Retouches

parent 842f4281
......@@ -4,9 +4,15 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# À propos du calcul de $\\pi$\n",
"# À propos du calcul de $\\pi$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## En demandant à la lib maths\n",
"Mon ordinateur m'indique que $\\pi$ vaut _approximativement_"
"Mon ordinateur m'indique que $\\pi$ vaut *approximativement*"
]
},
{
......@@ -31,14 +37,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## En utilisant la méthode des aiguilles de Buffon"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :"
"## En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :"
]
},
{
......@@ -59,7 +59,7 @@
],
"source": [
"import numpy as np\n",
"np.random.seed(42)\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
......@@ -70,14 +70,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Avec un argument \"fréquentiel\" de surface"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \\sim U(0, 1)$ et $Y \\sim U(0, 1)$ alors $P[X^2+Y^2\\leq1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
"## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
]
},
{
......@@ -102,7 +96,7 @@
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(42)\n",
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
......@@ -120,7 +114,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1 :"
"Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :"
]
},
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment