmj9r5vYPlJxt8j6lZ85xlnOefX8//7lGtxXYpRdTZi/gcIUTcF6w/eTpc5RXOeu0NSll7kXb79OpY6Nqv+yyy5qUk816t6MpX+pkt9ux2+2eZX0cWVqC+pWseXkl//32RiI7dyHEFspVfa/l6JHDvLBoPqfKSrkssD0z5y/iyp/1orSkmKULnuRYwREAUuY+zbX9B/L+Zgf/9efXcZ47x9Vx/Zg+5yn8/f3Z4vgrb65eRVh4BN2u/Bnt2rUD4FRpCUsXpHLi+PlpVR56bC5xAwZx9swZlqc9zcH9+6itdTLpgYeJGfNL9u3bR0pKCjU1Nbjdbl5++WWio6PrnEd1dfUF/fmHph/wKtxDQkIoKyvDZrNRVlZGcHAwAGFhYZSUlHheV1paSmhoqDeHEBHx2b69X/Hhe5t5df0mamud/ObuO7mq77U8/9RcZjy5gG5X9mTvri9JXziPF1a/QUba0/QfdD2LXniJ2tpazp45w3cHD5D93juseG0d1oAAli1M5YN3NpFww8/JXLmcV/7TweUdO/JI8kRi+/QFIGPxQv7j3klcNzCeE8cKeXTKJNa89d+seWUlA68fwqyn0/i+ooIpE+5i7Eg7a9asITk5mbvuuouamhpqa30fvPIq3OPj48nJySEpKYmcnBwSEhI86zMyMhg1ahRlZWUcO3aMmJgYn4sUEfHGrs/zuPGWfyPwH8+HDx1+CzU11Xy1M595jz7keV1NTQ0A+X//hCcWLQHA39+foI4deX/zRr75eg+/G38XANVVVdhCw9i7O4j+8YO5IjQMgJtvu4OCw4cA+PzTjzl88ICn/TOnKzlzupIdn3xE7tYPWffa6vPHra7m6NGjDBo0iIyMDI4dO8YvfvGLC67avXHRcH/hhRfYu3cv33//PVOmTGHs2LEkJSWRnp5OdnY24eHhpKSkANC9e3duuOEGUlJSsFgsJCcnY7HoUXoRaT3/eqvU5XIR1DGY1X95u1H7u91w+y9/xW9/P7PO+u3ZHzR4I9btdrNyzV+4LDDwgvVPL1tBj5/9b3jHhLUnNjaWAQMG8OGHHzJhwgSWLFnCsGG+3S+6aPI+8sgjvPzyy6xdu5ZVq1YxYsQIOnbsSGpqKhkZGaSmpnqecQe46667ePHFF1m+fDkDBgzwqTgREV/0G5TA9uwPqK6q4szpSnJzsgkMbE+Xrt342/tbgPOBe2Df1wAMGjyUt9b9GYDa2lpOV37PoME3sPWD9yj7x5BzRfkpjhcepW9cP77c8Rnlp8pwnjvH1vff9Rw3/oZhbFi7xrO8/3/2ApAw9EY2rH3dc3/ym6/3AHD48GGuvPJKkpOTufXWW/n66699Pnc/d1PugrYgX+Zzv/PN/2nGSsQkb03o09olAD/NPnr+aZkrWrsMzw3VTlFRRHTqQs/oGBLtt7FsYSolxUU4necYcfso7p/yEKUlxTz/1BwKC47g7+/P9LlPcW2/gWS/9w5vrl7l+dTtI0/M55p+A+rcUI25qi8uVy2PPHH+Ru0Lz8zn8MFvqa110m/Q9cx4cgHVVVW8+NxCvvoyH9xuOnftxl/XvsGLL77Ihg0bsFqtREZG8oc//MHzROI/nTlzhg4dOtRZ90M3VBXuYjSFe+tpK+He1sWENW6+mKaGuwbERUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQviZFRC6JGe8dbtb2lt5+ZbO211hvrf8zlwW25/Zf/qpVjt9YCncRkSa4c+z41i6hUTQsIyLGen+zg9+Nv4vk/xjN80/P9cy2ePvg63glYymTx4zigQn/TmlJ3al0XS4Xd9+eyPf/+K4KgPF3jKC0pJjMlcv5zz+9CsDRI4eZOWUSv7n7Th78f/dw+NC3l+7kLkLhLiJG+r9T9a7+y9tYLBY+eOf8tzedPXuGvtf1549/3cx1g65n83+tq7OvxWLh58PtbM9+H4C9u76kc1Q3QsPqflnG80/N5fez5/HKureYOmMW6QvnXZqTawQNy4iIkfI/y613ql6AgIAAhiaOAOCqvtey45MLvylrxO138NqqFxmZNIbs9zZz820j62w/c+Z0g1MHtwUKdxExUkNT9QJYrQGe6XotFku9X45xTb8BHD1ymFOlJWzPzuLe306r234Tpw6+1DQsIyJGamiq3sby8/PjxhH/xh+ef4Yro3sRckXdWRovD+rY4NTBbYGu3EXkkrjUjy727BXLrx9M4dEp99eZqrdzVNdGt3Hz7Xfwu3G/YvaC5+rd/uSzy1i2MJU1L6/0TB0cc9XVzXUKPtGUv2I0TfnbejTlb+Noyl8REWk0hbuIiIEU7iLSItrGgK85mjqCrnAXkRZx9PsaXLXO1i7DCE6nE4ulaXGtp2VEpEW8e+gsUErXju34xyPlUo+o9j98Re52u7FYLAQGBjapXYW7iLQIN7Dl0FngbGuX0qbdcW2XFmlXwzIiIgZSuIuIGEjhLiJiIIW7iIiBFO4iIgZSuIuIGEjhLiJiIIW7iIiBFO4iIgby6ROqmzdvJjs7Gz8/P7p3787UqVOpqakhPT2doqIiIiIimD59OkFBQc1Vr4iINILXV+6lpaW8++67pKWlsXTpUlwuF7m5uTgcDuLi4sjIyCAuLg6Hw9Gc9YqISCP4NCzjcrmoqamhtraWmpoabDYbeXl5JCYmApCYmEheXl6zFCoiIo3n9bBMaGgoo0eP5oEHHqBdu3b069ePfv36UV5ejs12/otkbTYbFRUV9e6flZVFVlYWAGlpaYSHh3tbikiD1K+krWupPup1uFdWVpKXl8eKFSvo0KEDy5YtY9u2bY3e3263Y7fbPcvFxcXeliLSIPUraet86aMt8h2qu3fvJjIykuDgYKxWK4MHD+abb74hJCSEsrIyAMrKyggODvb2ECIi4iWvwz08PJz9+/dTXV2N2+1m9+7ddO3alfj4eHJycgDIyckhISGh2YoVEZHG8XpYJjY2liFDhvD444/j7+9Pz549sdvtVFVVkZ6eTnZ2NuHh4aSkpDRnvSIi0gg+Pec+duxYxo4dW2ddQEAAqampPhUlIiK+0SdURUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERA1l92fn06dOsWrWKI0eO4OfnxwMPPEBUVBTp6ekUFRURERHB9OnTCQoKaq56RUSkEXwK98zMTPr378+MGTNwOp1UV1ezceNG4uLiSEpKwuFw4HA4mDhxYnPVKyIijeD1sMyZM2f4+uuvGTFiBABWq5XLL7+cvLw8EhMTAUhMTCQvL695KhURkUbz+sr95MmTBAcHs3LlSg4fPkx0dDT3338/5eXl2Gw2AGw2GxUVFc1WrIiINI7X4V5bW8uhQ4eYPHkysbGxZGZm4nA4Gr1/VlYWWVlZAKSlpREeHu5tKSINUr+Stq6l+qjX4R4WFkZYWBixsbEADBkyBIfDQUhICGVlZdhsNsrKyggODq53f7vdjt1u9ywXFxd7W4pIg9SvpK3zpY9GRUU1uM3rMfcrrriCsLAwCgsLAdi9ezfdunUjPj6enJwcAHJyckhISPD2ECIi4iWfnpaZPHkyGRkZOJ1OIiMjmTp1Km63m/T0dLKzswkPDyclJaW5ahURkUbyKdx79uxJWlraBetTU1N9aVZERHykT6iKiBhI4S4iYiCFu4iIgRTuIiIGUriLiBhI4S4iYiCFu4iIgRTuIiIGUriLiBhI4S4iYiCFu4iIgRTuIiIGUriLiBhI4S4iYiCFu4iIgRTuIiIGUriLiBhI4S4iYiCFu4iIgRTuIiIGUriLiBhI4S4iYiCFu4iIgRTuIiIGUriLiBhI4S4iYiCFu4iIgRTuIiIGUriLiBhI4S4iYiCFu4iIgRTuIiIGUriLiBjI6msDLpeLWbNmERoayqxZs6isrCQ9PZ2ioiIiIiKYPn06QUFBzVGriIg0ks9X7lu2bKFr166eZYfDQVxcHBkZGcTFxeFwOHw9hIiINJFP4V5SUkJ+fj633HKLZ11eXh6JiYkAJCYmkpeX51uFIiLSZD4Ny/zpT39i4sSJnD171rOuvLwcm80GgM1mo6Kiot59s7KyyMrKAiAtLY3w8HBfShGpl/qVtHUt1Ue9DvfPP/+ckJAQoqOj2bNnT5P3t9vt2O12z3JxcbG3pYg0SP1K2jpf+mhUVFSD27wO93379rFjxw6++OILampqOHv2LBkZGYSEhFBWVobNZqOsrIzg4GBvDyEiIl7yOtzHjx/P+PHjAdizZw9vv/02Dz/8MGvWrCEnJ4ekpCRycnJISEhotmJFRKRxmv0596SkJHbt2sXDDz/Mrl27SEpKau5DiIjIRfj8nDvANddcwzXXXANAx44dSU1NbY5mRUTES/qEqoiIgRTuIiIGUriLiBhI4S4iYiCFu4iIgRTuIiIGUriLiBhI4S4iYiCFu4iIgRTuIiIGUriLiBhI4S4iYqBmmThMRH7Yhq2PtXYJ0lZN2NQizerKXUTEQAp3EREDKdxFRAykcBcRMZDCXUTEQAp3EREDKdxFRAykcBcRMZDCXUTEQAp3EREDKdxFRAykcBcRMZDCXUTEQAp3EREDGTHlr6ZTlQa10HSqIm2drtxFRAykcBcRMZDCXUTEQAp3EREDeX1Dtbi4mBUrVnDq1Cn8/Pyw2+2MHDmSyspK0tPTKSoqIiIigunTpxMUFNScNYuIyEV4He7+/v7ce++9REdHc/bsWWbNmsV1113H1q1biYuLIykpCYfDgcPhYOLEic1Zs4iIXITXwzI2m43o6GgA2rdvT9euXSktLSUvL4/ExEQAEhMTycvLa55KRUSk0ZrlOfeTJ09y6NAhYmJiKC8vx2azAeffACoqKurdJysri6ysLADS0tIIDw/3+vgnvN5TTOdLv2pO6qPSkJbqoz6He1VVFUuXLuX++++nQ4cOjd7Pbrdjt9s9y8XFxb6WInIB9Stp63zpo1FRUQ1u8+lpGafTydKlS7nxxhsZPHgwACEhIZSVlQFQVlZGcHCwL4cQEREveB3ubrebVatW0bVrV0aNGuVZHx8fT05ODgA5OTkkJCT4XqWIiDSJ18My+/btY9u2bfTo0YOZM2cCMG7cOJKSkkhPTyc7O5vw8HBSUlKarVgREWkcr8O9T58+rF+/vt5tqampXhckIiK+0ydURUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMpHAXETGQwl1ExEAKdxERAyncRUQMZG2phr/88ksyMzNxuVzccsstJCUltdShRETkX7TIlbvL5WL16tU88cQTpKen8/HHH1NQUNAShxIRkXq0SLgfOHCAzp0706lTJ6xWK0OHDiUvL68lDiUiIvVokWGZ0tJSwsLCPMthYWHs37+/zmuysrLIysoCIC0tjaioKO8P+M4O7/cVuRTUR+USa5Erd7fbfcE6Pz+/Ost2u520tDTS0tJaooSfrFmzZrV2CSI/SH300miRcA8LC6OkpMSzXFJSgs1ma4lDiYhIPVok3Hv16sWxY8c4efIkTqeT3Nxc4uPjW+JQIiJSjxYZc/f392fy5MksWrQIl8vFzTffTPfu3VviUPIv7HZ7a5cg8oPURy8NP3d9A+QiIvKjpk+oiogYSOEuImKgFpt+QC7u7rvvpkePHp7lmTNnEhkZ2YoVyU/B2LFjGTVqFPfddx8AmzZtoqqqirFjx/rcdkVFBWlpaTidTiZNmsTVV1/tc5viHYV7K2rXrh1Llixp7TLkJyYgIIDPPvuMpKQkgoODm7Xt3bt3ExUVxYMPPtis7UrTKdzbmGnTpvHss88SHBzMt99+y5o1a5g/fz7r16/n5MmTnDp1imPHjnHfffexf/9+vvjiC0JDQ3n88cexWq0cPHiQ1157jaqqKoKDg5k6dSo2m4358+dz77330qtXLyoqKpg9ezYrVqzgyJEjrFy5EqfTidvtZsaMGXTp0oVt27bx7rvv4nQ6iY2N5de//jUWi0bxTGCxWLDb7bzzzjuMGzeuzraioiJeeuklKioqPP0nPDycFStW0L59ew4ePMipU6eYOHEiQ4YMqbPvd999xxtvvEFNTQ0zZ85k0aJFJCcns2bNGgA+/fRTPv/8c6ZNm8aKFSto164dhYWFFBUVMXXqVLZu3cr+/fuJiYlh2rRpAOzcuZP169fjdDrp1KkTU6dOJTAwsMHfk71795KZmQmc/+DkU089Rfv27dm0aROffPIJ586d4/rrr2+Wv1LaOoV7K/rnLwFAZGSk5/8NOXHiBPPmzaOgoIC5c+cyY8YMJk6cyJIlS8jPz2fgwIH88Y9/5LHHHiM4OJjc3FzWrl3L1KlTG2zzgw8+YOTIkdx44404nU5cLhcFBQXk5uayYMECrFYrr776Ktu3bycxMbFZz19az2233cbMmTO5884766xfvXo1N910E8OHDyc7O9vTnwBOnTrF008/TWFhIYsXL74g3Hv27Mndd9/Nt99+S3Jy8kVrOH36NKmpqezYsYPFixezYMECunXrxuzZs/nuu+8IDQ1lw4YNPPnkkwQGBuJwONi8eTNjxoxpsM1NmzaRnJxMnz59qKqqIiAggJ07d3Ls2DGeeeYZ3G43zz33HHv37qVv375e/OR+PBTuraipwzIDBgzAarXSo0cPXC4X/fv3B6BHjx4UFRVRWFjIkSNHWLBgAXB+ds6LfTK4d+/ebNiwgZKSEgYPHkyXLl346quvOHToELNnzwbOvwk195/v0ro6dOjATTfdxJYtW2jXrp1n/f79+3n00UcBuOmmm3jzzTc92xISErBYLHTr1o3y8nKfaxg0aBB+fn706NGDkJAQz/2n7t27c/LkSUpKSigoKODJJ58EwOl00rt37x9ss0+fPrz++usMGzaMwYMHExYWxs6dO9m1a5fnTaqqqorjx48r3OXSslgsnrl5zp07V2eb1Wr1vMbf398zX4+fnx+1tbUAdOvWjUWLFl3Qrr+/f73tDhs2jJiYGPLz81m0aBFTpkzB7XaTmJjI+PHjm/8Epc244447ePzxxxk+fHijXh8QEOD5/z/70tq1a8nPzweo90Ll/84pVVNTU297fn5+ddr28/PD5XJhsViIi4vjkUceuaDdhn5PkpKSGDhwIPn5+cyZM8fzxpCUlMStt97aqPM0hQZR25jIyEgOHjwInB+jbIqoqCgqKir45ptvgPNXOkeOHAEgIiKi3nZPnDhBp06dGDlyJPHx8Rw+fJi4uDg+/fRTz9VZZWUlRUVFPp+btC1BQUHccMMNZGdne9b17t2b3NxcAD766CP69Onzg22MGzeOJUuWNPgXaEhICAUFBbhcLv7+9783qb7evXuzb98+jh8/DkB1dTWFhYVAw78nx48fp0ePHiQlJREdHc3Ro0fp168ff/vb36iqqgLOz1rbHH95tHW6cm9jxowZw6pVq9i4cSMxMTFN2tdqtTJjxgwyMzM5c+YMtbW1jBw5ku7duzN69GjS09PZtm0b1157rWef3Nxctm/fjr+/P1dccQVjxowhKCiIe+65h4ULF+J2u/H39yc5OZmIiIjmPl1pZaNGjeK9997zLE+aNImXXnqJTZs2eW6o+mLChAksXryYsLAwunfv7gnYxggODmbatGksX77cc3V+zz33EBUV1eDvyZYtW9izZw8Wi4WuXbsyYMAAAgICOHr0KHPmzAEgMDCQhx56iJCQEJ/Ora3T9AMiIgbSsIyIiIEU7iIiBlK4i4gYSOEuImIghbuIiIEU7iIiBlK4i4gY6P8DfuZZl0IN58IAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"tab = pd.DataFrame({\"Fumeuse\" : [mortalite(df_smoker)*100 , (1-mortalite(df_smoker))*100],\n",
"\"Non Fumeuse\": [mortalite(df_nonsmoker)*100 , (1-mortalite(df_nonsmoker))*100]}, index = [\"décédées\", \"en vie\"])\n",
"plt.bar([\"Fumeuse\", \"Non-fumeuse\"],tab.loc[\"décédées\"], label = 'décédées' )\n",
"plt.bar([\"Fumeuse\", \"Non-fumeuse\"],tab.loc[\"en vie\"], bottom = tab.loc[\"décédées\"], label = 'en vie')\n",
"plt.legend()\n",
"tab.head()"
]
},
{
"cell_type": "markdown",
"id": "35f303a9",
"metadata": {},
"source": [
"Le taux de décés est plus important chez les non-fumeuses, c'est assez surprenant. "
]
},
{
"cell_type": "markdown",
"id": "e0296de1",
"metadata": {},
"source": [
"# V) Analyse par classe d'âge"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "fa0f643c",
"metadata": {},
"outputs": [],
"source": [
"df[\"classe\"] = df[\"age\"].apply(lambda a : 1 if a<35 else 2 if a<55 else 3 if a <65 else 4)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "8401743f",
"metadata": {},
"outputs": [],
"source": [
"df_smoker = df[df[\"smoker\"] ==1]\n",
"df_nonsmoker = df[df[\"smoker\"] ==0]\n",
"df_alive = df[df[\"alive\"] ==1]\n",
"df_dead = df[df[\"alive\"] ==0]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "970e42e6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, \"Mortalités des femmes non-fumeuses et fumeuses en fonction de leur classe d'âge\")"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAJQCAYAAAD/vZd0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeUBVdf7/8deFKyIKihfFQNyw3LIUSdM0FxC3dMylMvPnWjrONKRmaWLNlJZ+m6Z1qikRym81NeOWZS6o5Z7knguCu4kLkJkpKtzP749+3J+XxYsEctLn4y/OOR/OeZ/PPQsvznJtxhgjAAAAAIBleJV3AQAAAAAAdwQ1AAAAALAYghoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAAAAiyGoAb/Bhg0b9Pe//105OTnlXQoAAChHhw8f1vPPP69z586Vdym4QRDUcFP6+uuvZbPZdOzYMUnSoUOHZLPZtHbt2mLP4/DhwxowYIDuvPNO2e32Uq2vJPWUxNGjRxUVFaXKlSvLZrOV6bLg7uzZs7r//vsVEBAgm82mQ4cOlXdJNwX63Rr+85//KDw8XN7e3ho2bFh5l6N69epp2rRp5bLs0jreDxs2TNHR0aVUVem7Xue1spCYmOjxPG+M0YgRI7Rx40Y99dRT16ky3OgIaih1w4YNk81mU//+/QtMW7BggWw2W6kFm+jo6FI5yYeFhSk9PV1t2rSRJB07dkw2m01ff/11oe2zs7M1cOBAvfbaa+ratetvXn55efHFF3Xq1Clt27ZN6enp5V3OTeWdd97Rhg0btG7dOqWnpyssLKy8S/rdWrt2bbFDF/1e/nJzczVixAg98MADOnLkiF5//fXrtuxRo0apU6dOBcYnJydr3Lhx160O/L4lJiaqXr16buPeeecdNWrUSF988YX279+vFStWlE9xuKGU7mUA4P+pU6eOFi1apJMnTyo4ONg1/r333lPdunVdV7JK6vLly6V6Fcvb21u1atUqdntfX19t2rSp1JZfXlJTU9W6dWvdeuut5V3KTSc1NVXNmjVT8+bNy7uUmwr9Xv7S09N17tw59ezZU6GhoeVdjiSpRo0a5V3C70be+Ze7MNyNHTvW9fPSpUvLsRLcSLiihjJx66236u6771ZiYqJr3JEjR7R8+XINHz68QPvFixerVatWqlixomrWrKmxY8fql19+cU3Pu6XjzTffVL169VSxYkUNHDhQK1as0AcffCCbzeZ2BWzKlClq0qSJ/Pz8FBYWpjFjxuinn34qst78t2Tk/Ze9c+fOstlsbv85W758ue655x5VqlRJoaGhGj58uDIzM13Td+3apW7duqlatWqqXLmymjRpojlz5ly1vz777DM1bNhQvr6+ateunXbs2FGgTVpamvr3769q1aopMDBQMTEx2rlzp2v62bNnNXz4cNWqVUsVK1ZUWFiYxo8fX+QybTabVqxYodmzZ8tms7muTJ47d06xsbEKDQ2Vn5+fWrZsqXnz5hXoq48//ljdunWTn5+fGjdurG+++UY//PCDevbsqcqVK6tp06Zas2aN6/fybjddvHix2rZtq0qVKqlVq1batWuXdu3apfbt28vPz0+tW7fW7t273WrdvHmzYmJiVKVKFdWoUUP9+vXT4cOHXdOPHTum/v37KygoSJUqVVKDBg308ssvF7nuebUsX75c9957r/z8/NS0adMCJ9eUlBT16tVLVapUUZUqVdS7d2+lpaW5pufdDrNu3TpFRETIz89Pd911lzZv3lzksqVfb7OKj4/XypUrZbPZXP/hL+z2q/xXADp16qSRI0cqLi5ONWvWVLVq1TRlyhQ5nU49//zzCg4OVo0aNTRlyhS3+eTk5Oivf/2r6tevL19fXzVr1kz/+te/3NrYbDb97//+r9u4/FetFy5cqJYtW8rPz0/VqlVT69attXXrVtf00t5OJenkyZMaNmyYatSoIX9/f91zzz1avXq1pF+3xw4dOkiS6tev79af+dHvpdfvUvH3oyslJia6jq/33nuv23G7uOeBvH/4BQQE6A9/+INOnz7ttoykpCR16NBBfn5+qlq1qjp27Kj9+/frr3/9q+Lj4/XNN9+4zhl556j828DPP/+s0aNHq0aNGvL19VVkZKSWLVvmmp53HPzss8/Uu3dv+fn5qUGDBh6P9VLpHO+L69///rdatGghX19f1atXT+PHj3fr006dOmnUqFFuvzNt2jS3c15h598r53GlU6dOafjw4QoODpavr68aNWqk2bNnF1mfp3O1p+127dq1uueee+Tv7y9/f3/deeedbtufp224MMYYTZ06VTVr1lSVKlX00EMP6ccff7zq7xw8eFD9+vVTSEiI/Pz81Lx58wLbwoULF/TYY4+patWqCgwM1NixYzV58mQ1bNjQrZ2nzww3GQOUsqFDh5qoqCgzZ84c07BhQ+N0Oo0xxkydOtV069bNJCQkGG9vb1f77du3G29vb/PEE0+Y3bt3m8WLF5uwsDDzyCOPuM3T39/f9O3b12zdutXs2LHDnDlzxnTo0ME88MADJj093aSnp5uLFy8aY4x54YUXzOrVq83BgwdNUlKSadSokfk//+f/uOa3atUqI8kcPXrUGGPMwYMHjSSzZs0aY4wxW7ZsMZLM3LlzTXp6ujl16pQxxpgVK1aYSpUqmTfeeMPs27fPbNq0yXTq1Ml06NDBtZ7Nmzc3gwYNMrt27TL79+83ixcvNosWLSqyv7Zs2WJsNpuZNGmS2bt3r5k7d66pV6+eWz0nTpwwwcHBZsyYMWbHjh1m79695s9//rOpXr26q7bHH3/c3HHHHWbjxo3m8OHDZt26dea9994rcrnp6emmbdu25uGHHzbp6enmzJkzxul0mk6dOpmOHTuaNWvWmP3795t//etfpkKFCiYpKcmtrxo0aGDmz59vUlJSTN++fc0tt9xioqKizLx580xKSorp16+fqV27trl06ZJbn7do0cKsWLHC7Nq1y9x9992mefPmpkOHDiYpKcns3r3b3HPPPaZ169auOnft2mUqV65snn32WbNnzx6zY8cOM2DAAHPrrbeaCxcuGGOM6d27t4mKijJbt241Bw8eNCtXrjQff/xxkeueV8sdd9xhvvrqK7Nv3z4zZMgQU7VqVfPjjz8aY4w5f/68qVOnjunSpYv57rvvzHfffWc6depkwsPDXdtZQkKCsdlspkOHDmb16tVmz549pmvXrqZBgwbm8uXLRS7/1KlT5oEHHjAdOnQw6enpJjMz0xhjTN26dc0LL7zg1nbkyJGmY8eOruGOHTuagIAA89RTT5mUlBQTHx9vJJkePXqYiRMnmpSUFJOYmGgkmcWLF7t+b+jQoaZ58+Zm6dKl5sCBA+bf//63qVq1qpk1a5arjSQzZ84ct+VHRUWZoUOHuraZChUqmJkzZ5oDBw6Y3bt3m48++sjs2LHDGFM22+n58+dNkyZNTL9+/UxycrJJTU0106ZNMz4+Pmb37t0mJyfHLFy40EgymzZtcutP+r3s+t2Y4u1Hhc1306ZNRpJZuHCh67hd3PNAQECAeeihh8zOnTvNunXrTJ06ddyO7cuXLzdeXl4mNjbWbNu2zezZs8fMmjXL7Nmzx/z888/m4YcfNm3btnWdM86fP1/oNjBgwABTt25ds2TJErN7927zl7/8xVSoUMHs2bPHGPP/j4P169c3n376qUlNTTVPP/208fb2Nvv27SuyX0vreF+YvHNvnoSEBFOtWjXz4Ycfmv3795tvvvnGNG/e3K1PO3bsaEaOHOk2nxdeeMHUrVvXbb75z7+FHd/Onz9vGjdubFq2bGmWL19u9u/fb5YuXWo++eQTtz7LW8+8ZV3tXH217TYnJ8cEBgaacePGmX379pl9+/aZefPmmdWrV7vq8bQNF+a1114zfn5+JjEx0aSkpJiZM2eaqlWruv3dkpCQ4NZHO3bsMG+99ZbZvn27SUtLM2+88Ybx9vY2K1eudFuXmjVrmoULF5q9e/eaSZMmmYCAABMeHn5NnxluLgQ1lLq8k8WFCxdM9erVzcqVK01OTo4JDQ01c+fOLRDUHnnkEXPXXXe5zWPBggXGZrOZQ4cOueZZtWpV8/PPP7u1u/KPmauZN2+e8fHxMbm5ucYYz0Ht6NGjRpJZtWqV23w6duxonn76abdxhw8fNpLM1q1bjTHGBAQEmISEBI815Rk8eLBp27at27g333zTrZ7nnnvOtGnTxq2N0+k0DRo0MK+++qoxxpg+ffoUqy/yr8+VJ+lVq1aZihUrmjNnzri1Gz58uPnDH/5gjPn/fZW3XGOM6w+vv//9765xeWF3586drnlLMvPnz3e1+eyzz4wk89///tc1bt68eUaS67MeOnSoefDBB93qyc7ONpUqVXLN64477jDPPfdcsdc7r5a5c+e6xqWnpxtJZsmSJcYYY2bNmmUqVapkTp8+7Wpz4sQJ4+vraz744ANjzK8nVUlm8+bNrjYbNmwwkszevXuvWkP+P6qMKX5guPPOO93aNG3a1Nx+++1u4+644w4zYcIEY4wxBw4cMDabzfVHZp6//e1vbvPyFBjyPtODBw8Wuk5lsZ0mJCSY0NDQAn8Ydu7c2cTGxhpjjFmzZs1V67oS/V48xen34uxHhSnsD/bingeCgoJMdna2q81LL71katWq5Rpu37696dWrV5HLzv+55rlyG0hNTTWSzJdffunWpmXLlmb48OFu6/DKK6+4pl++fNlUrlzZvPvuu0Uuv7SO94XJv23XrVvXvPPOO25tvvnmGyPJZGVlGWOKH9QKO//mN2vWLFOxYkXXeTW/wj73/PKfq6+23WZlZRV6ns5TnG24MKGhoeaZZ55xG9e/f3+3v1uKo0+fPmbUqFHGGGPOnTtnfHx83P5BY4wxbdq0cQtqxfnMcHPhGTWUGV9fXw0ZMkTvv/++fv75Z+Xk5Kh379766KOP3Nrt2rVLXbp0cRvXsWNHGWO0e/du1a1bV5LUpEkTValSpVjLnjdvnl577TWlpaXp7NmzcjqdunTpkk6cOKGQkJASr1NycrI2btyot956q8C01NRUtWjRQk8++aRGjRqlxMREderUSX369FFERESR89y9e7eioqLcxrVv377Acjdv3lxg/S9cuKDU1FRJv94f379/f3333XeKiopS9+7d1a1bN3l5Ff8O5+TkZF26dKnAcyOXLl0q8BzbnXfe6fo57/m+O+64o8C4U6dOlfj3qlSpouTkZKWlpRVY9+zsbNe6P/HEExo9erS++uorderUSb169dK9997rcX1btGjhtlxvb2+dPHlS0q/bZdOmTRUUFORqExwcrEaNGmnXrl2ucTabzW2d8vru5MmTatSokXr06OF2C2hpvLb5yuXl1Z7/GctatWq5+v67776TMUaRkZFubXJycuTt7V3s5d5xxx3q1q2bbr/9dnXt2lWdOnVSv379XLeylcV2mpycrBMnTqhatWpu4y9evKhKlSoVu/bSQL8X3u9X24+K61rOAxUrVnS1CQ0NdVvW5s2bNWPGjGtadn55t17nP4bce++92rBhg9u4K9fdbrcrODj4quteWsd7T06fPq3Dhw9r/PjxevLJJ13jjTGSfr218q677irWvKTinX83b96spk2bqnbt2sWer6dz9dW228DAQI0aNUrdunVTly5d1LFjR91///1q1KiRpJIdO86ePasffvhB7dq1cxvfvn17LViwoMj1OH/+vJ5//nktWrRI6enpunTpki5evKjOnTtL+rW/L126pLvvvtvt99q2batFixZJKv3PDDcGghrK1OjRo9WyZUsdOXJEw4cPV4UKFQptV9RDyVeOr1y5crGW+e2332rgwIGaPHmyXn75ZQUGBmrjxo0aOnSoLl26dO0rcQWn06mnn35aQ4YMKTAt7w+2qVOnavDgwVqyZIlWrlypF198UU899VSRr342xnh8KNvpdCoqKqrQgFi1alVJUrdu3XTkyBEtXbpUX3/9tR555BE1b95cK1asKPYfhU6nU1WrVlVycnKBaT4+Pm7DV36WefUXNs7pdP6m33M6nRoyZIgmTZpUoCaHwyFJGj58uLp3764lS5Zo1apV6tGjh+6///4Cz/14Wqf89Rb2ueT/vLy8vNz6N3/9s2bN0oULF65ax5Xzyjsp57l8+XKBdvn3I5vNVui4K/tQktavXy8/P78C7a78+WrL9/b21ldffaXk5GQlJSVp7ty5mjRpkv7zn//ovvvuK5Pt1Ol0qkmTJpo/f36BafnXpaTo99/W7572o+Iqznkg/7IK67uyeslFYcfqwuq52rqX1vHek7waXn/9dVdYuFJemCrutl/c8++19H1xztWettv3339fsbGxWrZsmZYvX66pU6fqrbfe0ujRo0t07Mjri2vdhiZOnKiFCxfqlVdeUePGjVW5cmVNmDChwLPxV5tvcT8z3FwIaihTTZo00V133aV169bpgw8+KLRNs2bN9M0337iNy3vYu2nTpledv4+Pj3Jzc93GrV27VkFBQW7B6L///e811Z138s0/78jISO3atavAw7/5NWjQQGPHjtXYsWM1Y8YMvfzyy0UGtWbNmmndunVu4/IPR0ZGKjExUaGhoVe9ilC9enUNGjRIgwYN0vDhw9W2bVvt3r272G+4i4yM1JkzZ5Sdna3bb7+9WL9T1iIjI7Vjxw6Fh4df9SR3yy23aPjw4Ro+fLh69uypQYMG6e2331ZAQECJltusWTO9++67ysjIcF1VO3nypPbt2+f2305PruWtdjVr1tTx48fdxm3dulXVq1cv9jwK06pVK0m/vtDnvvvuK/byL168qN27d6t+/fqucTabTa1bt1br1q31zDPPqHv37kpISNB9991XJttpZGSkPvzwQwUEBKhmzZqFzq+o/bW46PeS9Xtp+i3ngSu1atVKS5cu1eOPP17o9MLOGYXVIkmrV69Wz549XePXrFmjli1bFruWouZdWsf7qwkODlZYWJhSUlL06KOPFtmusG1/y5YtJVpmq1atNHv2bB07dqxYoaK452pP2+3tt9+u22+/XePHj9eYMWP03nvvafTo0SXahqtWrarQ0FCtW7fO7bPP/xnlt3r1ag0ePFgPPvigpF9D1759+1xvvW7YsKF8fHy0YcMGt+1548aNrp+L+5nh5sJbH1Hmli5dqoyMDIWHhxc6feLEidqyZYvGjx+vvXv3asmSJXr88cc1ePBg1alT56rzrl+/vjZv3qz9+/crIyNDly9fVqNGjXT69GnFx8frwIED+vDDD/X2229fU81BQUGqUqWKli1bphMnTrje+PT8889r4cKFGjdunLZt26b9+/dryZIlGjlypC5cuKBz587pT3/6k1auXKmDBw9q69atWrJkyVX/0Bg3bpw2bNigKVOmaN++fZo/f75eeeUVtzZ//vOflZubq759+2rNmjU6dOiQ1q5dqylTpmj9+vWSfn171rx585SSkqLU1FR99NFHqlKlisc+vFKXLl0UHR2tfv36af78+Tpw4IA2b96sN998U++///419WFpeeaZZ7Rnzx498sgj2rRpkw4ePKhVq1YpNjZWBw4ckPRr/yxevFj79+/Xrl27NG/ePIWFhcnf37/Ey3344YdVo0YNPfjgg9qyZYs2b96shx56SKGhoa6TcWmLjo7Wp59+qmXLliklJUXjxo1ze7tlSTVs2FAjRozQo48+qjlz5igtLU3bt2/X7NmzNXPmTLflv/vuu9qwYYO+//57DRs2zO0q9Pr16/XCCy/o22+/1ZEjR7RixQrt2LHDtX2XxXY6ePBg1a9fX7169dKyZct06NAhffvtt3rppZdctyLVrVtXXl5eWrx4sU6dOnXVN7wWhn4vqDj9Xpp+y3ngSlOnTtVXX32lJ554Qjt27FBKSooSExOVkpIi6ddzxt69e7Vr1y5lZGTo4sWLBeYRHh6ugQMHauzYsVq6dKn27t2r2NhYff/995o4ceJvWs/SOt4Xx/Tp0/XGG29o2rRp+v7775WSkqIFCxZo9OjRrjbR0dFKSkrSZ599prS0NM2YMcPtVu1rMWjQINWtW1d9+vRRUlKSDh48qBUrVujTTz8ttH1xztVX227T0tL09NNPa+3atTp8+LA2bNigNWvWuPaLkm7DEyZM0Ouvv645c+YoNTVVr7zyipKSkq667o0aNdLChQu1adMm7d69W4899phbAK5cubJGjx6tuLg4ffHFF9q3b5+mTJmiPXv2uP0DsjifGW4y1/2pONzwCntY/0r5XyZijDFffvmliYiIMD4+PiYoKMiMGTPGnDt3zuM89+/fbzp06GAqV67s9lBxXFycqVmzpvHz8zM9evQwH3/8sdvD+J5eJmKMMR988IGpV6+esdvtbg9Wr1692kRFRZkqVaoYPz8/07hxYxMbG2suX75sLly4YAYNGmTq1atnKlasaGrUqGEeeOABc+TIkav22SeffGIaNGhgfHx8TOvWrc2CBQsK1HPo0CHz8MMPm6CgIOPj42Pq1KljBg8ebA4cOGCMMeb55583zZo1M5UrVzYBAQHm3nvvvepD28YU/iD5+fPnzdNPP23q1atnKlSoYIKDg023bt3MihUriuyrwl6+kvdSgeXLlxfa58YU/hKIvJdxpKamusbt2LHD9OnTx1SrVs34+vqa8PBw8+ijj7re2jd27Fhz6623Gl9fX1O9enXTs2dP8/333xe53oXVYowx3t7ebi+C2bt3r+nRo4epXLmyqVy5sunVq5dbXYVty0W9iCa/wrbps2fPmkceecRUq1bN1KhRwzz33HOFvtQi/2dW2Et1unXrZgYPHuwazsnJMTNnzjSNGjUyFSpUMA6Hw9x7773ms88+c7VJT0839913n/H39ze1a9c2b7/9ttu8v//+e9OjRw8THBzs2gaffPJJ11swjSmb7TQjI8OMGTPGhISEmAoVKpiQkBDTt29fs2XLFlebmTNnmpCQEOPl5VXoyyLo99Lv9+LuR/kV9VKJkpwH5syZY/L/KbNkyRJz9913G19fXxMQEGA6depk9u/fb4wxJjMz0/To0cMEBAQYSa46879Q5qeffjKPPfaYqz9btWplli5d6nEdwsPDPb7YqDSO94UprH/mz59v7r77blOpUiXj7+9v7rzzTvO3v/3NNf3SpUsmNjbW1KhRw1StWtWMHTvWTJ06tcDLRK52Tr9Senq6GTJkiHE4HKZixYqmUaNGrj4urM88nauvtt0eP37c3H///SY0NNT4+PiYW265xYwaNcrtZVjFOXbkl5ubayZPnmwcDofx8/Mz/fv3N//4xz+u+jKRI0eOmJiYGOPn52dq1aplnn32WTNixAi3Y8j58+fNo48+avz9/U3VqlXNH//4RxMbG1vghUSePjPcXGzG5Ls5GQAAAECZ6tKliwIDAzV37tzyLgUWxTNqAAAAQBnauXOntmzZorZt2+rSpUuaM2eOVq1apcWLF5d3abCwYgW1bdu2KSEhwfUmor59+7pNP3funN555x2dPHlSFSpU0B//+MdruqccAAAAuFHZbDa98847+stf/iKn06nGjRtr/vz56tGjR3mXBgvzeOuj0+lUbGys4uLi5HA4NHnyZMXGxrq90WfOnDny9fXVwIED9cMPPyg+Pl7PPvtsmRcPAAAAADcij299TEtLU61atRQcHCy73a527doV+I6lY8eOuV6TGhoaqtOnT+vMmTNlUzEAAAAA3OA8BrWsrCzXl8pKv37BbFZWllubunXr6ttvv5X0a7A7ffp0gTaSlJSUpEmTJhX6xbUAAAAAgF95fEatsDsj83/pbN++fZWYmKiJEyeqTp06ql+/vry8CmbA6OhoRUdHu4bzf8kiylZQUJAyMjLKuwzghsU+BpQt9jGg7LGfXV8hISFFTvMY1BwOhzIzM13DmZmZCgwMdGvj5+ensWPHSvo12P35z38u9rfAAwAAAADcebz1MTw8XOnp6Tp16pRycnK0fv16RUZGurX55ZdflJOTI0lasWKFmjRpIj8/v7KpGAAAAABucB6vqHl7e2vEiBGaPn26nE6nOnfurLCwMC1btkySFBMTox9++EFvvfWWvLy8VLt2bY0ZM6bMCwcAAACAG5XH1/OXpfzPqBljlJ2dLafTWeA5OPx2FStW1MWLF8t8OcYYeXl5ydfXl88RNxXu6wfKFvsYUPbYz66v3/SM2vWUnZ2tChUqyG63VFk3DLvdLm9v7+uyrJycHGVnZ6tSpUrXZXkAAADAjcTjM2rXk9PpJKTdIOx2u5xOZ3mXAQAAAPwuWSqocZvcjYXPEwAAACgZSwU1AAAAAIDFnlHLL/fRPqU6P+/3P/fYJiwsTI0bN3YNz549W2FhYaVaBwAAAABcjaWDWnnw9fXV8uXLy7sMAAAAADcxbn0shjZt2igrK0uStH37dg0YMECS9Morryg2NlaDBg1SmzZttHjxYk2bNk1RUVEaPHiwLl++LEnasWOH+vfvr+7du+vhhx/WyZMnJUkDBgzQ9u3bJUlZWVlq06aNJCklJUW9evVS165dFR0drQMHDkiS5s6d6xr/1FNPKTc3V7m5uXriiSfUpUsXRUVF6b333ruufQMAAACg9HFFLZ/s7Gx17dpVklSnTh3Fx8dftf3hw4f1n//8R/v27VOfPn30/vvvKy4uTiNHjtSKFSsUFRWluLg4JSQkyOFwaOHChZo5c6b+8Y9/FDnPOXPmaOTIkerXr58uXbqk3Nxcpaam6vPPP9eCBQtUoUIFTZ48WfPmzVOjRo104sQJrVy5UpL0008/lV5nAAAAACgXBLV8rvXWx86dO6tChQpq0qSJnE6nOnfuLElq3Lixjh49qv379yslJUUPPfSQpF+/gqBmzZpXnWerVq30xhtvKD09XT169FCDBg20du1a7dy5Uz179pT0a6AMCgpS165ddeTIEcXFxSkqKkodO3Ys4ZoDAAAAsAqCWjFc+Z1gFy9edJtWsWJFSZKXl5fsdrvrlfReXl7Kzc2VMUa33XabFi1aVGC+3t7ervlmZ2e7xt9///1q2bKlVqxYocGDB+vll1+WMUYDBw7U5MmTC8xn+fLl+vrrr5WYmKhFixZd9WodAAAAAOvjGbViqL9rwRIAACAASURBVF27tnbs2CFJ+vLLL6/pd8PDw5WVlaXvvvtOknT58mWlpKRI+vUNk4XN9/Dhw6pbt65Gjhyprl27as+ePWrfvr2++OILZWRkSJJ+/PFHHTt2TFlZWXI6nerVq5cmTpyonTt3/ub1BQAAAFC+LH1FrTiv078exo8frwkTJujNN99Uy5Ytr+l3fXx89K9//UvPPvuszp49q9zcXI0aNUqNGjXSmDFjNGbMGM2dO1f33HOP63c+//xzzZs3T3a7XTVr1tS4ceMUGBiop556SoMGDZIxRna7XdOnT5evr6/Gjx/vujJX2BU3AAAAAL8vNmOMKa+FHz9+3G34/Pnz8vPzK6dqbnx2u105OTnXbXl8nrjZBAUFua56Ayh97GNA2WM/u75CQkKKnMatjwAAAABgMQQ1AAAAALAYghoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAAAAi7H096j94aO9pTq/hYMbe2wTGhqqxx57TM8995wk6d1339Uvv/yiCRMmlGotV1q/fr1GjBihsLAwSVL16tX16aefltnyAAAAAFibpYNaeahYsaK++uorPf7446pevfp1W27r1q314YcfXrflAQAAoGRyH+1T3iWUnfnry7sC/D8EtXy8vb01ePBgvffee5o0aZLbtGPHjmn8+PHKyspS9erV9eqrryo0NFRPPPGE/P39tX37dp0+fVpTpkzRfffd95vqOHr0qIYOHaqVK1dKcr+yN2DAADVr1kw7d+5UZmamXn/9db311lvas2eP+vTpo6efflqSNHfuXM2ePVuXLl1Sy5Yt9fLLL0uSbr31VqWmpkqSvvjiCyUlJem1117TokWL9Oqrr8rLy0sBAQGaN2+ecnNz9eKLL2rDhg26dOmShg4dqiFDhujkyZP64x//qJ9//lm5ubl66aWX1KZNm9+0zgAAAChf97y+trxLKBPFubPOanhGrRDDhg3T/PnzdfbsWbfxU6ZM0YABA5SUlKR+/fpp6tSprmknT57UggUL9MEHH+ill1665mVu2rRJXbt2VdeuXfX66697bO/j46N58+ZpyJAhGjFihKZPn66VK1fqs88+U1ZWllJTU/X5559rwYIFWr58uby9vTV37tyrzvO1117TRx99pKSkJCUkJEiSPvnkE/n7+2vx4sX68ssv9fHHH+vIkSOaP3++OnbsqOXLl2v58uVq1qzZNa8zAAAAgMJxRa0Q/v7+GjBggOLj41WpUiXX+M2bN2vWrFmSpP79+2vatGmuad27d5eXl5duu+02nT59+pqXmf/Wx6NHj161fUxMjCSpcePGuu222xQcHCxJqlu3ro4fP67k5GTt3LlTPXv2lCRlZ2erZs2aV51nZGSkxo0bp969e6tHjx6SpG+++UZ79uzRl19+KUn6+eefdfDgQbVo0UITJkxQTk6OunXrpttvv/2a1xkAAABA4QhqRRg1apS6d++uBx98sMg2NpvN9bOPj4/rZ2NMgbaJiYn66KOPJElz5sxRrVq1rrp8b29vOZ1O13B2drbb9LzleXl5uS3by8tLubm5MsZo4MCBmjx5smua3W5XTk6OW90XL150/Txz5kxt2bJFK1asUExMjJYtWyZJmjZtmjp16lSgxrlz52rFihWKjY3VmDFjNHDgwKuuEwAAAIDi4dbHIgQGBqp379765JNPXOMiIyO1cOFCSdK8efPUunXrYs9v2LBhrtsEPYU0SapRo4YyMjKUlZWlixcvKikp6Zrqb9++vb744gtlZGRIkn788UfXVboaNWooNTVVTqdTS5Yscf3OoUOHFBERoYkTJ6p69eo6fvy4OnbsqA8//FCXL1+WJO3fv1/nz5/XsWPHFBQUpMGDB+uhhx7Szp07r6k+AAAAAEWz9BW18n7ob/To0a5ntSTphRde0Pjx4/Xuu++6XiZSVipUqOC6DTEsLEwNGza8pt+/7bbb9NRTT2nQoEEyxshut2vGjBm65ZZbNHnyZA0dOlQhISFq1KiRfvnlF0m/Xjk7ePCgjDFq3769mjVrpqZNm+ro0aPq3r27jDGqXr26Zs+erfXr1+vdd9+V3W5X5cqVi/VcHQAAAIDisZnC7tO7To4fP+42fP78efn5+ZVTNTe+vFsfrxc+T9xsgoKCXFexAZQ+9jFYxY38ev5+nf6nvEsoE+V9AagoISEhRU7j1kcAAAAAsBiCGgAAAABYjKWCWjnehYkywOcJAAAAlIylgpqXl9d1fYYKZScnJ0deXpbavAAAAIDfDUu99dHX11fZ2dm6ePGi23d9oXRUrFjR7XvTyooxRl5eXvL19S3zZQEAAAA3IksFNZvNpkqVKpV3GTcs3pYFAAAA/D5wbxoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAAAAiyGoAQAAAIDFENQAAAAAwGIIagAAAABgMQQ1AAAAALAYghoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAAAAiyGoAQAAAIDFENQAAAAAwGIIagAAAABgMQQ1AAAAALAYghoAAAAAWIy9OI22bdumhIQEOZ1ORUVFqW/fvm7Tz58/rzfeeEOZmZnKzc1V79691blz5zIpGAAAAABudB6DmtPpVHx8vOLi4uRwODR58mRFRkaqdu3arjZLlixR7dq1NWnSJJ09e1axsbHq0KGD7PZi5UAAAAAAwBU83vqYlpamWrVqKTg4WHa7Xe3atVNycrJbG5vNpuzsbBljlJ2drSpVqsjLi7sqAQAAAKAkPKaprKwsORwO17DD4VBWVpZbm+7du+uHH37Q6NGjNWHCBA0fPpygBgAAAAAl5PHeRGNMgXE2m81tePv27apbt66effZZnTx5Ui+88IIaN24sPz8/t3ZJSUlKSkqSJM2YMUNBQUG/pXZcI7vdTp8DZYh9DChb7GOwipPlXQCu2e/x2OExqDkcDmVmZrqGMzMzFRgY6NZm1apV6tu3r2w2m2rVqqWaNWvq+PHjatiwoVu76OhoRUdHu4YzMjJ+a/24BkFBQfQ5UIbYx4CyxT4GoKSseuwICQkpcprH+xPDw8OVnp6uU6dOKScnR+vXr1dkZKRbm6CgIO3cuVOSdObMGR0/flw1a9b8jWUDAAAAwM3J4xU1b29vjRgxQtOnT5fT6VTnzp0VFhamZcuWSZJiYmLUv39/vf3225owYYIkafDgwQoICCjbygEAAADgBlWs9+dHREQoIiLCbVxMTIzr5+rVqysuLq50KwMAAACAmxSvZgQAAAAAiyGoAQAAAIDFENQAAAAAwGIIagAAAABgMQQ1AAAAALAYghoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAAAAiyGoAQAAAIDFENQAAAAAwGIIagAAAABgMQQ1AAAAALAYghoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAAAAiyGoAQAAAIDFENQAAAAAwGIIagAAAABgMQQ1AAAAALAYghoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAAAAiyGoAQAAAIDFENQAAAAAwGIIagAAAABgMQQ1AAAAALAYghoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAAAAiyGoAQAAAIDFENQAAAAAwGIIagAAAABgMQQ1AAAAALAYghoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAAAAiyGoAQAAAIDFENQAAAAAwGIIagAAAABgMQQ1AAAAALAYghoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAAAAiyGoAQAAAIDFENQAAAAAwGLsxWm0bds2JSQkyOl0KioqSn379nWb/vnnn2vNmjWSJKfTqWPHjik+Pl5VqlQp/YoBAAAA4AbnMag5nU7Fx8crLi5ODodDkydPVmRkpGrXru1q06dPH/Xp00eS9N133+nLL78kpAEAAABACXm89TEtLU21atVScHCw7Ha72rVrp+Tk5CLbr1u3Tvfcc0+pFgkAAAAANxOPQS0rK0sOh8M17HA4lJWVVWjbixcvatu2bbr77rtLr0IAAAAAuMl4vPXRGFNgnM1mK7Tt5s2b1ahRoyJve0xKSlJSUpIkacaMGQoKCrqWWvEb2e12+hwoQ+xjQNliH4NVnCzvAnDNfo/HDo9BzeFwKDMz0zWcmZmpwMDAQtuuW7dO7du3L3Je0dHRio6Odg1nZGRcS634jYKCguhzoAyxjwFli30MQElZ9dgREhJS5DSPtz6Gh4crPT1dp06dUk5OjtavX6/IyMgC7c6fP6/du3cXOg0AAAAAUHwer6h5e3trxIgRmj59upxOpzp37qywsDAtW7ZMkhQTEyNJ2rRpk+688075+vqWbcUAAAAAcIMr1veoRUREKCIiwm1cXkDL06lTJ3Xq1KnUCgMAAACAm5XHWx8BAAAAANcXQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIuxF6fRtm3blJCQIKfTqaioKPXt27dAm127dikxMVG5ubny9/fX3/72t1IvFgAAAABuBh6DmtPpVHx8vOLi4uRwODR58mRFRkaqdu3arja//PKLZs2apSlTpigoKEg//fRTmRYNAAAAADcyj7c+pqWlqVatWgoODpbdble7du2UnJzs1mbt2rVq06aNgoKCJElVq1Ytm2oBAAAA4Cbg8YpaVlaWHA6Ha9jhcCg1NdWtTXp6unJycvTXv/5VFy5cUM+ePdWxY8cC80pKSlJSUpIkacaMGa5gh+vDbrfT50AZYh8Dyhb7GKziZHkXgGv2ezx2eAxqxpgC42w2m9twbm6uDh48qKlTp+rSpUuKi4vTrbfeqpCQELd20dHRio6Odg1nZGSUtG6UQFBQEH0OlCH2MaBssY8BKCmrHjvy56UreQxqDodDmZmZruHMzEwFBgYWaOPv7y9fX1/5+vqqSZMmOnz48FUXDAAAAAAonMdn1MLDw5Wenq5Tp04pJydH69evV2RkpFubyMhI7d27V7m5ubp48aLS0tIUGhpaZkUDAAAAwI3M4xU1b29vjRgxQtOnT5fT6VTnzp0VFhamZcuWSZJiYmJUu3ZttWjRQk8++aS8vLzUpUsX1alTp8yLBwAAAIAbUbG+Ry0iIkIRERFu42JiYtyG+/Tpoz59+pReZQAAAABwk/J46yMAAAAA4PoiqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBi7MVptG3bNiUkJMjpdCoqKkp9+/Z1m75r1y79z//8j2rWrClJatOmjQYMGFD61QIAAADATcBjUHM6nYqPj1dcXJwcDocmT56syMhI1a5d261dkyZNNGnSpDIrFAAAAABuFh5vfUxLS1OtWrUUHBwsu92udu3aKTk5+XrUBgAAAAA3JY9BLSsrSw6HwzXscDiUlZVVoN2+ffs0ceJEvfjiizp69GjpVgkAAAAANxGPtz4aYwqMs9lsbsP169fX22+/LV9fX23ZskUvv/yy3njjjQK/l5SUpKSkJEnSjBkzFBQUVNK6UQJ2u50+B8oQ+xhQttjHYBUny7sAXLPf47HDY1BzOBzKzMx0DWdmZiowMNCtjZ+fn+vniIgIxcfH6+zZswoICHBrFx0drejoaNdwRkZGiQvHtQsKCqLPgTLEPgaULfYxACVl1WNHSEhIkdM83voYHh6u9PR0nTp1Sjk5OVq/fr0iIyPd2pw5c8Z15S0tLU1Op1P+/v6/sWwAAAAAuDl5vKLm7e2tESNGaPr06XI6nercubPCwsK0bNkySVJMTIw2btyoZcuWydvbWz4+PnriiScK3B4JAAAAACieYn2PWkREhCIiItzGxcTEuH7u3r27unfvXrqVAQAAAMBNyuOtjwAAAACA64ugBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBi7OVdAAAAKF25j/Yp7xLKxvz15V0BAFw3XFEDAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFhMsYLatm3bFBsbq8cff1wLFiwosl1aWpoefPBBbdy4sdQKBAAAAICbjceg5nQ6FR8fr2eeeUavvvqq1q1bp2PHjhXa7qOPPlKLFi3KpFAAAAAAuFl4DGppaWmqVauWgoODZbfb1a5dOyUnJxdo99VXX6lNmzYKCAgok0IBAAAA4GZh99QgKytLDofDNexwOJSamlqgzaZNm/Tcc8/pnXfeKXJeSUlJSkpKkiTNmDFDQUFBJa0bJWC32+lzoAyxj8EqTpZ3AWWEfQxWcaPuYzey3+Oxw2NQM8YUGGez2dyGExMTNXjwYHl5Xf0CXXR0tKKjo13DGRkZxa0TpSAoKIg+B8oQ+xhQtnJyctjHAJSIVY8dISEhRU7zGNQcDocyMzNdw5mZmQoMDHRrs3//fr3++uuSpLNnz2rr1q3y8vJS69atS1ozAAAAANy0PAa18PBwpaen69SpU6pevbrWr1+vv/zlL25t/vnPf7r93KpVK0IaAAAAAJSQx6Dm7e2tESNGaPr06XI6nercubPCwsK0bNkySVJMTEyZFwkAAAAANxOPQU2SIiIiFBER4TauqID2pz/96bdXBQAAAAA3sWJ94TUAAAAA4PohqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDEENQAAAACwGIIaAAAAAFgMQQ0AAAAALIagBgAAAAAWQ1ADAAAAAIshqAEAAACAxRDUAAAAAMBiCGoAAAAAYDH28i4AAACgOO55fW15l1BmFg5uXN4lALAYrqgBAAAAgMUQ1AAAAADAYghqAAAAAGAxBDUAAAAAsBiCGgAAAABYDEENAAAAACyGoAYAAAAAFkNQAwAAAACLIagBAAAAgMUQ1AAAAADAYghqAAAAAGAxBDUAAAAAsBiCGgAAAABYDEENAAAAACzGXpxG27ZtU0JCgpxOp6KiotS3b1+36cnJyfr0009ls9nk7e2tYcOGqXHjxmVSMAAAAADc6DwGNafTqfj4eMXFxcnhcGjy5MmKjIxU7dq1XW2aN2+uyMhI2Ww2HT58WK+++qpee+21Mi0cAAAAAG5UHm99TEtLU61atRQcHCy73a527dopOTnZrY2vr69sNpsk6eLFi66fAQAAAADXzuMVtaysLDkcDteww+FQampqgXabNm3Sxx9/rJ9++kmTJ08u3SoBAAAA4CbiMagZYwqMK+yKWevWrdW6dWvt3r1bn376qaZOnVqgTVJSkpKSkiRJM2bMUFBQUElqRgnZ7Xb6HChD7GOwipPlXQCuGceO3xf2sd+f3+M+5jGoORwOZWZmuoYzMzMVGBhYZPumTZvqn//8p86ePauAgAC3adHR0YqOjnYNZ2RklKRmlFBQUBB9DpQh9jEAJcWxAyhbVt3HQkJCipzm8Rm18PBwpaen69SpU8rJydH69esVGRnp1ubEiROuK28HDhxQTk6O/P39f2PZAAAAAHBz8nhFzdvbWyNGjND06dPldDrVuXNnhYWFadmyZZKkmJgYbdy4UatXr5a3t7d8fHw0btw4XigCAAAAACVUrO9Ri4iIUEREhNu4mJgY1899+/Yt8N1qAAAAAICS8XjrIwAAAADg+iKoAQAAAIDFENQAAAAAwGIIagAAAABgMQQ1AAAAALAYghoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAAAAiyGoAQAAAIDFENQAAAAAwGIIagAAAABgMQQ1AAAAALAYghoAAAAAWAxBDQAAAAAshqAGAAAAABZDUAMAAMD/be/+o5uq7z+Ov9KkUEqhkERSO4ocWipUzwFqgYJMxXYV8ZzC2RTlAPPIYdhT2HYcB0EmFsGOMstwc+0Uwc6Jk7EeHex8mXbFMcBuQqlsFjelExysga4pP6RYuvTm+wcjh1BqKiP0Q3k+/mru53Nv3snpO+kr99MbAIYhqAEAAACAYQhqAAAAAGAYghoAAAAAGIagBgAAAACGIagBAAAAgGEIagAAAABgGIIaAAAAABiGoAYAAAAAhiGoAQAAAIBhCGoAAAAAYBiCGgAAAAAYhqAGAAAAAIYhqAEAAACAYQhqAAAAAGAYghoAAAAAGIagBgAAAACGIagBAAAAgGEIagAAAABgGIIaAAAAABiGoAYAAAAAhiGoAQAAAIBhCGoAAAAAYBiCGgAAAAAYhqAGAAAAAIYhqAEAAACAYQhqAAAAAGAYghoAAAAAGIagBgAAAACGIagBAAAAgGEIagAAAABgGIIaAAAAABiGoAYAAAAAhiGoAQAAAIBhCGoAAAAAYBiCGgAAAAAYxtGZSfv27VNZWZksy1JWVpamTp0aMr5z505t3rxZkhQTE6M5c+Zo8ODBV7xYAAAAALgehD2jZlmW1q9fryVLlmjNmjV69913deTIkZA5AwYM0LJly1RcXKxvfOMbWrt2bcQKBgAAAIDuLmxQq6urU0JCgjwejxwOh8aPH689e/aEzLn55psVFxcnSRo6dKh8Pl9kqgUAAACA60DYpY9NTU1yuVzB2y6XSwcOHOhw/jvvvKNRo0ZdcqyyslKVlZWSpKKiIrnd7i9bL/4HDoeD5xyIIHoMpjjW1QXgS+O149pCj117rsUeCxvUAoFAu202m+2Sc2tra/WHP/xBy5cvv+R4dna2srOzg7cbGxs7WyeuALfbzXMORBA9BuBy8doBRJapPZaYmNjhWNiljy6XK2Qpo8/nU//+/dvN+/TTT/Xiiy9q4cKF6tOnz2WWCgAAAAAIG9SSk5Pl9XrV0NAgv9+vqqoqZWRkhMxpbGxUcXGx5s+f/4WpEAAAAAAQXtilj3a7XbNnz1ZhYaEsy9LEiROVlJSkiooKSVJOTo7Ky8t1+vRprVu3LrhPUVFRZCsHAAAAgG6qU9+jlp6ervT09JBtOTk5wZ/z8vKUl5d3ZSsDAAAAgOtU2KWPAAAAAICri6AGAAAAAIYhqAEAAACAYQhqAAAAAGAYghoAAAAAGIagBgAAAACGIagBAAAAgGEIagAAAABgGIIaAAAAABiGoAYAAAAAhiGoAQAAAIBhCGoAAAAAYBhHVxcA4PrT9q3cri4hMt6s6uoKAABAN8EZNQAAAAAwDEENAAAAAAxDUAMAAAAAwxDUAAAAAMAwBDUAAAAAMAxBDQAAAAAMQ1ADAAAAAMMQ1AAAAADAMAQ1AAAAADAMQQ0AAAAADENQAwAAAADDENQAAAAAwDAENQAAAAAwDEENAAAAAAxDUAMAAAAAwxDUAAAAAMAwBDUAAAAAMAxBDQAAAAAMQ1ADAAAAAMMQ1AAAAADAMAQ1AAAAADAMQQ0AAAAADENQAwAAAADDENQAAAAAVtiPcQAAEL5JREFUwDAENQAAAAAwDEENAAAAAAxDUAMAAAAAwxDUAAAAAMAwBDUAAAAAMAxBDQAAAAAMQ1ADAAAAAMMQ1AAAAADAMAQ1AAAAADAMQQ0AAAAADENQAwAAAADDENQAAAAAwDAENQAAAAAwDEENAAAAAAzj6Mykffv2qaysTJZlKSsrS1OnTg0Z/9e//qXS0lIdPHhQDz30kHJzcyNSLAAAAABcD8IGNcuytH79ej355JNyuVx64oknlJGRoYEDBwbnxMXF6ZFHHtGePXsiWiwAAAAAXA/CLn2sq6tTQkKCPB6PHA6Hxo8f3y6QxcfHKyUlRXa7PWKFAgAAAMD1IuwZtaamJrlcruBtl8ulAwcOXNadVVZWqrKyUpJUVFQkt9t9WcfB5XE4HDznMMKxri4gQugxmKK79lh3xmvHtYUeu/Zciz0WNqgFAoF222w222XdWXZ2trKzs4O3GxsbL+s4uDxut5vnHIigsau3d3UJEbF5xrCuLgHo9nh/BiLL1B5LTEzscCzs0keXyyWfzxe87fP51L9//ytTGQAAAACgnbBBLTk5WV6vVw0NDfL7/aqqqlJGRsbVqA0AAAAArkthlz7a7XbNnj1bhYWFsixLEydOVFJSkioqKiRJOTk5OnHihBYvXqzPP/9cNptNW7du1Y9+9CPFxsZG/AEAAAAAQHfTqe9RS09PV3p6esi2nJyc4M/9+vXTCy+8cGUrAwAAAIDrVNiljwAAAACAq4ugBgAAAACGIagBAAAAgGEIagAAAABgGIIaAAAAABiGoAYAAAAAhiGoAQAAAIBhCGoAAAAAYBiCGgAAAAAYhqAGAAAAAIYhqAEAAACAYQhqAAAAAGAYghoAAAAAGIagBgAAAACGIagBAAAAgGEIagAAAABgGIIaAAAAABiGoAYAAAAAhiGoAQAAAIBhCGoAAAAAYBiCGgAAAAAYhqAGAAAAAIYhqAEAAACAYQhqAAAAAGAYghoAAAAAGIagBgAAAACGIagBAAAAgGEIagAAAABgGIIaAAAAABiGoAYAAAAAhiGoAQAAAIBhCGoAAAAAYBhHVxdgmrZv5XZ1CZHzZlVXVwAAAACgEzijBgAAAACGIagBAAAAgGEIagAAAABgGIIaAAAAABiGoAYAAAAAhiGoAQAAAIBhuDz/deT2H+/q6hIiYvOMYV1dAgAAAHBFcUYNAAAAAAxDUAMAAAAAwxDUAAAAAMAwBDUAAAAAMAxBDQAAAAAMQ1ADAAAAAMMQ1AAAAADAMAQ1AAAAADAMQQ0AAAAADENQAwAAAADDENQAAAAAwDCOzkzat2+fysrKZFmWsrKyNHXq1JDxQCCgsrIyvf/+++rZs6fy8/M1ZMiQiBQMAAAAAN1d2DNqlmVp/fr1WrJkidasWaN3331XR44cCZnz/vvv6+jRo/rJT36iuXPnat26dRErGAAAAAC6u7BBra6uTgkJCfJ4PHI4HBo/frz27NkTMqe6ulp33HGHbDabUlNT1dzcrOPHj0esaAAAAADozsIGtaamJrlcruBtl8ulpqamdnPcbvcXzgEAAAAAdE7Y/1ELBALtttlsti89R5IqKytVWVkpSSoqKlJiYmKnC71q/q+6qyuImD3hpwBXRzftM3oMxqDHgMjqpj0m0WcmCXtGzeVyyefzBW/7fD7179+/3ZzGxsYvnCNJ2dnZKioqUlFR0f9SMy7T4sWLu7oEoFujx4DIoseAyKPPzBE2qCUnJ8vr9aqhoUF+v19VVVXKyMgImZORkaEdO3YoEAjo448/Vmxs7CWDGgAAAAAgvLBLH+12u2bPnq3CwkJZlqWJEycqKSlJFRUVkqScnByNGjVKNTU1+s53vqMePXooPz8/4oUDAAAAQHfVqe9RS09PV3p6esi2nJyc4M82m01z5sy5spXhisvOzu7qEoBujR4DIoseAyKPPjOHLXCpK4EAAAAAALpM2P9RAwAAAABcXZ1a+oiro7S0VDU1NYqPj9fq1auD2w8dOqSXXnpJra2tstvtmjNnjlJSUtrtv3HjRlVXV8tmsyk+Pl75+flyOp3B8cbGRj322GN64IEHlJube1UeE2CK1tZWFRQUyO/3q62tTZmZmZo2bVrInC1btmjDhg1at26d+vbt2+4YmzZt0rZt24Jj06dPD1kWTo/hejdv3jzFxMQoKipKdrs9eJXncL1zod/97nd66623ZLfblZ6erpkzZwbH6DFcT5YtW6ZZs2YpOTn5ih2zpKREt912mzIzMzu9T1VVlX7961/LZrPppptu0ne/+11J0oMPPqhBgwZJktxutxYtWnTF6sQ5BDWD3HXXXZo0aZJKSkpCtm/YsEH3339/8KItGzZs0LJly9rtn5ubq4ceekiStHXrVpWXl2vu3LnB8Z///OcaNWpURB8DYKro6GgVFBQoJiZGfr9fTz31lEaOHKnU1FRJ5/4A/OCDD+R2u7/wOPfdd1+HfyDSY4BUUFBwyQ86vqh3zqutrVV1dbWKi4sVHR2tkydPhozTY8DV5fV69Zvf/EYrVqxQXFxcSE/26NFDzz77bBdW1/0R1AySlpamhoaGdtttNps+//xzSdKZM2c6/OqD2NjY4M9nz54N+dLx3bt3y+PxqGfPnh3ef3l5ufbu3avW1lalpqZq7ty5stlsWrZsmVJSUrR//36dOXNGeXl5Gj58uA4fPqzS0lL5/X4FAgEtWLBAN9544+U+fCCibDabYmJiJEltbW1qa2sL6ZFXXnlFM2bMuOw3HXoM+N9VVFRoypQpio6OliTFx8cHx+gxdEcNDQ36wQ9+oJSUFB06dEg33nij5s+f3+73fNasWXr11VclSX/+85+1d+9ezZs3T3/6059UXl6uqKgoxcbG6umnnw7ZLxAI6OWXX1Ztba0GDBgQMvbJJ5/olVdeUUtLi/r27av8/Px2f2Nu27ZN99xzj+Li4iSF9mRnVFZWatu2bfL7/fJ4PPr2t7+tnj17qqSkRL169dInn3yiEydOaObMmcrMzNTx48f13HPP6cyZM7IsS3PmzNHw4cO/1H12JwS1a8DDDz+swsJCvfrqq7IsS88880yHc19//XXt2LFDsbGxKigokCS1tLRo8+bNWrp0qbZs2dLhvpMmTdL9998vSXr++ee1d+/e4HfmWZallStXqqamRuXl5Vq6dKl+//vfa/LkyfrqV78qv98vy7Ku4KMGrjzLsrRo0SIdPXpU99xzj4YOHSpJqq6ultPp1ODBg8Me4+2339aOHTs0ZMgQffOb31RcXBw9BlygsLBQkvS1r30t5Opxl+qdi3m9Xv3973/Xxo0bFR0drVmzZiklJYUeQ7dWX1+vvLw8DRs2TKWlpXr77bc7vbS3vLxc3//+9+V0OtXc3NxufPfu3aqvr9fq1at14sQJfe9739PEiRPl9/v18ssv6/HHH1ffvn1VVVWl119/vd1XbNXX10uSli5dKsuy9MADD2jkyJGSpP/85z9avHix7Ha7pkyZojFjxrS7/7FjxwZfBzZu3Kh33nlH9957ryTpxIkTWr58uerr67Vq1SplZmZq165dGjFihL7+9a/LsiydPXu2809kN0RQuwZUVFTo4YcfVmZmpqqqqvTCCy9o6dKll5w7ffp0TZ8+XW+++abeeustTZs2TZs2bdJ9990XPJvQkdraWm3ZskVnz57V6dOnlZSUFHyDO998Q4YMCZ71S01N1RtvvCGfz6exY8fyKSSMFxUVpWeffVbNzc0qLi7WP//5T3k8Hr3xxht68sknw+6fk5MT/CPwV7/6lX7xi18oPz+fHgP+a8WKFXI6nTp58qSeeeYZJSYmKi0trcPeuZhlWTp9+rQKCwv1j3/8Q2vWrNFPf/pTegzdmsvl0rBhwyRJd9xxh7Zu3drpoHbzzTerpKRE48aN09ixY9uN/+1vf9Ptt9+uqKgoOZ1O3XrrrZLOBbDDhw9rxYoVks713qVWbFmWJa/Xq4KCAjU1Nempp57S6tWr1bt3b5WWlsrpdOrYsWNavny5Bg0apISEhJD9Dx8+rI0bN6q5uVktLS0aMWJEcGz06NGKiorSwIEDg0sqk5OT9bOf/Ux+v19jxozp1Aeo3RlB7Rrwxz/+UY888ogkady4cXrxxRclnbv4yMGDB+V0OvXEE0+E7DNhwgQVFRVp2rRpqqur03vvvafXXntNzc3Nstls6tGjhyZNmhSc39raqvXr12vlypVyu93atGmTWltbg+Pnl6FERUUFP3GcMGGCUlJSVFNTo8LCQuXl5QVfAACT9e7dW2lpadq3b59GjhyphoYGLVy4UJLk8/m0aNEirVy5Ur/85S9Deqxfv37BY2RlZWnVqlWSRI8B/3X+Albx8fEaPXq06urqlJaW1mHvXPw+5nQ6NXbsWNlsNqWkpCgqKkqfffYZPYZu7cJl+Je6ffG2C3+v586dqwMHDqimpkaPP/64fvjDH6pPnz5hjydJAwcODJ4B74jT6VRqaqocDocGDBigxMREeb1epaSkBPvd4/EoLS1Nhw4dahfUSkpKtHDhQg0ePFjbt2/X/v37g2Pne1I6t0RTOvdvQE8//bRqamr0/PPPKzc3V3feeecX1tidEdSuAU6nUx9++KFuueUW1dbWBpvg4k8jvV5v8NPA6upqJSYmSpKWL18enLNp0ybFxMSEvLlJ505fS1Lfvn3V0tKi995775KfzFzo2LFj8ng8mjx5shoaGvTpp5/yBgdjnTp1Sna7Xb1791Zra6s++OADTZkyRYMGDdK6deuC8+bNm6eVK1cG1+tf6Pjx48FPHHfv3q2kpCRJ9BggnVtmHwgE1KtXL7W0tOivf/1r8CxaR71zcY+NHj1atbW1uuWWW1RfXy+/368+ffrQY+jWGhsb9fHHHys1NVW7du0Knl27UHx8vI4cOaLExETt3r1bvXr1kiQdPXpUQ4cO1dChQ7V37175fL6QoDZ8+HBVVlbqzjvv1MmTJ7V//35NmDBBiYmJOnXqVPB+/X6/vF5vsDfPGzNmjHbt2qW77rpLp06dktfrlcfj0enTp9WzZ09FR0fr1KlT+uijjzRlypR2dbe0tKh///7y+/3auXNnyNXIL+Xf//63nE6nsrOzdfbsWR08eJCgBjM899xz+vDDD/XZZ58pLy9P06ZN0913361HH31UZWVlsixL0dHRevTRRy+5/2uvvSav1yubzSa32x1yxcdwevfuraysLC1YsEADBgzo1KVgq6qqtHPnTtntdvXr1y/4hgyY6Pjx4yopKZFlWQoEAho3bpxuu+22L3WMDRs26NChQ7LZbLrhhhvoMeACJ0+eVHFxsaRzF+yZMGFC8H9ZOts7d999t0pLS7VgwQI5HA7Nmzevw7MBF6PHcK36yle+ou3bt2vt2rVKSEhQTk5OuzkzZszQqlWr5HK5lJSUpJaWFknnesvr9UqSbr31Vt10000h+40ZM0a1tbXBC+WcvzCHw+HQggULVFZWpjNnzqitrU2TJ09uF9RGjBihv/zlL3rssccUFRWlmTNnqk+fPvroo4+0du3a4BnqqVOnauDAge3qfvDBB7VkyRLdcMMNGjRoUPDieB3Zv3+/fvvb38putysmJkbz58/v/BPZDdkC5881AgAAALhqGhoatGrVqpDvzwXOi+rqAgAAAAAAoTijBgAAAACG4YwaAAAAABiGoAYAAAAAhiGoAQAAAIBhCGoAAAAAYBiCGgAAAAAYhqAGAAAAAIb5fxvJhNzulD1XAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"barWidth = 0.25\n",
"mortalite_smoker = [mortalite(df_smoker[df_smoker[\"classe\"] == i]) for i in range(1,5)]\n",
"mortalite_nonsmoker = [mortalite(df_nonsmoker[df_nonsmoker[\"classe\"] == i]) for i in range(1,5)]\n",
"classe = [\"18-34 ans\", \"34-54 ans\", \"55-64 ans\", \"plus de 65 ans\"]\n",
"r1 = range(len(mortalite_smoker))\n",
"r2 = [x + barWidth for x in r1]\n",
"fig, ax = plt.subplots(1,1,figsize=(15,10))\n",
"plt.bar(r1,mortalite_smoker, width = barWidth,label = 'Fumeuses' )\n",
"plt.bar(r2,mortalite_nonsmoker,width = barWidth, label = 'Non - Fumeuses')\n",
"plt.xticks([r + barWidth / 2 for r in range(len(mortalite_smoker))],classe)\n",
"plt.legend()\n",
"plt.title(\"Mortalités des femmes non-fumeuses et fumeuses en fonction de leur classe d'âge\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "9bdc254c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"la proportion de femme agées de plus de 65 ans chez les fumeuses est 8%\n",
"la proportion de femme agées de plus de 65 ans chez les non-fumeuses est 26%\n"
]
}
],
"source": [
"print(\"la proportion de femme agées de plus de 65 ans chez les fumeuses est \" + str(int(100*np.sum(df_smoker[\"classe\"]==4)/len(df_smoker[\"classe\"]))) +\"%\")\n",
"print(\"la proportion de femme agées de plus de 65 ans chez les non-fumeuses est \"+ str(int(100*np.sum(df_nonsmoker[\"classe\"]==4)/len(df_nonsmoker[\"classe\"])))+\"%\")"
]
},
{
"cell_type": "markdown",
"id": "932c7506",
"metadata": {},
"source": [
"La mortalité des fumeuses est plus importante chez les jeunes femmes que chez les non-fumeuses. En revanche pour les plus de 65 ans la mortalité est presque la même. La proportion des femmes agées de plus 65 ans est plus grande dans la classe des non-fumeuse que des fumeuses, cela fait augmenter la mortalité dans ce groupe. Le taux de mortalité des non fumeuses est supérieur à celle des fumeuses car le groupe est plus agé. "
]
},
{
"cell_type": "markdown",
"id": "113f39da",
"metadata": {},
"source": [
"# VI) Analyse par classe d'âge"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "6228d5f0",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import confusion_matrix"
]
},
{
"cell_type": "markdown",
"id": "7c375e66",
"metadata": {},
"source": [
"## Regression logistique sans la variable fumeur/non-fumeur"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "9af4a729",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"82.97872340425532\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\BECLIN Marie-Felicia\\AppData\\Roaming\\Python\\Python37\\site-packages\\sklearn\\utils\\validation.py:73: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" return f(**kwargs)\n"
]
}
],
"source": [
"X = df[[\"smoker\",\"age\"]]\n",
"y = df[[\"alive\"]]\n",
"\n",
"x_train, x_test, y_train, y_test = train_test_split(X, y, random_state = 0)\n",
"\n",
"modele_regLog = LogisticRegression(random_state = 0, solver = 'liblinear', multi_class = 'auto')\n",
"\n",
"modele_regLog.fit(x_train,y_train)\n",
"\n",
"\n",
"precision = modele_regLog.score(x_test,y_test)\n",
"print(precision*100)"
]
},
{
"cell_type": "code",
"execution_count": 73,
"id": "ba3de71d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 51 37]\n",
" [ 19 222]]\n"
]
}
],
"source": [
"matrix_threshold = confusion_matrix(\n",
" y_true=y_test, y_pred=modele_regLog.predict(x_test)\n",
")\n",
"print(matrix_threshold)"
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "7e7a8b72",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, \"probabilité prédite de décés en fonction de l'age\")"
]
},
"execution_count": 74,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAJQCAYAAAD/vZd0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3zT5d3/8Xd6PoRDTzQrFFRAUIcoMlRQAYvodBMfmw61Kgq4g1MZq/uJWlFQ76G7EVHvbSpOp+s9N283maIOYSibR2RSGMihoIJCakNbMTSlaXP9/giNTZu0SZu2SfN6/iO58s2V65tv6qPvfq/rc1mMMUYAAAAAgKiR0NsDAAAAAAD4I6gBAAAAQJQhqAEAAABAlCGoAQAAAECUIagBAAAAQJQhqAEAAABAlCGoAUAP+OMf/6jnnnuuz75fLOrqZ9TU1KRf/epXevfddyM4KgAAvAhqAKLe3XffrREjRnS5nylTpmju3LntHnPttddq2rRpQd/76aefVlJSUljv+/LLL+u2227TpEmTwhtwJ4Xzfq3Pt/Xj7vbGG2/IYrHos88+i3jf7Z1LJK7JggULtHbtWo0bN67TfXS3LVu2aMKECUpLS9MxxxzT28Pp8e9Xa8ccc4zuvffeLvXRmf8HAEBnENQAoIXly5fr+eefD/r8zJkz9fnnn/se/+EPf5DFYgl6/K5duzR//nz9/e9/V2FhYUTH2h3v1/r8586dqylTpkRwhL0vEtfkz3/+s9566y298MILSklJifAII+f//b//p/79+2v79u3asGFDj71vsJ+Ljn6+YlHzHxsAINL4kxCAXtPQ0BB1v+QOGDCg3efT09OVnp4ecn8jR47Url27ujqsdrX8HLv6fh2df18QiWvygx/8QD/4wQ8iNKLus2vXLs2aNSsq7qZJ8fH9AoBI4Y4agIiYMmWKZs+erQULFig3N1f9+/fX3Llz5XK5/I6ZM2eO7rzzTn3jG9/Q4MGDJUnvvvuuzjnnHKWnpysrK0tXXnmlvvjiizbv8b//+7867rjjlJaWpmnTpunjjz/2Pffxxx/re9/7ngoKCpSRkaExY8bo2WefbdOHx+Npd4wdTc1qOe3pjTfe0NVXXy1Jslgsslgsuvbaa33HPvLIIxo9erTS0tI0cuRI3XfffWpsbAzad/Nf5l966SXfdLWTTjpJr7/+eptjVq1apbPOOktpaWl6/PHHQ3q/mpoazZw5U5mZmcrPz1dpaamMMX5jaHn+d999t5588km9+eabvvN7+umnJUlOp1Pz5s3T4MGDlZGRoVNPPVV/+ctfgp5by89kyJAhysjI0Pnnn6+9e/e2OWbjxo2aPn26rFar8vLy9L3vfU+ffvppu/2Gcm6hfEaNjY1avHixhg8frtTUVA0ePFg33XST7/lQzvu//uu/dNxxxyk1NVV5eXk6//zz/b5jrTU2Nuruu+/Wscce67vmjz32mN8xFotFv/71r3X11VerX79+Kiws1AMPPBC0z08++UQWi0W7d+/WwoULZbFYdPfdd0uSduzYoYsuukhWq1VWq1Xf/e53VVFR4Xtt83f8rbfe0rhx45SRkaFvfetb2rhxo9977N69W5dddpmys7OVkZGhk08+WS+//HK7Pxetf76MMfrv//5vHXfccUpJSdHw4cP10EMP+b3PMccco4ULF2revHnKzs5Wfn6+brnlFjU1NQU9f0kqLy/XxIkTlZaWpuOPP15//vOf2xzT2e9xe2pqanTVVVdp6NChSk9P16hRo7R06VK/76PH49Htt9+uvLw8Wa1WXX755XrooYfaTKl8/fXXNWnSJKWnp2vw4MG67rrrdPDgwS6ND0AMMQAQAZMnTzb9+vUzc+fONdu2bTN/+9vfTF5enrnpppv8jrFareZHP/qR2bp1q9m8ebM5cOCA6devn7niiivM5s2bzT//+U8zZswYc9ZZZ/led9ddd5mMjAwzadIk8/7775v333/fTJgwwZx88snG4/EYY4zZvHmzefTRR015ebmpqKgwDz/8sElMTDT/+Mc/whrjrFmzTFFRkd97Dx8+3Pf4qaeeMomJicYYY44cOWIeffRRI8kcOHDAHDhwwNTW1vpeN3ToUPOXv/zF7Nmzx6xatcoUFhaa0tLSoJ/hunXrjCQzYsQI89JLL5lt27aZ2bNnm7S0NPPZZ5/5HTNq1CizcuVKs2fPHrNv376Q3u+SSy4xw4cPN2vXrjX/+c9/THFxsenXr5/f+bY8/6+++spceeWV5swzz/SdX11dnfF4PGbKlClm8uTJ5p///KfZvXu3eeyxx0xycrJZs2ZN0PN78cUXTWJiolm6dKnZsWOHWbFihRk0aJCRZPbt22eMMWbr1q0mMzPTLFy40Hz00Udm8+bN5tJLLzUjR440LpcraN+hnFson9E111xj8vLyzDPPPGMqKirMO++8Yx588EFjjAnpvF944QXTr18/87e//c18+umn5sMPPzTLli0zdXV1Qcc+a9YsM2bMGPP3v//d7Nmzxzz33HNmwIABZsWKFb5jJJlBgwaZxx9/3FRUVJjly5cbSX7f75YaGxvNgQMHzJAhQ8ytt95qDhw4YL766itTV1dnhg4das4991zzwQcfmA8++MBMmTLFDB8+3Bw5csQY4/2OWywWc/bZZ5v169ebjz76yJx33nnmuOOOM2632xhjzIEDB8ygQYNMUVGR+ec//2kqKirMiy++aFatWtXuz0Xrn69HH33UpKWlmccee8zs3LnT/OY3vzGpqal+5z5s2DAzcOBA88tf/tLs3LnTPPfccyYxMdH87ne/C/qZ1tXVmYKCAvPtb3/bbNq0ybz99ttm/PjxJj093dxzzz0hX89AWv4/wJivfyabHThwwCxZssRs3LjR7Nmzxzz77LMmMzPTb7xLly41mZmZ5plnnjE7d+40S5cuNVlZWX79rl271qSnp5uHH37Y7Ny507z//vtmypQp5uyzz/b9fw9A30ZQAxARkydPNsOGDTONjY2+tscee8ykpKQYp9PpO2bkyJGmqanJd0xpaakZPHiw75dEY4zZtGmTkWTefPNNY4z3F2xJZteuXb5jduzYYSSZ119/PeiYLr74YjN37tywxhhOUDPGmGeffda0/pvX4cOHTXp6unn11Vf92n//+9+bAQMGBB1v8y98LX9JdbvdZujQoeaOO+7wO+aZZ54J6/127dplJJnVq1f7nj9y5IgpKCgIGtSMMWbOnDlm8uTJbcaZmprq++W72XXXXWdmzJgR9PwmTZpkrrzySr+2kpISv6A2a9YsM3PmTL9j6uvrTXp6uvnrX/8asN9Qzi2cz+j5558P+D6hnPeDDz5oRo4caRoaGoJ+Di3t2bPHWCwW89FHH/m1L1q0yIwdO9b3WJLfHxSMMWbUqFFmwYIF7fY/bNgwXzAxxpgVK1aY9PR0U1VV5Wuz2+0mLS3N/P73vzfGeL/jkszGjRt9x7zzzjtGktm+fbsxxvtzm5+f7/u5aS3Qz4Uxbb9fQ4YMMb/4xS/8jvnZz35mjj32WL9z+O53v+t3zPnnn28uv/zyoOf9xBNPmMzMTFNdXe1r27Jli5Hk+zw6+z1u/f+AUNx8881m2rRpvscFBQVt/mgzc+ZMv34nT55sbr31Vr9jPv30UyPJfPjhh2G9P4DYxBo1ABEzYcIEJSYm+h5PmjRJDQ0N2r17t04++WRJ0mmnnaaEhK9nXW/dulVnnHGG31q1sWPHasCAAdq6davOOeccSVJeXp5f9cXjjz9eubm52rZtm6ZNm6a6ujotXrxYL730kg4cOKCGhgYdOXJEU6dODXuMXbV161a5XC59//vf9ysy0NTUpPr6elVVVSkvLy/o688880zfv5OSkjRhwgRt27atzXmE837Nr584caLv+ZSUFH3rW9+S0+kM6/w2bNighoYG39TVZg0NDRo5cmTQ123btk1XXHGFX9tZZ52lpUuX+vVdUVEhq9Xqd1x9fX3QdWWhnFson9G///1vSdL06dM7fd4/+MEP9PDDD2vYsGGaPn26ioqKdMkll6hfv34B+/zggw9kjNH48eP92hsbG/2+p5J0yimn+D0ePHiwKisrA/YbzNatW3XiiScqNzfX15afn69Ro0Zp69atvjaLxaKxY8f6vZckVVZWatSoUdq4caMmTpyozMzMsN6/pUOHDumzzz7z/Yw3mzx5spYvX666ujplZGRICnzuLac+t7Zt2zadcMIJysrK8rV985vf9Fsj19nvcUc8Ho8eeOABPffcc/rss89UX18vt9utYcOGSfKe9/79+3XGGWf4ve7MM8/U//3f//mN791339Wjjz7a5j127drV5jMB0PcQ1AB0GxNgjVCgX+yCVUzrqJJay/5/8YtfaOXKlVq6dKlGjx6tzMxMlZSU6Msvvwx7jF3l8XgkSc8//7yOP/74Ns9nZ2eH1V9Hn2Mo7xfJ8/R4PBowYEDAKoIdFYfp6Jp6PB5dffXVWrBgQZvncnJyAr4mlHOLxDUJ5bwHDx6s7du3a926dfrHP/6he+65R7feeqvee++9gBUmm8f19ttv+0JJs9afVevP1mKx+F4fjkDXwBjj156QkOAXFJufa/l+kap02LqfQNcz3HNvfT6BdOV73J6lS5fql7/8pR588EGNGzdO/fr107Jly7Rq1Srf2JrPoaPx3Xrrrb71fi3ZbLZOjw9A7CCoAYiYDRs2qKmpyfcL3jvvvOMrEBDMSSedpKeeesqvcmF5ebm+/PJLnXTSSb7jqqqqtHv3bl9fO3fu1MGDB3XCCSdIktavX6/i4mLNnDlTkveXnJ07dyo/P7/LY2xP85hb9nnSSScpLS1Ne/bs0YUXXhh2n++++65OPPFESd47Kxs2bNBVV10V9PhQ3q/5s3z77bd13nnnSfLeOdiwYYPvMwx2fq2LNowfP161tbWqr6/XN7/5zZDP68QTT9Rbb72lG264wdf21ltvtel78+bNGj58eMhBIJRzC+Uzat4PbfXq1br00kvbPB/qeaempuqCCy7QBRdcoHvuuUf5+fl68cUX/YqSNDvttNMkSXv37tV3vvOdkM63K0466ST99re/lcPh8N1Vq6ys1M6dO3XLLbeE3M9pp52mJ554QocPHw74x5dAPxet9e/fX0OGDNGbb76piy66yNe+fv16HXvssW2CazhOOukkPfHEE6qtrdXAgQMlee8mtvzDTWe/xx1Zv369LrjgAs2ZM8fX1vJu8IABA1RQUKB33nnH77vYeuP08ePHa+vWrRHZQxJAbKLqI4CIOXjwoH7605/qo48+0qpVq3TnnXfq+uuvb3d61I033qhDhw7p2muv1X/+8x/961//0tVXX62zzjpLZ599tu+4jIwMXXfdddq4caM++OADzZo1S2PGjPFVkBs1apRWrlyp999/X9u2bdMPf/hD7d+/PyJjbM+xxx4rSfrb3/6mqqoqOZ1OWa1W3X777br99tv16KOPaseOHdq6dauee+453XrrrR32uWTJEr3yyiv66KOP9JOf/ESVlZX6yU9+EvT4UN5vxIgRuvjii/XTn/5U69at07Zt2zR37lx99dVXHZ7f9u3btXXrVjkcDh05ckTnnnuupk2bpu9973v661//qj179mjjxo165JFH9MQTTwTtq6SkRH/605+0fPly7dq1S0899VSbypy33367PvroI1111VV6//339fHHH2vdunWaN2+e9uzZE7DfUM4t1M+ouLhYN9xwg/7whz9o9+7d2rBhg5YvXy5JIZ33k08+qSeeeELl5eX69NNPVVZWpq+++soXvAONffbs2br++uv17LPPqqKiQuXl5frd736n+++/v91r0xlXXnml8vLyNHPmTP373//Wxo0bdfnll2vw4MG+P3KE4oYbbpDH49GMGTP01ltv6eOPP9bLL7+sV199VVLgn4tAbrvtNt/nt2vXLj322GP6zW9+o9tvv73L59mvXz9dddVVKi8v17vvvqvZs2f7ba3R2e9xR0aNGqU33nhD69at086dO1VaWqr33nvP75iSkhI99NBDKisr065du/TQQw9p9erVfn+cWLx4sVauXKn58+dr06ZN2r17t1577TXNmTOn3SqiAPqQXlobB6CPmTx5srnuuuvMLbfcYrKzs43VajXXXXedOXz4sN8xc+bMafPad955x5x99tkmLS3NDBgwwFxxxRWmsrLS93xzQY9nn33WDBs2zKSkpJipU6eaiooK3zF79+4106dPNxkZGcZms5mFCxea2bNn+xXCCGWM4RYTMcaYefPmmUGDBhmLxWJmzZrla1+xYoUZO3asSU1NNQMHDjQTJkwwv/71r4N+hs2FQlauXGnGjRtnUlJSzAknnGBee+21Nsc0F99oqaP3czgc5rLLLjMZGRkmNzfXLFiwwFxzzTXtFhM5ePCg+fa3v2369+9vJJmnnnrKGOOtqnfrrbeaY445xiQnJ5v8/Hxz/vnnm7Vr1wY9P2OMeeihh0xBQYFJS0szRUVF5umnn25zPps3bzYXX3yxGThwoElLSzPDhw83119/vTl48GDQfkM5t1A+o4aGBlNaWmqGDRtmkpOTzeDBg828efN8z3d03i+88II588wzzcCBA016ero56aST/IrDBNLY2Gjuv/9+M2rUKJOcnGxycnLMOeecY/785z/7jpFknn32Wb/XFRUV+X3fAmldTMQYY7Zv326+/e1vm8zMTJOZmWkuuugiv0I9gb7j+/btM5LMunXrfG07duwwl1xyienfv79JT083J598slm1apXv+UA/F62/Xx6PxzzwwAPmmGOOMUlJSebYY481y5Yt6/AcAhW5ae3f//63OeOMM0xKSoo57rjjzB//+Mc2fXXme9xRMZHa2lpz2WWXmX79+pns7Gxzww03+L5TzZqamsyCBQtMTk6OyczMNDNnzjT33XefsVqtfn2tX7/eFBUVGavVajIyMszo0aPNvHnzfNU3AfRtFmO6YYEGgLgzZcoUjRgxQitWrOjtocSsN954Q1OnTtW+ffs0ZMiQ3h4OgB40e/ZslZeXt9mvDkD8Yo0aAABAD9q/f7/++te/aurUqUpMTNRLL72kZ555JmCFRwDxi6AGAADQgxITE/X888/rzjvvVH19vUaMGKHf/OY3uv7663t7aACiCFMfAQAAACDKUPURAAAAAKIMQQ0AAAAAokyvrlELtMdRX5WbmyuHw9Hbw0AHuE6xgesUO7hWsYHrFDu4VrGB6xQbouE6FRQUBH2OO2oAAAAAEGUIagAAAAAQZQhqAAAAABBlomofNWOM6uvr5fF4ZLFYens4EVVZWakjR4709jBCZoxRQkKC0tLS+ty1AAAAAKJdVAW1+vp6JScnKykpqoYVEUlJSUpMTOztYYSlsbFR9fX1Sk9P7+2hAAAAAHElqqY+ejyePhnSYlVSUpI8Hk9vDwMAAACIO1EV1JhiF324JgAAAEDPi6qgBgAAAAAgqLXx5JNPavLkybrxxht7eygAAAAA4hQLwlr5/e9/rz/84Q8aOnRor46jqakp5oqPAAAAAIiMmL6j5qmyy7NiqZr++w55ViyVp8repf5uvfVW7d27V9ddd51Gjx6t3/72t77nzj33XO3bt0/79u3TOeeco1tuuUXnnnuubrzxRq1fv14zZszQpEmT9OGHH0qS6urq9POf/1wXXnihpk+frldffVWS9Kc//Ul33HGHr99rrrlGb7/9tiRp5MiR+tWvfqXvfOc72rhxY5fOBQAAAEDsitmg5qmyyyxbKPPem9KOLTLvvSmzbGGXwtr999+v/Px8Pf/887r++uuDHvfJJ59ozpw5WrNmjSoqKvTiiy/qxRdf1MKFC/XII49IkpYvX65JkybplVde0fPPP6/Fixerrq6u3fevq6vTqFGj9PLLL2vChAmdPg8AAAAAsS12pz6uLJNah7Iqu7d9bkm3vnVhYaFOOOEESdLxxx+vs846SxaLRaNHj9a+ffskSevXr9frr7/uuyt35MgRff755+32m5iYqIsuuqhbxw4AAAAg+sVsUDO11WG1hysxMdFvD7EjR474/p2amur7d0JCglJSUnz/bmpq8o7DGD3++OMaMWKEJO+eZI2Njdq8eXO7/bIuDQAAAEDMTn20DMwOqz1chYWF2rJliyRpy5Yt2rt3b1ivnzx5sp566ikZY3x9NPe7detWeTweff7559q0aVNExgsAAACg74jZoKYZxVKezb8tz+Ztj4ALL7xQtbW1Ou+88/TMM8/ouOOOC+v1P/vZz+R2uzVt2jSde+65WrJkiSTpW9/6loYOHaqioiLdc889GjNmTETGCwAAAKDvsJjmWz69YP/+/X6P6+rqlJGREfLrPUfXpJnaau+dtBnFSmgd3qJE89THWBPuNYl1ubm5cjgcvT0MdIDrFDu4VrGB6xQ7uFaxgesUG6LhOhUUFAR9LmbXqEnyhrJuLhwCAAAAAD0tdqc+AgAAAEAfRVADAAAAgCgT01MfAQAAACAYu7NBZeUO1dS5lZWRrOKxubJZU3p7WCEhqAEAAADoM5rDmf2rBu398ojqG5trJ7q00+HSoqLCmAhrTH0EAAAA0CfYnQ26a+0+rf/kkHYerG8R0pqfd6usPDYqcnJHrZcdOXJE11xzjaqrq3XjjTdqxowZvT0kAAAAIGa0nN5YeditLw63vyVWjcvdQyPrGoJaL/vPf/6jxsZGvf766709FDU2Niopia8EAAAAolPrNWfTR/TXo+9Wyu4MPXxlpSd34wgjJ6anPtqdDVr61n6Vvv6plr61X3ZnQ5f627dvnyZPnqxf/OIXmjp1qq644gq5XC5J3kD1ne98R9OmTdOcOXNUW1srSbr00kt133336aKLLtJZZ52l9957L+T3czgcuvnmm7V161add955+uSTT3T66aerurpaklReXq5LL71UkrR06VLNmzdPV1xxhU4//XS98soruvfee1VUVKTi4mK53d4v5+bNm/X9739fF1xwga688kpVVlb6xlleXi5Jqq6u1umnny5J+tOf/qQf/vCHmjVrlq644ooufX4AAABAd2k5rXHLFy6t/+SQ7n3j87BCms3qLSgSC2I2qAW6UHet3dflsPbxxx9r1qxZWrdunfr3769XXnlFkvSzn/1Md9xxh9asWaPRo0frwQcf9L2msbFRq1at0qJFi/zaO5Kbm6tf/epXmjBhgl5//XUdc8wx7R7/6aef6plnntHvfvc73XTTTZo4caLWrl2rtLQ0rV27Vm63W6WlpXr88cf12muvaebMmbr//vs7HMfGjRv10EMP6fnnnw957AAAAEBPKit3tAllrdegBZKWZNHxOak655j+MVNIRIrhqY+BLlTz4sCSSQWd7rewsFDf/OY3JUknn3yy9u3bp0OHDunLL7/UmWeeKUm67LLL9KMf/cj3mgsvvNB3/Geffdbp9+7I1KlTlZycrBNOOEEej0dTp06VJI0ePVr79u3T7t27tWPHDl1++eWSJI/Ho0GDBnXY7znnnKOsrKxuGzcAAAAQrtbTHO1fhX5DZlBmkvKtycpKj62S/C3FbFCrqQt8i7OriwNTU1N9/05MTFR9fX2Hr0lJSfEd39jYdvHikiVL9I9//EPGmA7XoiUlJcnj8UjyFhoJNLaEhAQlJSXJYrH4Hjc1NckYo+OPP14vvfRSm34TExN9/bY+p4yMjA7PEQAAAOhu7ZXWT0uyBHxNWpLF786azZocU3fOgonZoJaVkSzJ1ba9GxYH9u/fXwMGDNB7772n008/XS+88ILOOOOMkF+/YMEClZaWBgxxrQ0ZMkSbN2/Wueeeq1WrVoU1zuHDh6u6uloffPCBxo8fL7fbrT179mjUqFEqLCzU5s2bdeqpp4bdLwAAAOKbp8ourSyTqa2WZWC2NKNYCXm2iPVvdzboyY1f6MP9Trk9gY+pbzQBQ9mNZ+RrdcUh1bjcMX0HrbWYDWrFY3O10+Hym/7YnYsDH3roIS1YsED19fUaOnRoWGvRwvHzn/9cJSUleuSRR3TqqaeG9dqUlBQ99thjWrhwoQ4dOqSmpibNnTtXo0aN0o9//GP9+Mc/1gsvvKBJkyZ1y9gBAADQ93iq7DLLFkpVdkmSkaQ9O+SZvzgiYa259kQoRUGGDkiRrV9qm1A2Jt/a5XFEG4sxpuMVeN1k//79fo/r6urCmobnm7caA+k5KSkppDtq0SbcaxLrcnNz5XDExiaI8YzrFDu4VrGB6xQ7uFaxoa9dJ8+KpTLvvdmm3XL6ZCXMLQmrr9brzorH5qqs3KH1nxwK6fXnHNO/S/UoWoqG61RQEPxcYvaOmiTZrCkRu1AAAAAA2jK11WG1B9P2zplLOx0u9U9NDOn1sVRaPxJiOqgBAAAA6F6WgdkKNAXPMjA7rH6CVW33tDPBLy3J4pvuGM2z57pDVAW1XpyFiSC4JgAAAH1bh4VCZhRLe3b41qhJkvJs3vYwBKvaPjAtUQkWi1+IS06UTrFlau74/LgKZy1FVVBLSEhQY2OjkpKialhxq7GxUQkJMbsnOgAAADoQSqGQhDybPPMXh1z1MdA6NJs1JWjVdlu/VJWclRsztSd6SlQlorS0NNXX1+vIkSO+PcL6itTU1Db7okUzY4wSEhKUlpbW20MBAABAd1lZ5n+nTPI+XlkmtSgUkpBn83scTLB1aIuKCtut2k7tibaiKqhZLBalp6f39jC6RTRUlQEAAABaikShkC2VTj38jl2HG5rU6JGONPkvnbE73Sord6hkUoEWFRVy5yxEURXUAAAAAPScrhYK2VLp1F1rP1NTB2UNalzeu2jcOQsdC5AAAACAeDWj2FsYpKUwCoU8/I69w5AmSVnpyZ0YXHzjjhoAAAAQp0IpFBKsOIgkHW5o6vA94m3/s0ghqAEAAABxrL1CIVsqnbr3jc9V39h82+zr4iA2a4oyUxJ12N3Y5nWpiRYdn5vGOrQuYOojAAAAgDbszoZWIa253VscRJJuPtOmxFbF2hMt0p1TB+veacNUMqmAkNZJBDUAAAAAbZSVO9qEtGbNxUHG5Fu1qGiIBmUmKTPZokGZSVpUNERj8q09OdQ+iamPAAAAANqsRbN/1RD02JbFQcbkW/XEJSN6YgTLmAEAACAASURBVIhxhaAGAAAAxLlAG1WnJVkCHpuWZKE4SA9g6iMAAAAQ58rKHS1Cmld9o2kT1tKSLCqdMph1Zz2AO2oAAABAnKupcwdsHzogRbZ+qapxuang2MMIagAAAEAf195eaJKUlZEsydXmdbZ+qSqZVNCDI0UzghoAAADQhwVaf9ZyLzRJKh6bq50Ol9/0Rzaq7l2sUQMAAAD6sEDrz1ruhSZJNmuKFhUV6pxj+mtMfrrOOaa/X5BDz+OOGgAAANCHBVt/1rwXWjObNYVpjlGEoAYAAAD0AcHWoQVbf9ZyLzREH4IaAAAAEOPe/LhGD71TKY9pbvl6HRrrz2ITQQ0AAADoAZ4qu7SyTKa2WpaB2dKMYiXk2brc75ZKpx58u7JNe/M6tJJJBVpUVOi920aZ/ZhBUAMAAAC6iS+cfXFA2r9XOlIvSTKStGeHPPMXdzqsNU91fGfvV0GPaV6Hxvqz2ENQAwAAALqBp8ous2yhVGUPfMDREKe5JWH33bbkfmCsQ4tdBDUAAACgO6wsCx7SjjK11SF11Xz3zP5Vg2rrG1XX0CSn27T7mgSLWIcWwwhqAAAAQDcIJYRZBmZ3eEyod89a+9mZ+axDi2EENQAAAKAbWAZmq917Xnk2aUZxh/0E2rA6mESLlJORpJvPtGlMvjW0gSIqEdQAAACA7jCjWNqzw3/6Y2qaNHiYLEdDWiiFRIJtWN2azZqsRUWF3EXrIwhqAAAAQDdIyLPJM39xl0vyB9uwutmA1ESN/UYmJff7GIIaAAAA0E0S8mydqurYUqANq5txF63vIqgBAAAAvay5qmNNnVtZGf4bUtusKb4Nqyu/alBNfaMGpiXK1i+Vu2h9GEENAAAA6EVtqzq6tNPh8rtTxobV8SehtwcAAAAAxLNAVR3tTrfKyh29NCJEA4IaAAAA0IuCVXWscYW3bxr6FoIaAAAA0Iu8VR0DtKcHbkd8IKgBAAAAvchbEMQ/lNms3oIiiF8UEwEAAAB6UcuqjjUut7LSk6nmCIIaAAAA0Nuo6ojWmPoIAAAAAFGGoAYAAAAAUYagBgAAAABRhqAGAAAAAFGGYiIAAADo8zxVdmllmUxttSwDs6UZxUrIs/X2sICgCGoAAADo0zxVdpllC6UquyTJSNKeHfLMX9zpsGZ3NnjL6de5lZVBOX1EHlMfAQAA0LetLPOFNJ+jd9g6w+5s0F1r92n9J4e05QuX1n9ySHet3Se7syECgwW8CGoAAADo00xtdVjtHSkrd8judPu12Z1ulZU7OtUfEAhBDQAAAH2aZWB2WO0dqalzB253BW4HOoM1agAAAOjbZhRLe3b4T3/Ms3nbOxBoLVpWRrIkV5tjs9KTIzhoxLuQgtqmTZv01FNPyePxqKioSJdcconf83V1dXr44Yd18OBBNTU16bvf/a6mTp3aLQMGAAAAwpGQZ5Nn/uKwqz42r0X7epqjSzsdLt14Rr52Olx+0x9tVm+IAyKlw6Dm8Xj05JNPqrS0VDk5Obrttts0fvx4DRkyxHfMa6+9piFDhmjBggU6dOiQ5s2bp7PPPltJSdywAwAAQO9LyLNJc0vCek2wtWirKw5pUVGh906by62sdKo+IvI6TFIVFRWy2WzKz8+XJE2cOFEbNmzwC2oWi0X19fUyxqi+vl5Wq1UJCSx/AwAAQOxpnu648fOvAj5f43LLZk1RyaSCHh4Z4kmHQa26ulo5OTm+xzk5Odq1a5ffMRdccIEeeOAB/ehHP5LL5dL8+fMJagAAAIg5bac7tsVaNPSEDoOaMaZNm8Vi8XtcXl6uYcOGaeHChaqsrNQ999yj0aNHKyMjw++4NWvWaM2aNZKkJUuWKDc3fubxJiUlxdX5xiquU2zgOsUOrlVs4DrFDq5V93v0gx3thrTBA9J005SRyh2QHvQYrlNsiPbr1GFQy8nJ0cGDB32PDx48qKysLL9j1q1bp0suuUQWi0U2m02DBg3S/v37NWLECL/jpk2bpmnTpvkeOxzxs9dEbm5uXJ1vrOI6xQauU+zgWsUGrlPs4Fp1P3uNM2B7ZrJFpw3up+KxuUpxH5bDcThoH1yn2BAN16mgIPj02Q6D2vDhw3XgwAF98cUXys7O1ttvv62bb77Z75jc3Fxt2bJFJ5xwgmpra7V//34NGjSo6yMHAAAAulHr8vtpyYGX75w2uB9r0tCjOgxqiYmJmj17tu677z55PB5NnTpVhYWFWr16tSRp+vTp+v73v69f//rXKinxVtIpLi5W//79u3fkAAAA6NM8VfawS+qHI1D5/byMJOWmJ8rhavIdR+l99IaQ6uePGzdO48aN82ubPn2679/Z2dkqLS2N7MgAAAAQtzxVdpllC32bVBtJ2rNDnvmLIxbWApXfr6pr1IQhVp2YlEDpffQqNjoDAABA9FlZ5gtpPkfvsIW7H1pLLac67v2yIeAxLneT7pg8JOBzQE8hqAEAACDqmNrqsNpDEUrpfYny+4gOBDUAAABEHcvAbLXdJMrbHo6Wd9AqD7v1xeHGdo9nPRqiBUENAAAA0WdGsbRnh//0xzybtz1EWyqduveNz1XfGCjyfW1AWqKGDkhhPRqiCkENAAAAUSchzybP/MWdrvpodzaEFNIkaawtk9L7iDoENQAAAESlhDxbpwuHlJU7QgppTHVEtCKoAQAAoM+pqQteMGRQZpLyrclMdURUI6gBAACgz8nKSJbkatOelmTRPdOGEs4Q9QhqAAAA6DGeo3uhdWbdWXtaVnfMykjW9BH9tdPh8ivFn5ZkUemUwYQ0xASCGgAAAHqEp8ous2yhr5KjkaQ9O+SZv7hLYa3t/mgu7XS4dOMZ+VpdcUg1LjfTHBFzCGoAAADoGSvL/MvtS97HK8s6XTRE8hYOab2Jtd3p1uqKQ1RzRMxK6O0BAAAAID6Y2uqw2kMVrHBIjSt4QREg2hHUAAAA0CMsA7PDag+Vt3BIgPb0wO1ALCCoAQAAoGfMKJZar0XLs3nbu8C79sw/lLE/GmIda9QAAAAQMe1VdUzIs8kzf3HEqz7arClaVFTorfpI4RD0EQQ1AAAAREQoVR0T8mxdKhwSjM2aQuEQ9ClMfQQAAECXearsMktLg1d1BBAWghoAAAC6xHcn7eAXAZ/valVHIB4R1AAAANA1gfZHa6GrVR2BeERQAwAAQJe0e8csAlUdgXhEUAMAAECXBL1jljNIlhaFRACEjqAGAACArgmyP5ql5F5CGtBJlOcHAABAl3R1fzS7s8G7B1qdW1kZ7IEGSAQ1AAAAREBn90ezOxt019p9sjvdR1tc2ulwaVFRIWENcY2pjwAAAOg1ZeWOFiHNy+50q6zc0UsjAqIDQQ0AAAC9pqbOHbjdFbgdiBcENQAAAPSarIzkwO3pgduBeEFQAwAAQK/xFg7xD2U2q7egCBDPKCYCAACAXmOzpmhRUaG36qPLrax0qj4CEkENAAAAvcxmTVHJpILeHgYQVZj6CAAAAABRhqAGAAAAAFGGoAYAAAAAUYY1agAAAHHKU2WXVpbJ1FbLMjBbmlGshDxbbw8LgAhqAAAAcclTZZdZtlCqskuSjCTt2SHP/MWENSAKMPURAAAgHq0s84U0n6N32AD0PoIaAABAHDK11WG1A+hZBDUAAIA4ZBmYHVY7gJ7FGjUAAIB4NKNY2rPDf/pjns3bHga7s0Fl5Q7V1LmVlZGs4rG5sllTIjxYIP4Q1AAAAOJQQp5NnvmLu1T10e5s0F1r98nudB9tcWmnw6VFRYWENaCLCGoAAABxKiHPJs0t6fTry8odLUKal93pVlm5QyWTCro6PCCusUYNAAAAnVJT5w7c7grcDiB03FEDAABAyFquSas8HDiQZaUn9/CogL6HoAYAAICQbKl06t43Pld9o/G1JVqkpq8fymb1FhQB0DUENQAAAHTI7mxoE9Ikb0gblJmkfGuystKp+ghECkENAAAAHSord7QJac3yrcm6d9qwHh4R0LdRTAQAAAAdClY4RGJNGtAdCGoAAADoUFZG4DCWlmRhTRrQDQhqAAAA6JB37Zl/WEtLsqh0ymDWpAHdgDVqAAAA6JDNmqJFRYXe0vwuN4VDgG5GUAMAAEBIbNYUlUwq6O1hAHGBqY8AAAAAEGUIagAAAAAQZQhqAAAAABBlCGoAAAAAEGUIagAAAAAQZQhqAAAAABBlKM8PAAAQR+zOBu9eaHVuZWWwFxoQrQhqAAAAccLubNBda/fJ7nQfbXFpp8OlRUWFhDUgyjD1EQAAIE6UlTtahDQvu9OtsnJHL40IQDAENQAAgDhRU+cO3O4K3A6g9zD1EQAAoA9ruSat8nDgQJaVntzDowLQEYIaAABAH9V2TZqUaJGazNfH2KzegiIAogtBDQAAoI8KtCatyUiDMpOUb01WVjpVH4FoRVADAADoo4KtScu3JuveacN6eDQAwkFQAwAA6ENYkwb0DQQ1AACAPoI1aUDfQVADAADoI1iTBvQdBDUAAIA+gjVpQN9BUAMAAIhhrEkD+iaCGgAAQIxiTRrQdxHUAAAAYhRr0oC+i6AGAAAQo1iTBvRdCb09AAAAAHROVkbgtWesSQNiH0ENAAAgRnmnNfqHMtakAX0DUx8BAABilM2aokVFhd6qjy43a9KAPoSgBgAAEMNs1hSVTCro7WEAiDCmPgIAAABAlCGoAQAAAECUIagBAAAAQJQhqAEAAABAlCGoAQAAAECUIagBAAAAQJQhqAEAAABAlGEfNQAAgChgdzZ4N66ucysrg42rgXhHUAMAAOhldmeD7lq7T3an+2iLSzsdLi0qKiSsAXGKqY8AAAC9rKzc0SKkedmdbpWVO3ppRAB6G0ENAACgl9XUuQO3uwK3A+j7CGoAAAC9LCsjOXB7euB2AH0fQQ0AAKCXeQuH+Icym9VbUARAfKKYCAAAQC+zWVO0qKjQW/XR5VZWOlUfgXhHUAMAAIgCNmuKSiYV9PYwAEQJpj4CAAAAQJQhqAEAAABAlGHqIwAAQDezOxu868/q3MrKYP0ZgI4R1AAAALrRlkqn7n3jc9U3mqMtLu10uLSoqJCwBiAopj4CAAB0E7uzoVVIa253q6zc0UujAhALCGoAAADdpKzc0SakNatxuXt4NABiCVMfAQBA3PJU2aWVZTK11bIMzJZmFCshzxax/mvqgoexrPTkoM8BAEENAADEJU+VXWbZQqnKLkkykrRnhzzzF0csrGVlJEtytWlPS7KoeGxuRN4DQN/E1EcAABCfVpb5QprP0TtskeKt7uh/5ywtyaLSKYMpJAKgXdxRAwAAccnUVofV3hk2a4oWFRV6S/O73MpKpzQ/gNCEFNQ2bdqkp556Sh6PR0VFRbrkkkvaHLN161Y9/fTTampqUr9+/bRo0aKIDxYAACBSLAOzFajMh2Vgdth9tbdPms2aopJJBV0cLYB402FQ83g8evLJJ1VaWqqcnBzddtttGj9+vIYMGeI75vDhw1qxYoXuuOMO5ebm6ssvv+zWQQMAAHTZjGJpzw7/6Y95Nm97GOzOBt21dp/szubCIeyTBqDrOlyjVlFRIZvNpvz8fCUlJWnixInasGGD3zH/+te/dPrppys317sodsCAAd0zWgAAgAhJyLPJMn+xLKdPlkaNkeX0ybJ0opDIig8qW4Q0L/ZJA9BVHd5Rq66uVk5Oju9xTk6Odu3a5XfMgQMH1NjYqLvvvlsul0sXXnihJk+e3KavNWvWaM2aNZKkJUuW+IJdPEhKSoqr841VXKfYwHWKHVyr2BDX1yk3Vzrhl51++f4vXSq31wV8ztloifjnGtfXKoZwnWJDtF+nDoOaMW1nb1ssFr/HTU1N+vjjj3XnnXeqoaFBpaWlGjlypAoK/OdjT5s2TdOmTfM9djji5y9Nubm5cXW+sYrrFBu4TrGDaxUbuE6d98hb+9XQFHhDa2uSifjnyrWKDVyn2BAN16l1Xmqpw6CWk5OjgwcP+h4fPHhQWVlZbY7p16+f0tLSlJaWphNOOEGffvppu28MAAAQ64JtaJ2cIPZJA9AlHa5RGz58uA4cOKAvvvhCjY2NevvttzV+/Hi/Y8aPH6/t27erqalJR44cUUVFhQYPHtxtgwYAAIgG3g2t2zq1wEohEQBd0uEdtcTERM2ePVv33XefPB6Ppk6dqsLCQq1evVqSNH36dA0ZMkSnnHKKbrnlFiUkJOjcc8/V0KFDu33wAAAAPal1Gf7pI/prp8PlV0zEZk3WnNMG9eIoAfQFIe2jNm7cOI0bN86vbfr06X6PL774Yl188cWRGxkAAEAUCVaG/8Yz8rW64hAbWgOIqJCCGgAAQLwrK3cELMO/uuIQG1oDiLgO16gBAAAgeOGQGlfgdgDoCoIaAABACIIVDslKD9wOAF1BUAMAAAiBd+2ZfyizWZMpww+gW7BGDQAAIAQ2a4oWFRV6qz5SOARANyOoAQAAhMhmTaFwCIAeQVADAABoofVeadw1A9AbCGoAAABHBdsrbVFRIWENQI+imAgAAICkLZVO3fzyxwH3Sisrd/TSqADEK+6oAQCAuLel0qm71n6mJhP4efZKA9DTuKMGAADi3sPv2IOGNIm90gD0PIIaAACIe4cbmoI+x15pAHoDQQ0AAMS9zJTEgO2piRYKiQDoFQQ1AAAQ924+06ZEi39bokW6c+pgQhqAXkFQAwAAcW9MvlWLioZoUGaSMpMtGpSZpEVFQzQm39rbQwMQp6j6CAAAIG9Ye+KSEb09DACQxB01AAAAAIg63FEDAABxw+5sUFm5QzV1bmVleKs5sgYNQDQiqAEAgLiwpdKpe9/4XPWNzRumubTT4aKqI4CoRFADAABRwVNll1aWydRWyzIwW5pRrIQ8W0T6tjsbWoW05na3ysodKplUEJH3AYBIIagBAIBe56myyyxbKFXZJUlGkvbskGf+4oiEtbJyR5uQ1qzG5e5y/wAQaRQTAQAAvW9lmS+k+Ry9wxYJNXXBw1hWenJE3gMAIomgBgAAep2prQ6rPVxZGYHDWFqSRcVjcyPyHgAQSQQ1AADQa5q2b1HTgrlSxbaAz1sGZkfkfbzVHf3DWlqSRaVTBlNIBEBUYo0aAADoFU3vvSmtWBr8gDybNKM4Iu9ls6ZoUVGhtzS/y62sdErzA4huBDUAANDjPFV26XfLAj+ZlCzLaRMjWvVR8oY1qjsCiBUENQAA0PNWlkkeT+DnklOUMLekZ8cDAFGGNWoAAKDHtVskJCOz5wYCAFGKoAYAAHpcu0VCrp3XcwMBgChFUAMAAD1vRrG3WEhLCQnS3BIljh7TO2MCgCjCGjUAANDjEvJs8sxfLK0sk6mt9t5hi3DxEACIZQQ1AADQKxLybBJFQwAgIKY+AgAAAECUIagBAAAAQJRh6iMAAOgWnio7a9AAoJMIagAAIOI8VXaZZQulKrskyUjSnh3yzF9MWAOAEDD1EQAARIynyi7PiqUyv/yFL6T5HL3DBgDoGHfUAABARLS+ixaIqa3uVN92Z4PKyh2qqXMrKyNZxWNzZbOmdHaoABD1CGoAAKDLPFV2maWl0sEv2j3OMjA77L7tzgbdtXaf7E730RaXdjpcWlRUSFgD0Gcx9REAAHSJ705aByFNeTZpRnHY/ZeVO1qENC+7062yckfYfQFArOCOGgAA6JqVZe1Od1S/AbKceEqnqz7W1LkDt7sCtwNAX0BQAwAAneapssts2xT8gDybLF2s9JiVkSzJ1bY9PbnTfQJAtGPqIwAA6BTflMevvgx8QM6gLoc0SUcLh/iHMpvVW1AEAPoq7qgBAICwdVg8JAJ30prZrClaVFTorfrocisrnaqPAPo+ghoAAAhLh8VD+g2IWEhrZrOmqGRSQcT6A4Box9RHAAAQng6Kh1hOPCWiIQ0A4hFBDQAAhKXdTas7WYIfAOCPqY8AACAkniq7927a/r2BD4hQ8RAAAEENAACEoGn7FunRe6Qj9YEPiGDxEAAAQQ0AAHTAU2UPHtK6uJk1ACAwghoAAGiX+dOK4HfSCoYqYW5Jzw4IAOIAxUQAAEBQniq7tPXDoM9bBmb34GgAIH4Q1AAAQEC+Ta0b3YEPSE2jwiMAdBOmPgIAgDY6LB5isUg33sm6NADoJtxRAwAAftotHtLs5G8pcfSYnhsUAMQZghoAAPC3sqz9kJZnk2Xm3J4bDwDEIYIaAADwY2qrgz/JptYA0CMIagAAwE/QSo6pabKU3EtIA4AeQFADAAD+ZhRLrcNYahrFQwCgB1H1EQAA+EnIs8kzf7G0skymttp7h21Gcdghze5sUFm5QzV1bmVlJKt4bK5s1pRuGjUA9C0ENQAA0EZCnk2aW9Lp19udDbpr7T7Znc17sLm00+HSoqJCwhoAhICgBgBAnPJU2aWVZao+/JU8mf06ddcsmLJyR4uQ5mV3ulVW7lDJpIKIvAcA9GUENQAA4pCnyi6zbKFUZZcvTu3ZIU+EKjrW1LkDt7sCtwMA/FFMBACAeLSyTKqy+7cdvcMWCVkZyYHb0wO3AwD8EdQAAIgjniq7PCuWymz+IODz7e6hFgZv4RD/UGazeguKAAA6xtRHAADiRMvpjsEE3UMtTDZrihYVFXqrPrrcykqn6iMAhIOgBgBAvAg03bGlPJt3D7UIsVlTKBwCAJ1EUAMAIE4EndaYYZVlzGkRrfoIAOgaghoAAHHCMjBbJkB72viJcl99Y9j9saE1AHQfghoAAH1Y815pprZaSkuXsvOk6qqvD8izKfOKH6o2zH7Z0BoAuhdBDQCAPipg8ZCsXGnsBKne5S0cMqNYSbYCyeEIq282tAaA7kVQAwCgrwpUPKTGIcvxJynhxtIudc2G1gDQvQhqAAD0UcGKh3Rlr7TmdWl7v2wI+DwbWgNAZBDUAADoY5rXpWn/3oDPd3avtLbr0vyxoTUARA5BDQCAPqRp+xbp0XukI/WBD+jCXmmB1qVJ0oDURI39RiZVHwEggghqAAD0EZ4qe/CQ1m+ALCee0qW90oKtSxs6kI2tASDSCGoAAPQVK8uC30krGKqEuSVd6j4rI1mSq20769IAIOISensAAAAgMtorEtLZdWkteac2+ocy1qUBQPfgjhoAADHMb0NrR2Xgg1LTOr0urSWbNUWLigpVVu5QjcutrPRk1qUBQDchqAEAEKMCbmidkCh5mr5+nJom3Xhn2OvStlQ69fA7dh1uaFJmSqJuPtOmMflW2aysRwOAnkBQAwAgVgXa0NrTJOUMknLzvdMdO1E8ZEulU3et/UxNxvv4sLtRd639TIuKhmhMvjVCgwcAtIegBgBAjAq6Ji03X4m33Nfpfh9+x+4Lac2ajLf9iUtGdLpfAEDoKCYCAECMClYgpKuFQw43NIXVDgCIPIIaAACxakaxdwPrlrqwoXWzzJTEsNoBAJHH1EcAAGJE0/Yt0tPLpbrDUkamdO08WeYv9lV97OyatNZuPtPmt0ZNkhIt3nYAQM8gqAEAEAOatm+Rli38uqKj67C0bKHM/MVK7OJG1q2NybdqUdGQgFUfAQA9g6AGAEAseHq5f9l9yfv46eXSkhWd6tLubFBZuUPOxv2yJslvT7Qx+VYKhwBALyKoAQAQxZo3tFa1I/ABdYc71e+WSqfufeNz1Td+Pb9xp8OlRUWFbGANAFGAYiIAAESp5g2tzXtvSsYT+KCMzLD7tTsb2oQ0b7tbZeVBAiEAoEcR1AAAiFaBNrRuKSFRunZe2N2WlTvahLRmNS532P0BACKPqY8AAESpoBtaWxKk7Fzp2nlKHD0m7H5r6oKHsaz05LD7AwBEHkENAIAoZRmYrUD3vSwTzlZCFyo9ZmUkS3K1aU9Lsqh4bG6n+wUARA5BDQCAKNJcPMTUVktp6VJWrlTTYt1YJze0bq7wWFPnVlpygvIyklRV1+h7Pi3JotIpgykkAgBRgqAGAECUaC4e4rcuLTtPGjtBqnd1ekNru7NBd63dJ7vz6ymPuemJmjDEKpe7SbaBVl06uh8hDQCiCEENAIBoEah4SHWVLCNPVMKNpZ3utqzc4RfSJMnhatKJSQm6Y/IQ5ebmyuGg2iMARBOqPgIAECWCFQ8JWlQkRMGKh1DhEQCiF0ENAIAoYRmYHVZ7qLzFQwK0U+ERAKIWQQ0AgGgxo9hbLKSlThYPaal4bK5sVv9QZrMmU+ERAKIYa9QAAIgSCXk2eeYv9lV97GzxkNZs1hQtKir0Vn10uZWVnnw0vFE8BACiFUENAIAokpBnk7qwR1owNmuKSiYVRLxfAED3YOojAAAAAESZkILapk2bNG/ePN1000168cUXgx5XUVGhmTNn6t13343YAAEAQMfszgYtfWu/Sl//VEvf2i+7s6G3hwQA6IIOpz56PB49+eSTKi0tVU5Ojm677TaNHz9eQ4YMaXNcWVmZTjnllG4bLAAAaKvthtYu7XS4tKiokHVoABCjOryjVlFRIZvNpvz8fCUlJWnixInasGFDm+NeffVVnX766erfv3+3DBQAALRldzbozjV722xobXe6VVbOJtYAEKs6DGrV1dXKycnxPc7JyVF1dXWbY95//31Nnz498iMEAAABNd9J++JwY8Dn2dAaAGJXh1MfjTFt2iwWi9/jp59+WsXFxUpIaD/3rVmzRmvWrJEkLVmyRLm58bN/S1JSUlydb6ziOsUGrlPs4Fp1n/1funTXPz5ucyetJdtAa0ifP9cpdnCtYgPXKTZE+3XqMKjl5OTo4MGDvscHDx5UVlaW3zG7d+/W8uXLJUmHDh3Shx9+qISEBE2YMMHvuGnTpmnatGm+xw5H/EzJyM3NjavzjVVcp9jAdYodXKvu0XZNWls2a7IuHd0vpM+f6xQ7uFaxgesUG6LhOhUUBN82pcOgNnz4cB04cEBffPGFsrOz9fbbb+vmm2/2O+Z//ud//P592mmntQlpAAAgMlZ8UNluSBuUmUQhEQCIcR0GtcTERM2ePVv33XefPB6Ppk6diIBmkQAAIABJREFUqsLCQq1evVqSWJcGAEAAniq7tLJMprZaloHZ0oxi72bWXWR3NmjTgcNBn7dZkwlpANAHdBjUJGncuHEaN26cX1uwgPbTn/6066MCACCGearsMssWSlV2SZKRpD075Jm/uEthbUulU/es+1xuT+DnuZMGAH1HSBteAwCAMKws84U0n6N32DprS6VTd639TEea2hb5kqTkBOmeaUMJaQDQRxDUAACIMFNbHVZ7R+zOBt2z7nMFyWiSpFMLrIQ0AOhDQpr6CAAAgmvavkV6erlUd1jKyJTyvhHwOMvA7LD7bq7wGOxOmuRdlzbntEFh9w0AiF4ENQAAuqBp+xZp2ULJ0+RtcB2WDlZJA7KlL1vcQcuzSTOKw+6/rNzRboXH1EQL69IAoA8iqAEA0BVPL/86pPl4735ZTp/cpaqPdmeDytup8Jhoke6cOpiQBgB9EEENAICuqAsSpBqOKGFuSae7bZ7y+OWR1iHQKzXRojunDtaYfGun3wMAEL0IagAAdEVGpne6Y6D2TrI7G3Tnmr364nBjwOfZKw0A+j6qPgIA0BXXzpMSEv3bEhK97Z3QfCctWEgbkJpISAOAOEBQAwCgCxJHj5HmL5ZyBknpmd7/zl/sbe+EjoqHjP1GJiENAOIAUx8BAAiR5+im1a0LhCSOHiMtWdHpfu3OBpWVO1RT59beLxuCHmezJqt4bG6n3wcAEDsIagCA/9/evQfHWd/3Hv88e5e0srS6LrJlY4O5uLgOYALGaSmRQ2aaZsz05JBTRDsecNJyqYnjZkobMFgYykwBFbBb0prAZCrSdHJOcZOT0xCcBFqgwYBtFBLbOAaMMStpJfmyq5VWezl/rHa9K+1Ku7pYz+6+X//EevbRo0f5DcSf/L6/7xd5iPX5FO/cKvX5JI31dTx6SLHNHQV3c0yXLHWcbBdNkpqqbJQ8AkAZofQRAIB87O5KhbSUsR22mZiq1FFK7KQ9uG4xIQ0Aygg7agAA5CF+cqCg6/kaHMoe0mpcVi2ucchTkSh3JKQBQHkhqAEAkAejtm5sjPXE69ORPJeW60zaKm+VtqxtmdazAQDFj6AGAEA+1rdLRw9llj82ehPXC9TdE9D2n3+s4Ui26EfTEAAAQQ0AgLxYGr2Kbe7I2vWxEL5AOGdIq3FZtcpbRakjAICgBgBAviyNXmnjlhk9o+uAP+dO2uIaB+WOAABJdH0EAOCcytU8RJI8FfZz+CYAADNjRw0AgDmWPtC6J5g9qLlsBufSAAApBDUAAOZQtsYhVkOKplU/umyG7v29hZxLAwCkENQAAJgjuRqHRONSU5VNzW47c9IAAFkR1AAAmCO73uzJ2Tik2W3X9nVLzvEbAQCKBc1EAACYA909Ab35cTDn5zQOAQBMhh01AEBZivX5ZjwTLZdkyWP2vTQahwAApkZQAwCUnVifT/HOrVKfT5ISgeroIcU2d8w4rHX3BPTgzz7WSDR7TDMkGocAAKZE6SMAoPzs7kqFtJSxHbaZ6O4J6P49x3OGNEm6apFbK5vdM/o5AIDSR1ADAJSd+MmBgq7n68nXfZoko8llM3TblU0z+hkAgPJA6SMAoOwYtXVZz48ZtXUFPyt9mHX/UCTnfcxKAwAUgqAGACg/69ulo4cyyx8bvYnrBfAFwrp/z0fyBUYnvc9pNfTEF5YS0gAAeSOoAQDKjqXRq9jmjhl1ffQFwrrvpWPqDebeRZMkqyHddz07aQCAwhDUAABlydLolTZumdb3JnfScoU0u8WQwypVOazatMZL8xAAQMEIagAAFKjrgH/Scsc1i6u1ZW3LOXwjAECpIagBAErSXA60HhzKHdK8bjvDrAEAM0ZQAwCUnLkaaJ3s8HjsVDjr501VNm1ra+U8GgBgxpijBgAoPXMw0Dp5Lu2VD07r1Eh0wudet10PrltMSAMAzAp21AAAJWcuBlrnOpdW47Rq1XlVal/VQEgDAMwaghoAoOTM5kDrpFzn0hbXOmgcAgCYdZQ+AgBKz/r2xADrdNMYaJ3OU2nPfr0i+3UAAGaCHTUAQMmZjYHW47WvatBhfyij/JEOjwCAuUJQAwAUpejBbum5J6ShoFRZJW24W9ZLVqY+n8lA62y8boe2tbWq64Bfg6FReSrsnEsDAMwZghoAoOhEf/GytOuxsxdCQalzq6KbOzLC2mzzujmPBgA4NzijBgAoKtGD3ZkhLSkWTeywAQBQAghqAICiET3YLXXel/uGoeC5exkAAOYQQQ0AUBRifT5px4NSLJb7psqqc/dCAADMIYIaAMD0Yn0+xR+7VxoZnvzGDXefmxcCAGCOEdQAAKYW6/Mp3rlV6u+d/MaNW+a0kQgAAOcSXR8BAOa2u0vq8+X+3GKRNj9YUEjzBcKJNvtDo/JU0mYfAGA+BDUAgKnFTw7k/tDpku66r+CQdv+ej9IGV4d02B/StrZWwhoAwDQIagAA04n1+aTdXYmQ5u/JflN9k4wt2xODrQvQdcCfFtISfIFRdR3wMyMNAGAaBDUAgKmkzqSllztarIk5aUmNXhmbOwoOaZI0ODSa/Xoo+3UAAOYDQQ0AYC7ZzqTFolJ9k9TQLKO2TlrfPq2QJkmeSruk0MTrFfZpPQ8AgLlAUAMAmErOM2kNzbL+xUPTemZ68xCX3aLGSpv6hiKpz73uREMRAADMgqAGADAVo7ZO8RzXp2Ni8xCpocKqTy9yKzQalaeCro8AAPMhqAEAzGV9u3T0UGb5Y6M3cX0asjUP8YeiWmGz6JvXLZrJmwIAMGcIagCAeZPe3TH97Flsc0fW69NB8xAAQDEiqAEA5sX47o5xSTp6SLFkN8eNW2bl59A8BABQjCzz/QIAgDKVrbvj2A7bbEqcP8sMZTQPAQCYHTtqAIB5kau7Y86uj9PkdTu0ra010fUxNErzEABAUSCoAQDOmfQzafL3ZL1nut0dJ+N1O7RlbcusPxcAgLlCUAMAnBPjz6RJkizWxDDrpBl0dwQAoJQQ1AAA50a2M2mxqFTfJDU0z7i7IwAApYSgBgA4J3KePWtolvUvHir4ed09AT35uk/BcFRVDqs2rfFqZbN7hm8JAIA5ENQAAHNmuHufok9sk4aCUjSS9Z7pnEl7+f1BPf7a2TNuwdGI7t9zXNvaFhHWAAAlgfb8AIA5ET3YrVPbNkn9vVIoKIVHJt40jTNpvkBYf/f6xEYk0bj05Ou+LN8BAEDxYUcNADA3nntCikYnXnc4paUXTftMWtcBv2Lx7J8Fw1l+HgAARYigBgCYNRnt90/2Z7/JapvWmTRfIKyuA3699fGZnPdUOawFPxcAADMiqAEAZkXW9vvZVFYV/GxfIKz793wkX2B00vs2raFjJACgNBDUAACzI1v7/fEsVmnD3QU/uuuAf9KQZjGkr61pppEIAKBkENQAANOWUep44lj2m2x2ye5I7KRtuFvWS1bm9ez09vu5jp5V2Q1dubBa7asa5HU7pvlbAABgPgQ1AMC0RA92SzselEaGJ73PuPJaWTZuKejZ49vv53LlwmptWdtS0LMBACgGtOcHABQs1ufLK6RZmxfOWvv98bxuu9pXNRT0bAAAigU7agCAwu3uyh3SqmuklsUyautUu+HPddJWWEniZO33rYa0oqlCngo75Y4AgJJGUAMAFCx+ciDnZ8aKT6VKHW0NDZLfX9CzB4dyNw2pr7Rp+7olBT0PAIBiROkjAKBgRm1d9g+croJLHcfzVNpzfkb7fQBAuSCoAQAKt75dahwXmpwu6a77ZBl/vUCJksbMsGYxpK9fS/t9AED5oPQRAFAwS6NXsc0dqdb8Rm2dtL59xiFNkrxuh7a1tarrgF+DoVHOowEAyhJBDQCQU/qctPFhzNLolQpsu5/kC4QTQWxoVJ7KiUHM63bQdh8AUNYIagCArGJ9PsU7t0p9PklSXJKOHlJsc8eMds58gbDu3/ORfIFk05CQDvtD2tbWyq4ZAABjOKMGAMhud1cqpKWM7bDNRNcBf1pIS/AFRtV1oLDukAAAlDJ21AAAKdGD3dJzT0hDQWk0nPWeyVrz5yNX+/3BUO62/AAAlBuCGgBA0lhI69wqxaKT3pezNX+eEu33QxOvV+Ruyw8AQLmh9BEAkPDcE1OGNDV6ZzwnLVv7fa870VAEAAAksKMGAEgYCma/brFKy1fMWgt+2u8DADA1ghoAIKGySgplCWueeln/4qFZ/VG03wcAYHIENQAoQ9nmo2nD3RPPqFmsiesAAOCcIqgBQJnJNR/N2Nyh+OaOs10fK6ukDXfLesnKeX1fAADKEUENAMpIrM+n+GP3Sv29mR+M7bBZN26RHtk1Py8HAABS6PoIAGUitZM2PqSNmel8NAAAMHsIagBQLnZ3pcods5npfDQAADB7KH0EgDIx6Y5ZgfPRunsCevJ1n4LhqKocVm1a49XKZvcsvCUAAJDYUQOAspFzx6y+Scbmjrzno3X3BHT/nuPqDUYUHI2rNxjR/XuOq7snMItvCwBAeSOoAUC5WN+e2DlL1+iVsWV7QUOsn3zdp2g881o0nrgOAABmB6WPAFBCss1HS4YwS6NXsc0dOT/PVzAcLeg6AAAoHEENAEpErvlosbSyRkujV9q4paDn+gJhPfNWrw71hSRJ4Ug8631VDuu03x0AAGSi9BEASkW2ro5jO2zT5QuEde9PjumN4wGdGonq1EhUo1lymtWQNq0pbGcOAADkxo4aAJSIXF0dZzIfreuAX31DkayfOa2GbBbR9REAgDlAUAOAEmHU1ilbUeJM5qMNDo3m/OyiBpe2r1sy7WcDAIDcKH0EgFKRo6tjIfPRxvNU2nN/VpH7MwAAMDPsqAFAiZitro7p2lc16Ne9QxPKHxsqrGpf1TDTVwYAADkQ1ACghEynq+NkvG6Htn9u8dmuj4Z0Ub1LG1c3y+t2zNrPAQAAmQhqAIBJed0OffO6RfP9GgAAlBWCGgCUKV8grK4Dfg0OjcpTaVf7qgZ2yQAAMIm8gtr+/fv17LPPKhaLqa2tTTfeeGPG5//5n/+p3bt3S5JcLpc2btyo888/f9ZfFgAwc75AWLve7NH+T4IajSWvhnTYH9K2tlbCGgAAJjBlUIvFYnrmmWd07733qr6+Xn/1V3+l1atXa9Gis2UwTU1NeuCBB+R2u7Vv3z794z/+ox5++OE5fXEAKGWxsUHVs9UUJMkXCOv+PR/JF5jYdt8XGFXXAb+2rG2Z8c8BAAAzM2VQO3LkiLxer5qbmyVJ1157rfbu3ZsR1C6++OLUn5cvX67+/v45eFUAKA+xPp/inVulPp8kJWajHT2k2OaOGYe1rgP+rCEtaTCU+zMAAHDuTBnUBgYGVF9fn/q6vr5e7733Xs77f/rTn+ryyy/P+tlLL72kl156SZL0yCOPqKGhfFo722y2svp9ixXrVBxKeZ0ivhMa/Lutio+FtJQ+n5z/8X3VbH5gRs8PRE5M+rm31j2r/92W8lqVEtapeLBWxYF1Kg5mX6cpg1o8Hp9wzTCMrPf+8pe/1M9+9jN1dHRk/XzdunVat25d6mu/35/vexa9hoaGsvp9ixXrVBxKdZ3G76SNN9zziUZn+Hu7J/m3vtdt15cuqZ7V/25Lda1KDetUPFir4sA6FQczrFNLS+7jBpapvrm+vj6jlLG/v18ej2fCfR9++KG+9a1v6Rvf+Iaqq6un+aoAUMZ2d+UMaZISZ9VmKNHZ0Z5xzW6RPr3ITSMRAABMZModtQsuuECffPKJent7VVdXp9dee02bNm3KuMfv9+vRRx/VXXfdNWkqBABkSm8aohPHct/Y6JXWt8/453ndDm1ra0205Q+NylNBW34AAMxoyqBmtVp166236qGHHlIsFtP111+v1tZWvfjii5KkG264Qd///vcVCAS0a9eu1Pc88sgjc/vmAFDkpip1TKlvkjELjUSSvG4HnR0BADA5I57tENo5cuLE5IfaS4kZamAxNdapOBTzOmXsoPl7pP7eyb+h0Zt3SDPjAOtiXqtywjoVD9aqOLBOxcEM6zRZNWJeA68BADMT6/Mp/p0d0qFuaar/f6y6RmpZXND8tInz0RhgDQBAMSOoAcAci/X5FH/0m9JAX173Gys+JcvGLQX9jGzz0RhgDQBA8Zqy6yMAYIZ2d+Ud0qbbNGRwKPugagZYAwBQnNhRA4A5kHc3R0mqb5IamgsqdRzPU2mXFJp4vcI+8WYAAGB6BDUAmGV5d3OUJKdLxpbtM24W0r6qQYf9oYzyR687cQ8AACg+BDUAmCXRg93SM49LJwck5dFQ1+GU7rpvVpqFMB8NAIDSQlADgFkQ/cXL0q7HJr+pqlqyjB0NXnaxjC9vzLvMMZ9mIcxHAwCgdBDUAGCGYn0+6dudU95nXHZFwd0ck2gWAgBAeaHrIwDM1O4uKRab/J5pdnNMSjQLyXKdZiEAAJQkdtQAoEDpHR2N2jrFe6doGlLfJGNzx7S6OSbRLAQAgPJCUAOAPMX6fIp/b5f07j4pkghMcUlyunJ/0wJPXl0dJ+voKIlmIQAAlBmCGgDkYdKW+yPDibA2Mpx5fdnFMjZuySukTdbRMYlmIQAAlA+CGgDkY3fX5HPRWhbLaDovVQ5ZyODqfDo6AgCA8kJQA4A8xE8OTPq50XQeHR0BAMCsoesjAOTBqK3L/SEdHQEAwCxjRw0A8rG+XTp6KLP80W6XVlye1+DqyZqF0NERAACMR1ADgDxYGr2Kbe7IaMuf7zm0qZqF0NERAACMR1ADgDxZGr3SNM6h5dMshI6OAAAgHUENAOZAeqnjsVPhrPfQLAQAAORCUAOAWTax1DE7moUAAIBc6PoIALMsW6njeDQLAQAAk2FHDQBmwBcIa9ebPTrsH5YkXdxYoZM55qLVOK1aXOugWQgAAJgSQQ0ApiEZ0N7+OKho2vU3jgfktBpZv2fVeVU0DAEAAHkhqAEoSbE+37Ra6U/FFwjrmbd6te9EQKOx7PeMRONy2QwNR+Kpa5Q6AgCAQhDUAJSUWJ9P8e/tkt7dJ0USJYhxSTp6SLHNHTMKa/k2CZGkJTVONVc7mIsGAACmhaAGoGRED3ZLOx6URoYnfji2wzadOWjJVvsHPgnq1Eh06m+Q1FzNXDQAADB9BDUAJSHW58sd0sbETw4U/NxCdtGSGittlDkCAIAZIagBKFrp59Dk75k0pElKnFUrUD6t9iXJkOR2WHRpU6Vuu7KJMkcAADAjBDUARSnW51O8c2uipDEfjV5pffukt2RttR+KTPo9dqv0KW+VNq5uJpwBAIBZQ1ADUJx2d+UX0gxD+u2rZHx546SNRLp7Aur46XGF0zo5TtZqv8Zl1SpvFU1CAADAnCCoAShKeZ03c7qku+6T9ZKVOW9J7qK9+XFQ8Syf52q1v62tlYAGAADmDEENQFEyauuyBivVN0kNzXnNTsu3UcjiGoe81U5a7QMAgHOGoAagOK1vl44eyix/bPTKmGJWWndPQE++7lMwHFUkltgxm4q32kmrfQAAcE4R1ACYSvRgt/TcE9JQUKqskjbcnbV00dLoVWxzR6rrYz47aN09Ad2/57jyyGYptNoHAADzgaAGwDSiB7ulzq1SbGyodCgodW5VdHNHzrA21QDr5LDqwaFRHe4fzjukGZJWeit059XnUeYIAADOOYIaAPN47omzIS0pFk1cf2RXwY+bzrBqu0W6vMXNLDQAADCvCGoA5k36wGqjtk4KnMl+41BwWs/Pd1i102roogYXjUIAAIBpENQAzIvxA6vjkmSxZL+5smrK56WXOHoqE4FrcGjqkGY1pPuuX6iVze4C3h4AAGBuEdQAzI9sA6tjsYn3WazShrsnfdTEEseQDvtDaq3JvjPmtBqyWaQqh1Wb1ngJaQAAwHQIagDmzITSxrSujDkHVi9ammgiMknXxxOnQnrq1ROp3bPhSGxCiaMvMKrFtU553faMzxhWDQAAigFBDcCcyFraePSQYmNzznINrDYWLpYlRyfH7p6AOl/1aSAUSfvekOw5KiZDo1Fta2tNlEQyrBoAABQRghqAWZXaRfvVfunMqcwPxz7Txi05B1ZrfXvW5042A200S8WkJHkq7PK6HQyrBgAARYegBmDGUuGs9xPpxDFpZDjnvcmSx6kGViebg/jOhHVyOKKBocikM9DsVmk0rbO/121nUDUAAChaBDUA0xbr8yn+vV3Sr/ZJo/nNKjNq61J/zjWwejrzzz7lrVKF3UqJIwAAKAkENQB5ix7sTgyfHgpKTldiGPXpk/k/YJLSxvT2+j3BUfUGI3k/1uu2a+PqZoIZAAAoGQQ1AFOK9fkU/84O6eA7Zy+GChhCXV0jY8WnMkob001nBy1pZZNLd61pIaQBAICSQlADMKnx3RsL1uiVMdbpMZeuA/6CQprVkOorbcxAAwAAJYugBiCrVJnjyX4pGp36G9I5XdLCJTLGSh3HNwhJzj9LniMbHMo/pHnddj31pd+WY7SAHT0AAIAiQ1ADkJIKZ6dPSaMjhT/AZpd+63IZX944YQetuyeg7T//WMORZOvGkA77Q9rW1ipPpV1SaMLjmqps8rhsGhyOqNZllbfaqfZVDWqpqZDfT1ADAACli6AGIPsZtHxYLNJFl0nxeM72+oNDo3LZLXrHN6SRcf31fYFRdR3wq31Vgw77Qxnlj163XdvaWjl7BgAAyhJBDShDqbb6Rw9JsZg0GpbCBe6g1dZLt31d1ktWTviokOYgg6FRed0ObWtrTQQ72usDAAAQ1IByEj3YLe16TDo1ML0H2Owyrrw2Z/fGpEKag3gq7JIkr9uhLWtbpvdeAAAAJYagBpSJ6MFuqXNrYvbZdFis0t0PyJJlB228fJuDuGyG2lc1TO99AAAAShhBDShRGcOpK6sSpY3TCWkOp1RdI224O6PMMVcHR0k5m4Okc9kM3ft7CylvBAAAyIKgBpSYRGOQndLBA2cvFjKcOintDFoqlP3kQ3kq7brhwgXa8d89aeWNZzs4et2OrM1BGiqsWlZfodBolDNoAAAAUyCoASVkRsOpHc7E7LOm86T17eqtqFPXAb+O/fCojp0OK5Zq2BjSG8fPpLXZT0h2cNyytoXmIAAAADNEUAOKUKzPJ+3uUrzXJ50elBbUymg6T/HhUOEhraJKuui3MmafTdW1cXxISxoMpbfXpzkIAADAdBHUgCKTddesv1fx9w8nBk5PZkGtZHecPbc2du4sVdq4P1HaGBqN5t21MV2ygyMAAABmhqAGFJvdXbl3zSKThCuLVfrKNybMPZu4exaS3TL1a7hsRsbOmtdtp4MjAADALCGoASaTKms8OSCjtm7CzLL4ySlmoNnt0mh6YDOkGo+0cUvW4dTZZp6Nxib/EcmOjS8eOc0ZNAAAgDlAUANMINbnU/x7u6T3fpXo0BhP7FTFJenoIcU2d6TCmlFbp+wnxMasuFyGq0LxkwP6pecC7ahdqzMRKbZfOu/IUS32uDJCVa6ZZ3ZL9sCWDGkrm91a2eye/i8NAACAnAhqwDxJhbMjv5aCZ3LfOLbDpo1bEl+vb5eOHspe/tjoTTUFefn9QT3+Wo80fDbWfXAqrA9OhTNa6eeaeXZ5i1sum0W+MyM6ORyVx2VTc7WDnTMAAIBzgKAGnGPRg93SM49LJ/vz/p70ckdLo1exzR2J8sg+n3Qq0fWxp3mZvnv+5zW4f0QVjuN683gg5/PSW+lnm3nmddt125VNBDIAAIB5QlADzqHowW6pc6sUixb0fUZtXcbXlkavfP/rzxOdGodGVeGw6mh/SH7fqKT8ujUmW+kz8wwAAMB8CGrAufTcEwWHNDV6E+WOaaaac5aP9Fb6zDwDAAAwF4IaMEum6tYoKTG/LF82m/RbV2QMok7K1qmxELTSBwAAMDeCGjANqUYgh34pjYQSXRoNixRPtEnM1q1RUmLIdCh3WOtx1un55V/QYE2z6loXqv3q1qwliLk6NU5l0QKbltVVUtoIAABgcgQ1oEDRg93SUx1SeCTzg/i4XvbjuzVK0oa7s55R66k+T99eeZP2OxdqNNmk0Teqw3s+SnVnTJerU2O6xkqbzvc4NRyJce4MAACgyBDUgByylTJKknY8ODGk5TB+OLX1kpWKbu5InFUbCqqn5jw98+nbdCBgTcwsGzcgLb07Y7psnRoJZgAAAKWDoAZkEevzKd65NTWrLFnKqJbF0shw3s9J79boC4THujQukOeLHbrhwgXa8d898p2evIwx2Z0xHZ0aAQAAShtBDWUrerA7tbMlq1WyWNQTiUgVlYlOi+MHSvf5pOHJyw2Tflm9RE9d1q5gZa3cLxzRLavq9fw7A2k7YCG9cfyMhiPxSZ8jZXZnTEenRgAAgNJFUEPZifX5FP/OTunggew3DAWk/t6Cn9vj9Oj5pZ/XsdpF+tDZKBmGFJWGghE9/lrPhPvzCWl0ZwQAAChPBDWUlfEljQVbdrF6+gb1/IIrNehcoIrIsOJx6bTTrWPu8zRsdc7Ke9qt0qe8Vdq4uplyRgAAgDJEUEN52d01rZDW4/To+UtvlG/xCn3UENdwgTOrc3HZjIydNbtFurzFrduubCKgAQAAlDGCGopWXgOmxxnfhXEyPY1L9d2Lv6hPog595PBo2LBLp6cuV8zFYkixtG/3uu2665pmvXjkNA1BAAAAkIGghqKRHszkqpCOHZUG/ZImGTA9jlFbl+qA3+P06JkLvqiDNUs0bHMpLkOG4nJFRrQseEIfNy1Xf8SYlX9KrIZ095pmvXkiNCGUrWx2z/wHAAAAoKQQ1GAquXbJ8jpblm3A9Hjr29Xz0Ql927NG++ouVsQ6saNiwGrXO86LpMjMfheLITmthqqdVm1a49XKZreuW+qZ2UMBAABQFghqMI1cs8timzvyPls2VWljb0WdHlj1VfWEpl/COBmXzdDiGoe81U7KGAEAADBtBDWcE3mdJ8sWxtLLHXNItsUfdC5QXbVL7YFwzoDUdcA/KyFXqG+cAAAQHUlEQVTNZTO0pMapmgqb4vG4hiMxzpgBAABg1hDUMKuyBTJJOXfK0sNarjCWfFa2eNXj9OiBVV9RT+XZWWOH93ykbW2tWQPT4NDohGv5Soaz5moHgQwAAABziqCGWZOrdFEti3PulKWfJ8sVxlKB7+ihzOfUNer5i29SjzNzILQvMKquA35tWdsy4VmeSrukUF6/T12FVRfUudgtAwAAwDlHUMOkJnRalKTTp6TTg9KCWhlN550tY8xVujicPRh1By3a8cIRBcNRVTmsuusz/1ONH51IDZP2jJzWzaffkjfZUGTsrFr6bt3J/SNS78TnD4ay75y1r2rQYX9IvkDm51Yj8Z8Ww5DTKq1ormKWGQAAAOYNQQ2S8itZnKC/V/H3D6fKGAuZUfbL6iXaVv95RYOJ1orB0YgeeCuiBZd9RSfDZ+87vPRKdVTUySslwuC4jo6eyhPKtkPmqZjYzVGSvG6HtrW1quuAP+vssoaGBvn9/rx/DwAAAGAuENTK0PhQFv/MDdJ3nsqvZDGbsecZtXXqrl6izhU367TDLUNS1eiQmqyj8gb7dPOvX1DzyKAk6anL2hU1LJnvJWWENEnqCcVzljFK2XfIvO5E+MrF63bkfB4AAABgBgS1MhA92C0994Q0FJScLikWS5QuaiyU7f+FNDKc+U2TlCxK0iv1l+kfLrlJYatdRjyu86KnVe9t1DvOsGSxpu47Za3RKUnv1Tbo8NWL9YD/x/JWOxWsrJWi+b1/rjJGaeodMgAAAKAYEdSKVF7t7jUW0jq3SrGxVBQKTnzYuJDW4/To2xd+Ub+uXaoRi13OSFiXnv5Atx75gZpHBvVK/WX6u8v+WDISB7vikj621unjgWhGSBuvx1Kl7356g7asbZH7hSMaCuY3UTpXGWMSO2QAAAAoNQQ1E8tWomj814uK9/qkEx+mAlaudveSEjtpsam3rpKzyHwVdTpWdZ5GbM7UZ6NWh/Y2Xqb33S16cP+39A+X3JQKaYVK7o5tWuPV/XuOK5rW5tEiqcZp0eBILHVtqjJGAAAAoBQR1Ewg1udT/Hu7EufCJGnhEkmGdORXUiQRbOKStPe/FM8Vusa1u/cFwuo64NfA4v8hV3NQI1a7PqheqJDVqYroiC4++YFu+01ih6zH6dEDn/qqeirqJ31Pf0Wdnr/iZo3apl9WmNwdW9ns1ra2RXrydV+q6+OmNV41VjkoYwQAAEDZI6idIxHfCcWee2pCqWKsz6f4o9+UBvrO3nzwnewPGRfSkrtgg84Fco0Oy9ACDf/kQ1U4rDraH5I/FJVqlk54zBmrXW82Xab3q1u0ff+39PylN04Z0pJOLr5Edv+wRqLZJp5Nbvzu2Mpmt/7pxgsn3EcZIwAAAModQW2G8jkrFuvz6eQT2xTv+VhSZqmidndJA30Zocszclqf+/h1/WThmkm/3nnpl9VTOa4sMMtMsVz6K+r03av+WIONS6TB/Dp7eCrsuvPqBXr8tZ6sn9dVWBWJRhUclQxJbqdVTVU2eaud7I4BAAAAeSKojcm3Ocf470mfM5brrFj3v/9ITy25RcELK1Q1GlL7b/6vXm26Qof/wyc5rlfrZRfKV9Uof0Vd6ntea/ptRS22nF/vbVihYZtrxr/34MLlqquwS4Onp7y3sdKWEbZ2/qJX4WhchiG1VNm0rKGSMAYAAADMAoKa8g9cSd09AXW+6tPgUFjxS++W48IRVcVH1DBySs2hAd387/9HLbfdkbp3m/NqRY1EN8Qhe2VGx0RJOtVw8YSfkR7Ksn09GyFNUuoc2PhZZE6rIZtFCkclp1Va0Vyl265sSoWw65Z6dN1Sz6y8AwAAAIBMBDUpUX6YNti5x+nR8/W/p8H/d0SVSyKKx+MaHo3JU2nX8jq7nnm7P3GjYZEMacRZqRFVasDl0eGa83U4clodgbC8boeefN2XCmkp0+yYONsaKqypHTBmkQEAAADmQVCTFD85kPpzj9OjB1Z95ezZr+OBtDtDeuWDqZ/XY1ugrgN+bVnbomA4z6nO0+CyGRqOZG/q0Vhp0/kep4YjMblsFo1EYnp/cCT19SWNFdq4ujkVxphFBgAAAJgHQU1KzCgb+/PzSz8/sUHHNCTnhVU5rAqO5jfYOZ3VUMaMsfFfe9123XVNs148clqDoVG5bBYZhqHQaJQdMQAAAKDIEdQkaX17YoZZn0+DzgWz8sjkvLBsg52zqXUauqixKhW0brhwQSqEZfs6GcRWNrtn5X0BAAAAmAdBTUrMMxtrle+JW2b8vPR5YcnBzjt+0aczw2FVOay6ZVW9/utYUIf6QpIhXVTvyihDTBofwghlAAAAQHkgqI2xNHqljVt0SyCs9/Z8lNEBMd34EkRJsktaUGFTQ6VNzdWOCWWHK5vd+t+3ni+/35+6RsdEAAAAALkQ1MYZ3wGxwm5NdH2MxCYtQQQAAACA2UJQy2KqDoiUIAIAAACYSzM/kAUAAAAAmFUENQAAAAAwmbxKH/fv369nn31WsVhMbW1tuvHGGzM+j8fjevbZZ7Vv3z45nU7dcccdWrZs2Zy8MAAAAACUuil31GKxmJ555hn99V//tTo7O/Xqq6/q+PHjGffs27dPPp9PTz75pL761a9q165dc/bCAAAAAFDqpgxqR44ckdfrVXNzs2w2m6699lrt3bs3454333xTv/u7vyvDMHTRRRcpGAxqcHBwzl4aAAAAAErZlKWPAwMDqq+vT31dX1+v9957b8I9DQ0NGfcMDAzI48mcFfbSSy/ppZdekiQ98sgjGd9T6mw2W1n9vsWKdSoOrFPxYK2KA+tUPFir4sA6FQezr9OUQS0ej0+4ZhhGwfdI0rp167Ru3brU1+kDoEtdQ0NDWf2+xYp1Kg6sU/FgrYoD61Q8WKviwDoVBzOsU0tL7pFgU5Y+1tfXq7+/P/V1f3//hJ2y+vr6jF8y2z0AAAAAgPxMGdQuuOACffLJJ+rt7VUkEtFrr72m1atXZ9yzevVqvfLKK4rH4zp8+LAqKysJagAAAAAwTVOWPlqtVt1666166KGHFIvFdP3116u1tVUvvviiJOmGG27Q5ZdfrrffflubNm2Sw+HQHXfcMecvDgAAAAClKq85aldccYWuuOKKjGs33HBD6s+GYWjjxo2z+2YAAAAAUKamLH0EAAAAAJxbBDUAAAAAMBmCGgAAAACYDEENAAAAAEyGoAYAAAAAJkNQAwAAAACTIagBAAAAgMkQ1AAAAADAZAhqAAAAAGAyRjwej8/3SwAAAAAAzmJH7Ry555575vsVkAfWqTiwTsWDtSoOrFPxYK2KA+tUHMy+TgQ1AAAAADAZghoAAAAAmIz1gQceeGC+X6JcLFu2bL5fAXlgnYoD61Q8WKviwDoVD9aqOLBOxcHM60QzEQAAAAAwGUofAQAAAMBkbPP9AqXG7/dr586dOnnypAzD0Lp16/T7v//7CgQC6uzsVF9fnxobG7V582a53e75ft2yFQ6Hdf/99ysSiSgajeqaa67RTTfdxDqZVCwW0z333KO6ujrdc889rJNJ3XnnnXK5XLJYLLJarXrkkUdYK5MKBoN6+umn9dFHH8kwDN1+++1qaWlhrUzkxIkT6uzsTH3d29urm266Sddddx3rZDI//OEP9dOf/lSGYai1tVV33HGHwuEw62RCP/rRj7Rnzx7F43G1tbXpC1/4gqn/d4rSx1k2ODiowcFBLVu2TKFQSPfcc4++8Y1v6Oc//7ncbrduvPFGvfDCCwoEArrlllvm+3XLVjwe18jIiFwulyKRiLZu3aoNGzbojTfeYJ1M6Ic//KF+85vfpP6Z+ud//mfWyYTuvPNO/c3f/I0WLFiQusZamdOOHTt06aWXqq2tTZFIRCMjI/q3f/s31sqkYrGY/vRP/1QPP/ywfvzjH7NOJjIwMKD77rtPnZ2dcjgcevzxx3XFFVfo+PHjrJPJHDt2TE888YQefvhh2Ww2Pfzww9q4caP27Nlj2rWi9HGWeTye1KHEiooKLVy4UAMDA9q7d6+uu+46SdJ1112nvXv3zudrlj3DMORyuSRJ0WhU0WhUhmGwTibU39+vt99+W21tbalrrFPxYK3MZ2hoSL/+9a/12c9+VpJks9lUVVXFWplYd3e3vF6vGhsbWScTisViCofDikajCofD8ng8rJMJffzxx1q+fLmcTqesVqsuvfRSvfHGG6ZeK0of51Bvb6/ef/99XXjhhTp16pQ8Ho+kRJg7ffr0PL8dYrGY/vIv/1I+n0+f//zntXz5ctbJhJ577jndcsstCoVCqWusk3k99NBDkqTPfe5zWrduHWtlQr29vVqwYIH+/u//Xh9++KGWLVumDRs2sFYm9uqrr2rt2rWS+Pef2dTV1emLX/yibr/9djkcDq1atUqrVq1inUyotbVV//Iv/6IzZ87I4XBo3759uuCCC0y9VgS1OTI8PKzHHntMGzZsUGVl5Xy/DrKwWCz627/9WwWDQT366KM6duzYfL8SxnnrrbdUU1OjZcuW6d13353v18EUHnzwQdXV1enUqVPavn27Wlpa5vuVkEU0GtX777+vW2+9VcuXL9ezzz6rF154Yb5fCzlEIhG99dZbuvnmm+f7VZBFIBDQ3r17tXPnTlVWVurxxx/XK6+8Mt+vhSwWLVqk9evXa/v27XK5XFqyZIksFnMXFxLU5kAkEtFjjz2m3/md39HVV18tSaqpqdHg4KA8Ho8GBwczznBgflVVVWnFihXav38/62Qyhw4d0ptvvql9+/YpHA4rFArpySefZJ1Mqq6uTlLi33dXXXWVjhw5wlqZUH19verr67V8+XJJ0jXXXKMXXniBtTKpffv2aenSpaqtrZXE3yfMpru7W01NTal1uPrqq3X48GHWyaQ++9nPpsq+n3/+edXX15t6rcwdI4tQPB7X008/rYULF+oP/uAPUtdXr16tl19+WZL08ssv66qrrpqvV4Sk06dPKxgMSkp0gOzu7tbChQtZJ5O5+eab9fTTT2vnzp362te+pssuu0ybNm1inUxoeHg4VZ46PDysd955R4sXL2atTKi2tlb19fU6ceKEpMRfNBctWsRamVR62aPE3yfMpqGhQe+9955GRkYUj8f5+4TJnTp1SlKiS/sbb7yhtWvXmnqt6Po4yw4ePKitW7dq8eLFMgxDkvRHf/RHWr58uTo7O+X3+9XQ0KCvf/3rpmn9WY4+/PBD7dy5U7FYTPF4XGvWrNGXvvQlnTlzhnUyqXfffVc/+MEPdM8997BOJtTT06NHH31UUqK07jOf+Yz+8A//kLUyqQ8++EBPP/20IpGImpqadMcddygej7NWJjMyMqLbb79dO3bsSB2j4J8p8/nXf/1Xvfbaa7JarTr//PP1Z3/2ZxoeHmadTGjr1q06c+aMbDab/uRP/kQrV6409T9TBDUAAAAAMBlKHwEAAADAZAhqAAAAAGAyBDUAAAAAMBmCGgAAAACYDEENAAAAAEyGoAYAAAAAJkNQAwAAAACTIagBAAAAgMn8f3OrVpO/ZACeAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model_output = modele_regLog.predict_proba(x_test)\n",
"probas_pred = model_output[:, np.where(modele_regLog.classes_ == 0 )[0]]\n",
"\n",
"fig, ax = plt.subplots(1,1,figsize = (15,10))\n",
"\n",
"plt.scatter(x_test[x_test['smoker'] ==1][\"age\"],probas_pred[x_test['smoker'] ==1], label = 'fumeur' )\n",
"plt.scatter(x_test[x_test['smoker'] ==0][\"age\"],probas_pred[x_test['smoker'] ==0], label = 'non - fumeur' )\n",
"plt.legend()\n",
"plt.title(\"probabilité prédite de décés en fonction de l'age\")"
]
},
{
"cell_type": "markdown",
"id": "32ab8709",
"metadata": {},
"source": [
"La courbe de fumeur est au dessus. La probabilité de décès est donc plus élévée pour cette catégorie"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}