Commit 0fdc494a authored by David Pinaud's avatar David Pinaud

modif exo 2 D Pinaud

parent 5c6c9463
...@@ -12,7 +12,7 @@ knitr::opts_chunk$set(echo = TRUE) ...@@ -12,7 +12,7 @@ knitr::opts_chunk$set(echo = TRUE)
## En demandant à la lib maths ## En demandant à la lib maths
Mon ordinateur mindique que $\pi$ vaut *approximativement* Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r pir} ```{r pir}
pi pi
...@@ -20,7 +20,7 @@ pi ...@@ -20,7 +20,7 @@ pi
## En utilisant la méthode des aiguilles de Buffon ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r buffon} ```{r buffon}
...@@ -33,7 +33,7 @@ theta = pi/2*runif(N) ...@@ -33,7 +33,7 @@ theta = pi/2*runif(N)
## Avec un argument “fréquentiel” de surface ## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2+Y^2≤1]=\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_π)). Le code suivant illustre ce fait: Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1]=\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_π)). Le code suivant illustre ce fait:
```{r frequentiel} ```{r frequentiel}
set.seed(42) set.seed(42)
...@@ -44,7 +44,7 @@ library(ggplot2) ...@@ -44,7 +44,7 @@ library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
``` ```
Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1: Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1 :
```{r approx} ```{r approx}
4*mean(df$Accept) 4*mean(df$Accept)
``` ```
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment