q

parent 147ab035
......@@ -17,7 +17,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 8,
"metadata": {
"scrolled": true
},
......@@ -78,7 +78,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
......@@ -89,12 +89,15 @@
"np.random.seed(seed=42)\n",
"N=1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)"
"y = np.random.uniform(size=N, low=0, high=1)\n",
"\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 10,
"metadata": {},
"outputs": [
{
......@@ -111,9 +114,6 @@
}
],
"source": [
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
......@@ -124,12 +124,12 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1 :"
"Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 11,
"metadata": {},
"outputs": [
{
......@@ -138,7 +138,7 @@
"3.112"
]
},
"execution_count": 5,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment