Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
23db65e7e2b5fb82db5e83fb70a96150
mooc-rr
Commits
f8f978d4
Commit
f8f978d4
authored
Apr 08, 2020
by
escuiller
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
exo1 presque terminé
parent
208390b0
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
54 additions
and
1 deletion
+54
-1
toy_document_orgmode_python_fr.org
module2/exo1/toy_document_orgmode_python_fr.org
+54
-1
No files found.
module2/exo1/toy_document_orgmode_python_fr.org
View file @
f8f978d4
...
...
@@ -15,7 +15,60 @@
Mon ordinateur m'indique que π vaut /approximativement/:
#+begin_src python :results output :exports both
from math import *
p
i
p
rint(pi)
#+end_src
#+RESULTS:
: 3.141592653589793
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait comme *approximation* :
#+begin_src python :results output :session :exports both
import numpy as np
np.random.seed(seed=42)
N = 10000
x = np.random.uniform(size=N, low=0, high=1)
theta = np.random.uniform(size=N, low=0, high=np.pi/2)
print(2/(sum((x+np.sin(theta))>1)/N))
#+end_src
#+RESULTS:
: 3.128911138923655
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas
intervenir d'appel à la fonction sinus se base sur le fait que si
X∼U(0,1) et Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir [[méthode de Monte
Carlo sur
Wikipédia][https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80]]). Le
code suivant illustre ce fait :
#+begin_src python :results file :session :var matplot_lib_filename="figure.png" :exports both
import matplotlib.pyplot as plt
np.random.seed(seed=42)
N = 1000
x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
accept = (x*x+y*y) <= 1
reject = np.logical_not(accept)
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
plt.savefig(matplot_lib_filename)
print(matplot_lib_filename)
#+end_src
#+RESULTS:
Il est alors aisé d'obtenir une approximation (pas terrible) de π en
comptant combien de fois, en moyenne, X2+Y2 est inférieur à 1 :
#+begin_src python :results output :session :exports both
4*np.mean(accept)
#+end_src
#+RESULTS:
: 3.112
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment