test

parent 7e41e18a
...@@ -4,9 +4,9 @@ ...@@ -4,9 +4,9 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# On the computation of π\n", "# 1 On the computation of π\n",
"\n", "\n",
"## Asking the maths library\n", "## 1.1 Asking the maths library\n",
"\n", "\n",
"My computer tells me that π is *approximatively*" "My computer tells me that π is *approximatively*"
] ]
...@@ -29,6 +29,15 @@ ...@@ -29,6 +29,15 @@
"print(pi)\n" "print(pi)\n"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.2 Buffon’s needle\n",
"\n",
"Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 2,
...@@ -54,6 +63,17 @@ ...@@ -54,6 +63,17 @@
"2/(sum((x+np.sin(theta))>1)/N)\n" "2/(sum((x+np.sin(theta))>1)/N)\n"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.3 Using a surface fraction argument\n",
"\n",
"A method that is easier to understand and does not make use of the sin function is based on the\n",
"fact that if *X ∼ U(0, 1)* and *Y ∼ U(0, 1)* then P[X^2 + Y^2 ≤ 1] = π/4 (see [\"Monte Carlo method\"\n",
"on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 3,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment