test2

parent 628c6c5a
...@@ -20,34 +20,33 @@ ...@@ -20,34 +20,33 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## A propos du calcul de *π*" "# À propos du calcul de $\\pi$"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### En demandant à la lib maths\n", "## En demandant à la lib maths\n",
"Mon ordinateur m'indique que *π* vaut *approximativement*" "Mon ordinateur m'indique que $\\pi$ vaut *approximativement*"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"ename": "SyntaxError", "name": "stdout",
"evalue": "invalid syntax (<ipython-input-4-4ac309e0cc7a>, line 1)", "output_type": "stream",
"output_type": "error", "text": [
"traceback": [ "3.141592653589793\n"
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-4-4ac309e0cc7a>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m In[1] : from $\\math$ import *\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
] ]
} }
], ],
"source": [ "source": [
"In[1] : from $\\math$ import *\n", "from math import *\n",
" 'print(pi)'" "print(pi)"
] ]
}, },
{ {
...@@ -60,20 +59,24 @@ ...@@ -60,20 +59,24 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"ename": "SyntaxError", "ename": "TypeError",
"evalue": "invalid syntax (<ipython-input-2-e0eb810442a1>, line 1)", "evalue": "seed() got an unexpected keyword argument 'see'",
"output_type": "error", "output_type": "error",
"traceback": [ "traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-2-e0eb810442a1>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m In[2]:import numpy as np\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-6-bea296134fd7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msee\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m42\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10000\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muniform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mN\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhigh\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mtheta\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muniform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mN\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhigh\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpi\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32mmtrand.pyx\u001b[0m in \u001b[0;36mmtrand.RandomState.seed\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: seed() got an unexpected keyword argument 'see'"
] ]
} }
], ],
"source": [ "source": [
"In[2]:import numpy as np\n", "import numpy as np\n",
"np.random.seed(see=42)\n", "np.random.seed(see=42)\n",
"N=10000\n", "N=10000\n",
"x - np.random.uniform(size=N, low=0, high=1)\n", "x - np.random.uniform(size=N, low=0, high=1)\n",
...@@ -91,17 +94,17 @@ ...@@ -91,17 +94,17 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"in[3] %matplotlib inline\n", "%matplotlib inline\n",
"import matplotlib.pyplot as plt" "import matplotlib.pyplot as plt"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -115,9 +118,18 @@ ...@@ -115,9 +118,18 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"ename": "SyntaxError",
"evalue": "positional argument follows keyword argument (<ipython-input-9-9f56e3d7a142>, line 2)",
"output_type": "error",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-9-9f56e3d7a142>\"\u001b[0;36m, line \u001b[0;32m2\u001b[0m\n\u001b[0;31m ax.scatter(x[accept], y[accept], c='b', alpha=0,2, edgecolor=None)\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m positional argument follows keyword argument\n"
]
}
],
"source": [ "source": [
"fig, ax=plt.subplots(1)\n", "fig, ax=plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0,2, edgecolor=None)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0,2, edgecolor=None)\n",
...@@ -134,19 +146,23 @@ ...@@ -134,19 +146,23 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 10,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"data": {
"text/plain": [
"3.112"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"In [4] 4*np.mean(accept)" "4*np.mean(accept)"
] ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment