"Mon ordinateur m’indique que $\\pi$ vaut approximativement"
"Mon ordinateur m’indique que $\\pi$ vaut approximativement"
]
]
...
@@ -32,7 +38,7 @@
...
@@ -32,7 +38,7 @@
"metadata": {},
"metadata": {},
"source": [
"source": [
"## En utilisant la méthode des aiguilles de Buffon\n",
"## En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :"
"Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :"
]
]
},
},
{
{
...
@@ -66,7 +72,7 @@
...
@@ -66,7 +72,7 @@
"source": [
"source": [
"## Avec un argument \"fréquentiel\" de surface\n",
"## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"sinus se base sur le fait que si $X ∼ U ( 0, 1 )$ et $Y ∼ U ( 0, 1 ) $ alors $ P [ X 2 + Y 2 ≤ 1 ] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait :"
"sinus se base sur le fait que si $X\\sim U (0, 1)$ et $Y \\sim (0, 1) $ alors $ P [X^2 + Y^2 \\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
]
]
},
},
{
{
...
@@ -108,8 +114,7 @@
...
@@ -108,8 +114,7 @@
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {},
"source": [
"source": [
"Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois,\n",
"Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :"