Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
3b84ba3f3c3e5904829b5970eb1de23b
mooc-rr
Commits
beb32f85
Commit
beb32f85
authored
Apr 28, 2025
by
Jerome Dauvergne
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
creating file
parent
65e1811f
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
323 additions
and
1 deletion
+323
-1
exo5_fr.Rmd
module2/exo5/exo5_fr.Rmd
+1
-1
grippe.Rmd
module3/grippe.Rmd
+54
-0
inc-25-PAY.csv
module3/inc-25-PAY.csv
+268
-0
No files found.
module2/exo5/exo5_fr.Rmd
View file @
beb32f85
...
@@ -70,7 +70,7 @@ $p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une
...
@@ -70,7 +70,7 @@ $p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une
régression logistique.
régression logistique.
```{r}
```{r}
logistic_reg = glm(data=data, Malfunction/Count ~
Temperat
ure, weights=Count,
logistic_reg = glm(data=data, Malfunction/Count ~
+ Press
ure, weights=Count,
family=binomial(link='logit'))
family=binomial(link='logit'))
summary(logistic_reg)
summary(logistic_reg)
```
```
...
...
module3/grippe.Rmd
0 → 100644
View file @
beb32f85
---
title: "Analyse de l'incidence du syndrome grippal"
author: "Jerome E. Dauvergne"
date: "2025-04-28"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# Préparation des données
Les données proviennent du réseau Sentinelle : https://www.sentiweb.fr/france/fr/?page=table
Nous avons téléchargé le fichier pour la France Métropolitaine.
## Téléchargement
```{r}
data_url = "https://www.sentiweb.fr/datasets/all/inc-3-PAY.csv"
data = read.csv(data_url,
skip = 1,
na.strings = c("-"))
```
Regardons les données :
```{r}
head(data)
tail(data)
```
Regardons les données manquantes
```{r}
ligne_na <- apply(data, 1, function(x) any(is.na)))
data[ligne_na,]
```
Pas de données manquantes.
Toutes les variables sont des entiers exceptées geo_insee et geo_name. Par contre les dates sont au format ISO (= année et numéro de semaine).
```{r}
data$date <- paste0(substring(data$week, 1, 4), "-W", substring(data$week, 5, 6))
```
## Inspection
Quelle allure a la courbe ?
```{r}
plot(data$week, data$inc, type="l", xlab="Date", ylab="Incidence hebdomadaire")
with(head(data, 1000), plot(week, inc, type="l", xlab="Date", ylab="Incidence hebdomadaire"))
```
## Analyse
module3/inc-25-PAY.csv
0 → 100644
View file @
beb32f85
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment