Update toy_document_fr.Rmd

parent 3676ba1d
...@@ -13,29 +13,25 @@ knitr::opts_chunk$set(echo = TRUE) ...@@ -13,29 +13,25 @@ knitr::opts_chunk$set(echo = TRUE)
Mon ordinateur m'indique que $\pi$ vaut *approximativement* Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r} ```{r cars}
pi pi
``` ```
## En utilisant la méthode des aiguilles de Buffon ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : Mais calculé avec la _méthode_ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme _approximation_ :
```{r} ```{r}
set.seed(42) set.seed(42)
N = 100000 N = 100000
x = runif(N) x = runif(N)
theta = pi/2*runif(N) theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1)) 2/(mean(x+sin(theta)>1))
``` ```
## Avec un argument “fréquentiel” de surface ## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \sim U(0,1)$ et $Y \sim U(0,1)$ alors $P[X^{2} + Y^{2} \leq 1]= \pi /4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait:
$X \sim U(0,1)$ et
$Y \sim U(0,1)$ alors
$P[X^{2} + Y^{2} \leq 1]= \pi /4$
(voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait:
```{r } ```{r }
set.seed(42) set.seed(42)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment