Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2ca1bfaa17808ab5474bc34a59a91c79
mooc-rr
Commits
8698e576
Commit
8698e576
authored
Apr 19, 2020
by
2ca1bfaa17808ab5474bc34a59a91c79
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update toy_document_fr.Rmd
parent
31ab8428
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
2 additions
and
2 deletions
+2
-2
toy_document_fr.Rmd
module2/exo1/toy_document_fr.Rmd
+2
-2
No files found.
module2/exo1/toy_document_fr.Rmd
View file @
8698e576
...
@@ -13,9 +13,9 @@ knitr::opts_chunk$set(echo = TRUE)
...
@@ -13,9 +13,9 @@ knitr::opts_chunk$set(echo = TRUE)
Mon ordinateur m'indique que $\pi$ vaut *approximativement*
Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r cars}
```{r cars}
pi
pi
```
```
## En utilisant la méthode des aiguilles de Buffon
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
...
@@ -43,6 +43,6 @@ ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + t
...
@@ -43,6 +43,6 @@ ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + t
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r}
```{r}
4*mean(df$Accept)
4*mean(df$Accept)
```
```
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment