In this project, we gather reproduction attempts from the Challenger study. In particular, we try to reperform some of the analysis provided in *Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure* by *Siddhartha R. Dalal, Edward B. Fowlkes, Bruce Hoadley* published in *Journal of the American Statistical Association*, Vol. 84, No. 408 (Dec., 1989), pp. 945-957 and available at [here](https://studies2.hec.fr/jahia/webdav/site/hec/shared/sites/czellarv/acces_anonyme/OringJASA_1989.pdf) (here is [the official JASA webpage](http://www.jstor.org/stable/2290069)). On the fourth page of this article, they indicate that the maximum likelihood estimates of the logistic regression using only temperature are: $`\hat{\alpha}=5.085`$ and $`\hat{\beta}=-0.1156`$ and their asymptotic standard errors are $`s_{\hat{\alpha}}=3.052`$ and $`s_{\hat{\beta}}=0.047`$. The Goodness of fit indicated for this model was $`G^{2} = 18.086`$ with 21 degrees of freedom. Our goal is to reproduce the computation behind these values and the Figure 4 of this article, possibly in a nicer looking way. [*Here is our successful replication of Dalal et al. results using R*](challenger.pdf). 1. Try to **replicate the computation** from Dalal et al. In case it helps, we provide you with twoimplementations of this case study but we encourage you to **reimplement them by yourself** using both your favourite language and an other language you do not know yet. - A [Jupyter Python3 notebook](src/Python3/challenger.ipynb) - An [Rmarkdown document](src/R/challenger.Rmd) 2. Then **update the following table with your own results by indicating in each column:** - Language: R, Python3, Julia, Perl, C... - Language version: - Main libraries: please indicate the versions of all the loaded libraries - Tool: Jupyter, Rstudio, Emacs - Operating System: Linux, Mac OS X, Windows, Android, ... along with its version - $`\hat{\alpha}`$ and $`\hat{\beta}`$: Identical, Similar, Different, Non functional (expected values are $`5.085`$ and $`-0.1156`$) - $`s_{\hat{\alpha}}`$ and $`s_{\hat{\beta}}`$: Identical, Similar, Different, Non functional (expected values are $`3.052`$ and $`0.047`$) - $`G^2`$ and degree of freedom: Identical, Similar, Different, Non functional (expected values are $`18.086`$ and $`21`$). - Figure: Similar, Different, Non functional, Did not succeed - Confidence region: Identical (to [the one obtained with R](challenger.pdf)), Similar, Quite Different, Did not succeed | Language | Language version | Main libraries | Tool | Operating System | $`\hat{\alpha}= 5.085`$ $`\hat{\beta} = -0.1156`$ | $`s_{\hat{\alpha}} = 3.052`$ $`s_{\hat{\beta}} = 0.047`$ | $`G^{2} = 18.086`$ $`dof = 21`$ | Figure | Confidence Region | Link to the document | Author | | -------- | ---------------- | ------------------------------------------------------------- | ------- | ---------------------------- | ------------- | ---------- | ---------- | --------- | ---------- | ----------------------------------------------------------------- | ----------- | | R | 3.5.1 | ggplot2 3.0.0 | RStudio | Debian GNU/Linux buster/sid | Identical | Identical | Identical | Identical | Identical | [Rmd](src/R/challenger.Rmd), [pdf](src/R/challenger_debian_alegrand.pdf) | A. Legrand | | Python | 3.6.4 | statsmodels 0.9.0 numpy 1.13.3 pandas 0.22.0 matplotlib 2.2.2 | Jupyter | Linux Ubuntu 4.4.0-116-generic | Identical | Identical | Identical | Identical | Similar | [ipynb](src/Python3/challenger.ipynb), [pdf](src/Python3/challenger_ubuntuMOOC_alegrand.pdf) | A. Legrand | | R | 3.5.1 | ggplot2 3.0.0 | RSrudio | Windows >= 8 x64 (build 9200) | Identical | Identical | Identical | Identical | Similar | [Rmd](https://app-learninglab.inria.fr/moocrr/gitlab/8517fa92e97b3a318e653caefbfde6b5/mooc-rr/blob/master/module4/MOOC_exercice_module4.Rmd), [Pdf](https://app-learninglab.inria.fr/moocrr/gitlab/8517fa92e97b3a318e653caefbfde6b5/mooc-rr/blob/master/module4/MOOC_exercice_module4.pdf) | M. Saubin | | Python | 3.6.4 | statsmodels 0.9.0 numpy 1.15.2 pandas 0.22.0 matplotlib 2.2.3 | Jupyter | Linux Ubuntu 4.4.0-164-generic | Identical | Identical | Identical | Identical | Similar | [ipynb](module4/challenger_Python_ipynb.ipynb), [pdf](module4/challenger_Python_ipynb.pdf) |2992438755465b7fe3afd7856bde0599| | R | 3.4.4 | ggplot2_3.3.0 | RStudio | Linux Mint 19 | Identical | Identical | Identical | Identical | Identical | [Rmd](https://app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/blob/master/module4/challenger_reexecuted.Rmd), [html](https://app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/blob/master/module4/challenger_reexecuted.html) | b2c48a7ab4afbff5f4d26650b09eb6b4 | | Python | 3.6.4 | statsmodels 0.9.0 numpy 1.15.2 pandas 0.22.0 matplotlib 2.2.3 | Jupyter | Linux Ubuntu 4.4.0-164-generic | Identical | Identical | Identical | Identical | Similar | [ipynb](https://app-learninglab.inria.fr/moocrr/gitlab/34ea1ee296fc8711adf020d9cc2cb571/mooc-rr/blob/master/module4/challenger.ipynb), [pdf](https://app-learninglab.inria.fr/moocrr/gitlab/34ea1ee296fc8711adf020d9cc2cb571/mooc-rr/blob/master/module4/challenger.pdf) | 34ea1ee296fc8711adf020d9cc2cb571 | | Matlab | 9.6.0.1072779 (R2019a) | | Matlab Live Script | Windows 10.0.18362 | Identical | Identical | Non Functionnal | Similar | Did not succeed | [mlx](https://app-learninglab.inria.fr/moocrr/gitlab/34ea1ee296fc8711adf020d9cc2cb571/mooc-rr/blob/master/module4/challenger.mlx), [pdf](https://app-learninglab.inria.fr/moocrr/gitlab/34ea1ee296fc8711adf020d9cc2cb571/mooc-rr/blob/master/module4/challenger_matlab.pdf) | 34ea1ee296fc8711adf020d9cc2cb571 | | R | 3.6.1 | ggplot2 3.1.1 | RSrudio | Ubuntu 18.04.4 LTS | Identical | Identical | Identical | Identical | Identical | [Rmd](https://app-learninglab.inria.fr/moocrr/gitlab/a308dc99373eb1db581156a44d010769/mooc-rr/blob/master/module4/challenger_aschmide.Rmd), [pdf](https://app-learninglab.inria.fr/moocrr/gitlab/a308dc99373eb1db581156a44d010769/mooc-rr/blob/master/module4/challenger_aschmide.pdf) | a308dc99373eb1db581156a44d010769 | | R | 3.5.3 | ggplot2_3.1.1 | RStudio | Windows 10 x64 (build 18363) | Identical | Identical | Identical | Identical | Identical | [Rmd](https://app-learninglab.inria.fr/moocrr/gitlab/84848da3cce8d6b635b2e7c1749f3f0a/mooc-rr/blob/master/module4/challenger_CL.Rmd), [pdf](https://app-learninglab.inria.fr/moocrr/gitlab/84848da3cce8d6b635b2e7c1749f3f0a/mooc-rr/blob/master/module4/challenger_CL.pdf) | 84848da3cce8d6b635b2e7c1749f3f0a | | Python | 3.7.6 | statsmodel 0.11.1 scipy 1.4.1 pandas 1.0.3 seaborn 0.10.0 | Jupyter | Ubuntu 18.04.4 LTS | Identical | Identitcal | Identical | Non functionnal | Non functionnal | [ipynb](https://app-learninglab.inria.fr/moocrr/gitlab/a308dc99373eb1db581156a44d010769/mooc-rr/blob/master/module4/challenger.ipynb) [html] | a308dc99373eb1db581156a44d010769 | | Python | 3.7.4 | statsmodel 0.10.1 scipy 1.3.1 pandas 0.25.1 seaborn 0.9.0 | Jupyter | Windows 10 x64 | Identical | Identical | Identical | Identical | Identical | [ipynb](https://app-learninglab.inria.fr/moocrr/gitlab/e33eb88ad13e77fcab40e23aa5b9eb7e/mooc-rr/blob/master/module4/src_Python3_challenger.ipynb)) | e33eb88ad13e77fcab40e23aa5b9eb7e | | Julia | 1.4.0 | CSV v0.6.1 DataFrames v0.20.2 GLM v1.3.9 | Weave.jl | Linux Debian 4.14.17-1 x86_64 | Identical | Identical | Similar | Identical | Did not succeed | [jmd](https://app-learninglab.inria.fr/moocrr/gitlab/3e6bf7b47a05a05ae3d6af86121dcb5d/mooc-rr/blob/master/module4/challenger.jmd), [pdf](https://app-learninglab.inria.fr/moocrr/gitlab/3e6bf7b47a05a05ae3d6af86121dcb5d/mooc-rr/blob/master/module4/challenger.pdf), [html](https://app-learninglab.inria.fr/moocrr/gitlab/3e6bf7b47a05a05ae3d6af86121dcb5d/mooc-rr/blob/master/module4/challenger.html) | 3e6bf7b47a05a05ae3d6af86121dcb5d | | R | 3.6.3 | ggplot2 3.3.0 | RStudio | Windows 10 x64 (build 18363) | Similar $`\hat{\alpha}=5.08498`$ $`\hat{\beta}=-0.11560`$ | Similar $`s_{\hat{\alpha}} = 3.05247`$ $`s_{\hat{\beta}} = 0.04702`$ | Identical | Identical | Identical | [Rmd] (https://app-learninglab.inria.fr/moocrr/gitlab/d581efc242e1e06dfa8d0dea8ee470e0/mooc-rr/blob/master/module4/Exo1_Module4.Rmd), [pdf] (https://app-learninglab.inria.fr/moocrr/gitlab/d581efc242e1e06dfa8d0dea8ee470e0/mooc-rr/blob/master/module4/Exo1_Module4.pdf) | d581efc242e1e06dfa8d0dea8ee470e0 | | Python | 3.7.7 | statsmodel 0.11.1 scipy 1.4.1 pandas 1.0.3 seaborn 0.10.0 | Jupyter | Linux Mint 19.1 Cinnamon | Identical | Identitcal | Identical | Similar | Similar | [ipynb](https://app-learninglab.inria.fr/moocrr/gitlab/1affb6a270b94ae1aa2914210661b070/mooc-rr/blob/master/module4/exo/challenger.ipynb) [pdf](https://app-learninglab.inria.fr/moocrr/gitlab/1affb6a270b94ae1aa2914210661b070/mooc-rr/blob/master/module4/exo/challenger.pdf) | 1affb6a270b94ae1aa2914210661b070 | | Python | 3.6.4 | statsmodels 0.9.0 numpy 1.15.2 pandas 0.22.0 matplotlib 2.2.3 | Jupyter | Linux Ubuntu 4.4.0-164-generic | Identical | Identical | Identical | Identical | Identical | [ipynb] (https://app-learninglab.inria.fr/moocrr/gitlab/d3ffe1dda057aedb6d37daa14d4dce86/mooc-rr/blob/master/module4/src_Python3_challenger.ipynb), [pdf] (https://app-learninglab.inria.fr/moocrr/gitlab/d3ffe1dda057aedb6d37daa14d4dce86/mooc-rr/blob/master/module4/src_Python3_challenger.pdf) | d3ffe1dda057aedb6d37daa14d4dce86 | | R | 3.6.3 | ggplot2 3.3.0 | RStudio | Windows 10 x64 (build 18363) | Identical | Identical | Identical | Identical | Identical | [Rmd] (https://app-learninglab.inria.fr/moocrr/gitlab/3e3d09557efde0d973c3f246d977cc35/mooc-rr/blob/master/module4/Gullstrand_src_R_challenger.Rmd)| https:// 3e3d09557efde0d973c3f246d977cc35 | | R | 3.5.1 | ggplot2 3.3.0 | RStudio | Windows 10 x64 (build 18363) | Identical | Identical | Identical | Identical | Identical | [Rmd](https://app-learninglab.inria.fr/moocrr/gitlab/525f77b1f86b1bcc7fc77168921eb737/mooc-rr/blob/master/challenger.Rmd) [html](https://app-learninglab.inria.fr/moocrr/gitlab/525f77b1f86b1bcc7fc77168921eb737/mooc-rr/blob/master/challenger.html) | | Python | 3.7.1 | statsmodels 0.10.1 scipy 1.1.0 pandas 0.25.3 seaborn 0.9.0 | Jupyter | Windows 10 x64 (build 17134) | Similar $`\hat{\alpha}=5.0850'$ | Identical | Identical | Identical after code change | Identical after code change | [ipynb] (https://app-learninglab.inria.fr/moocrr/gitlab/65f0b71b8c107dc7c99fe00b869170e1/mooc-rr/blob/master/module4/src_Python3_challenger.ipynb), | 65f0b71b8c107dc7c99fe00b869170e1 | | Python | 3.6.4 | statsmodels 0.9.0 scipy 1.1.0 pandas 0.22.0 seaborn 0.8.1 | Jupyter | Windows 10 x64 (build 18363) | Identical | R | 3.5.1 | ggplot2_3.1.0 | RStudio | Windows 10 Pro 1909 - 64 bits | Similar (5.08498 , -0.1156) | Similar ( ,3.052 ,0.04702 ) | Identical |Identical | Identical | [ipynb](https://app-learninglab.inria.fr/moocrr/gitlab/de98852947736bd9e2f70971a6ed56d0/mooc-rr/blob/master/module4/ex4.ipynb) | de98852947736bd9e2f70971a6ed56d0 | | R | 4.0.0 | ggplot2 3.3.0 | RStudio | Manjaro Linux | Identical | Identical | Identical | Identical | Identical | [Rmd](https://app-learninglab.inria.fr/moocrr/gitlab/55066b9debf86be253468bbb91c0a965/mooc-rr/blob/master/module4/challenger.Rmd), [pdf](https://app-learninglab.inria.fr/moocrr/gitlab/55066b9debf86be253468bbb91c0a965/mooc-rr/blob/master/module4/challenger.pdf)