Commit 881069e5 authored by Samuel MEYNARD's avatar Samuel MEYNARD

Ajout regression linéaire du cas > MTU

parent b918ae3d
......@@ -526,9 +526,41 @@ f"Les coeff sont L = {lmodel.intercept_} et C = { 1 / lmodel.coef_}"
#+END_SRC
#+RESULTS:
: Les coeff sont L = 3.257592785874401 et C = [2761.3155395]
: Les coeff sont L = 113.19744441078485 et C = [9479.50730539]
*** Cas supérieur à la MTU
#+BEGIN_SRC python :session :results replace
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import dates
import numpy as np
from scipy import stats
import seaborn as sns
import statsmodels.api as sm
from sklearn import linear_model
@plt.FuncFormatter
def fake_dates(x, pos):
""" Custom formater to turn floats into e.g., 2016-05-08"""
return dates.num2date(x).strftime('%Y-%m-%d')
sns.set(color_codes=True)
df = pd.DataFrame({
'date': pd.to_datetime(date_g1500),
'datenum': dates.date2num(date_g1500),
'T': T_g1500,
'S': S_g1500})
fig, ax = plt.subplots()
sns.regplot(x="datenum", y="T", color='purple', data=df, ax=ax)
# here's the magic:
ax.xaxis.set_major_formatter(fake_dates)
# legible labels
ax.tick_params(labelrotation=30)
fig.savefig('stacko_g1500_reglineaireT-f(S).png')
#+END_SRC
#+RESULTS:
: None
#+BEGIN_SRC python :session
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
......@@ -543,4 +575,4 @@ f"Les coeff sont L = {lmodel.intercept_} et C = { 1 / lmodel.coef_}"
#+END_SRC
#+RESULTS:
: Les coeff sont L = 5.867233082184833 et C = [441.71908009]
: Les coeff sont L = 120.04921279789215 et C = [-555.38712112]
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment