Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
40493573b996e2fab2c46954594abefe
mooc-rr
Commits
8070f773
Commit
8070f773
authored
Mar 12, 2021
by
40493573b996e2fab2c46954594abefe
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update toy_document_fr.Rmd
parent
f15d77de
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
2 additions
and
0 deletions
+2
-0
toy_document_fr.Rmd
module2/exo1/toy_document_fr.Rmd
+2
-0
No files found.
module2/exo1/toy_document_fr.Rmd
View file @
8070f773
...
@@ -37,7 +37,9 @@ df = data.frame(X = runif(N), Y = runif(N))
...
@@ -37,7 +37,9 @@ df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r}
```{r}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment