Mon ordinateur m’indique que $$\pi$$ vaut **approximativement**
Mon ordinateur m’indique que $\pi$ vaut **approximativement**
```{r}
```{r}
pi
pi
...
@@ -31,7 +31,7 @@ theta = pi/2*runif(N)
...
@@ -31,7 +31,7 @@ theta = pi/2*runif(N)
## Avec un argument “fréquentiel” de surface
## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $$X\sim U(0,1)$$ et $$Y\sim U(0,1)$$ alors $$P[X2+Y2≤1]=\pi/4$$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1]=\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: