Update essai 1 toy_document_fr.Rmd

parent ca3e64e3
---
title: "Votre titre"
author: "Votre nom"
date: "La date du jour"
title: "A propos du calcul de pi"
author: "Arnaud Legrand"
date: "25 juin 2018"
output: html_document
---
......@@ -10,6 +10,47 @@ output: html_document
knitr::opts_chunk$set(echo = TRUE)
```
## En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r cars}
pi
```
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
```{r}
set.seed(42)
N = 100000
x = runif(N)
theta=pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X $\sim$ U(0,1)$ et $Y $\sim$ U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo). Le code suivant illustre ce fait :
``{r}
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1 :
```{r}
4*mean(df$Accept)
```
## Quelques explications
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment