Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2992438755465b7fe3afd7856bde0599
mooc-rr
Commits
aa2c5bf9
Commit
aa2c5bf9
authored
Mar 30, 2020
by
Adam Taheraly
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Mon commit pour org
parent
1f610ee8
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
74 additions
and
2 deletions
+74
-2
cars.png
module2/exo1/cars.png
+0
-0
toy_document_orgmode_R_fr.org
module2/exo1/toy_document_orgmode_R_fr.org
+74
-2
No files found.
module2/exo1/cars.png
View replaced file @
1f610ee8
View file @
aa2c5bf9
6.53 KB
|
W:
|
H:
6.42 KB
|
W:
|
H:
2-up
Swipe
Onion skin
module2/exo1/toy_document_orgmode_R_fr.org
View file @
aa2c5bf9
#+TITLE:
Mon jolie titre
#+TITLE:
À propros du calcul de $\pi$
#+AUTHOR: Adam Taheraly
#+AUTHOR: Adam Taheraly
#+DATE: La date du jour
#+DATE: Lundi 30 Mars
#+EMAIL: taheraly.adam@gmail.com
#+DESCRIPTION: Exercice Mooc RR sur le calcul de \pi
#+KEYWORDS: MOOC-RR exo1
#+LANGUAGE: fr
#+LANGUAGE: fr
#+TEXT:
#+OPTIONS: H:1 num:t toc:t \n:nil @:t ::t |:t ^:t -:t f:f todo:f tasks:nil pri:t tags:not-in-toc <:f *:t TeX:t LaTeX:t skip:t author:f email:f creator:f timestamp:f d:t
#+BIND: lisp-var lisp-val
#+LINK_UP:
#+LINK_HOME:
#+LaTeX_HEADER: \usepackage[utf8]{inputinc}
#+LaTeX_HEADER: \usepackage[T1]{fontinc}
#+LaTeX_HEADER: \usepackage[francais]{babel}
#+LaTeX_HEADER: \usepackage{amsmath}
#+LaTeX_HEADER: \usepackage{amssymb}
#+LaTeX_HEADER: \usepackage{mathrsfs}
#+EXPORT_EXCLUDE_TAGS:
# #+PROPERTY: header-args :eval never-export
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
...
@@ -11,6 +26,63 @@
...
@@ -11,6 +26,63 @@
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* En demandant à la lib maths
Mon ordinateur m'indique $\pi$ vaut /approximativement/
#+begin_src R :results output :session *R* :exports both
pi
#+end_src
#+RESULTS:
: [1] 3.141593
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait
comme *approximativement* :
#+begin_src R :results output :session *R* :exports both
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
#+end_src
#+RESULTS:
:
: [1] 3.14327
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas
intervenir d'appel à la fonction sinus se base sur le fait que
si $X \sim U(0,1)$ et $Y \sim
U(0,1)$ alors $P[X^{2} + Y^{2} \le 1] = \pi/4$
(voir
[[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode
de Monte Carlo sur Wikipédia]]). Le code suivant illustre ce fait :
#+begin_src R :results output graphics :file (org-babel-temp-file "figure" ".png") :exports both :width 600 :height 400 :session *R*
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
#+end_src
#+RESULTS:
[[file:/tmp/babel-fP8mRX/figureCHylZq.png]]
Il est alors aisé d'obtenir une approximation (pas terrible) de \pi en
comptant combien de fois, en moyenne, $X^{2} + Y^{2}$
est inférieur à 1 :
#+begin_src R :results output :session *R* :exports both
4*mean(df$Accept)
#+end_src
#+RESULTS:
: [1] 3.156
* Quelques explications
* Quelques explications
Ceci est un document org-mode avec quelques exemples de code
Ceci est un document org-mode avec quelques exemples de code
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment