v2

parent bb9b9181
......@@ -4,19 +4,16 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"toy_notebook_en \n",
"March 28, 2019\n",
"\n",
"## 1 On the computation of π\n",
"\n",
"### 1.1 Asking the maths library\n",
"\n",
"My computer tells me that π is approximately"
"My computer tells me that $\\pi$ is *approximatively*"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 14,
"metadata": {},
"outputs": [
{
......@@ -38,32 +35,32 @@
"source": [
"### 1.2 Buffon’s needle\n",
"\n",
"Applying the method of Buffon’s needle, we get the approximation\n"
"Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
]
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.128911138923655\n"
]
"data": {
"text/plain": [
"3.128911138923655"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(low=0, high=1, size=N)\n",
"theta = np.random.uniform(low=0, high=pi/2, size=N)\n",
"\n",
"approx_pi_buffon = 2 / (np.sum((x + np.sin(theta)) > 1) / N)\n",
"print(approx_pi_buffon)\n"
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
{
......@@ -74,12 +71,12 @@
"\n",
"A method that is easier to understand and does not make use of the sin function is based on the\n",
"fact that if X ∼ U(0, 1) and Y ∼ U(0, 1), then P[X² + Y² ≤ 1] = π/4 (see \"Monte Carlo method\" on Wikipedia). \n",
"The following code uses this approach:\n"
"The following code uses this approach:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 18,
"metadata": {},
"outputs": [
{
......@@ -102,25 +99,24 @@
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"1\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')\n"
"ax.set_aspect('equal')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is then straightforward to obtain a (not really good) approximation to π by counting how many times, on average, X² + Y² is smaller than 1:"
"It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 19,
"metadata": {},
"outputs": [
{
......@@ -129,7 +125,7 @@
"3.112"
]
},
"execution_count": 10,
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment