Commit f8f978d4 authored by escuiller's avatar escuiller

exo1 presque terminé

parent 208390b0
......@@ -15,7 +15,60 @@
Mon ordinateur m'indique que π vaut /approximativement/:
#+begin_src python :results output :exports both
from math import *
pi
print(pi)
#+end_src
#+RESULTS:
: 3.141592653589793
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait comme *approximation* :
#+begin_src python :results output :session :exports both
import numpy as np
np.random.seed(seed=42)
N = 10000
x = np.random.uniform(size=N, low=0, high=1)
theta = np.random.uniform(size=N, low=0, high=np.pi/2)
print(2/(sum((x+np.sin(theta))>1)/N))
#+end_src
#+RESULTS:
: 3.128911138923655
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas
intervenir d'appel à la fonction sinus se base sur le fait que si
X∼U(0,1) et Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir [[méthode de Monte
Carlo sur
Wikipédia][https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80]]). Le
code suivant illustre ce fait :
#+begin_src python :results file :session :var matplot_lib_filename="figure.png" :exports both
import matplotlib.pyplot as plt
np.random.seed(seed=42)
N = 1000
x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
accept = (x*x+y*y) <= 1
reject = np.logical_not(accept)
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
plt.savefig(matplot_lib_filename)
print(matplot_lib_filename)
#+end_src
#+RESULTS:
Il est alors aisé d'obtenir une approximation (pas terrible) de π en
comptant combien de fois, en moyenne, X2+Y2 est inférieur à 1 :
#+begin_src python :results output :session :exports both
4*np.mean(accept)
#+end_src
#+RESULTS:
: 3.112
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment