Mon ordinateur m'indique que \pi vaut /approximativement/
Mon ordinateur m'indique que $\pi$ vaut /approximativement/
#+begin_src R :results output :exports both
#+begin_src R :session *R* :results output :exports both
pi
#+end_src
#+RESULTS:
: [1] 3.141593
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait comme *approximation* :
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait comme *approximation* :
#+begin_src R :results output :exports both
#+begin_src R :session *R* :results output :exports both
set.seed(42)
N = 100000
x = runif(N)
...
...
@@ -35,7 +35,7 @@ theta = pi/2*runif(N)
#+RESULTS:
: [1] 3.14327
* Avec un argument "fréquentiel" de surface
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2+Y^2≤1]=π/4$ (voir [[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode de Monte Carlo sur Wikipedia]]). Le code suivant illustre ce fait :
#+BEGIN_SRC R :exports both :session *R* :results output graphics file :file MonteCarlo.png