new try

parent daf3137c
...@@ -17,8 +17,10 @@ ...@@ -17,8 +17,10 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 14,
"metadata": {}, "metadata": {
"scrolled": true
},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
...@@ -43,7 +45,40 @@ ...@@ -43,7 +45,40 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.128911138923655"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Avec un argument \"frésuentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \\sim \\mathcal{U}(0,1)$ et $Y \\sim \\mathcal{U}(0,1)$ alors $P\\left[X^2 + Y^2 \\leq 1\\right] = \\pi/4$\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -68,13 +103,14 @@ ...@@ -68,13 +103,14 @@
"N=1000\n", "N=1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n", "x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n",
"\n",
"accept = (x*x+y*y) <= 1\n", "accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n", "reject = np.logical_not(accept)\n",
"\n", "\n",
"fig, ax = plt.subplots(1)\n", "fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')\n" "ax.set_aspect('equal')"
] ]
}, },
{ {
...@@ -86,7 +122,7 @@ ...@@ -86,7 +122,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 21,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -95,7 +131,7 @@ ...@@ -95,7 +131,7 @@
"3.112" "3.112"
] ]
}, },
"execution_count": 9, "execution_count": 21,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -103,13 +139,6 @@ ...@@ -103,13 +139,6 @@
"source": [ "source": [
"4*np.mean(accept)" "4*np.mean(accept)"
] ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment