Après 1ère comparaison

parent aa98c2a0
...@@ -11,14 +11,9 @@ ...@@ -11,14 +11,9 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## En demandant à a lib maths" "## En demandant à a lib maths\n",
] "\n",
}, "Mon ordinateur m'indique que $\\pi$ vaut *approximativement*"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mon ordinateur m'indique que $\\pi$ vaut _approximativement_"
] ]
}, },
{ {
...@@ -43,14 +38,9 @@ ...@@ -43,14 +38,9 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## En utilisant la méthode des aiguilles de Buffon" "## En utilisant la méthode des aiguilles de Buffon\n",
] "\n",
}, "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :"
] ]
}, },
{ {
...@@ -82,14 +72,9 @@ ...@@ -82,14 +72,9 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Avec un argument \"fréquentiel\" de surface" "## Avec un argument \"fréquentiel\" de surface\n",
] "\n",
}, "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \\sim U(0, 1)$ et $Y \\sim U(0, 1)$ alors $P[X^2+Y^2 \\leq 1]=\\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \\sim U(0, 1)$ et $Y \\sim U(0, 1)$ alors $P[X²+Y² \\leq 1]=\\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
] ]
}, },
{ {
...@@ -132,7 +117,7 @@ ...@@ -132,7 +117,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X²+Y²$ est inférieur à 1 :" "Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1 :"
] ]
}, },
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment