module2/exo2

parent 4a551bcc
{ {
"cells": [], "cells": [
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Notre tableau est le suivant : \n",
"[[14. 7.6 11.2 12.8 12.5 9.9 14.9 9.4 16.9 10.2 14.9 18.1 7.3 9.8\n",
" 10.9 12.2 9.9 2.9 2.8 15.4 15.7 9.7 13.1 13.2 12.3 11.7 16. 12.4\n",
" 17.9 12.2 16.2 18.7 8.9 11.9 12.1 14.6 12.1 4.7 3.9 16.9 16.8 11.3\n",
" 14.4 15.7 14. 13.6 18. 13.6 19.9 13.7 17. 20.5 9.9 12.5 13.2 16.1\n",
" 13.5 6.3 6.4 17.6 19.1 12.8 15.5 16.3 15.2 14.6 19.1 14.4 21.4 15.1\n",
" 19.6 21.7 11.3 15. 14.3 16.8 14. 6.8 8.2 19.9 20.4 14.6 16.4 18.7\n",
" 16.8 15.8 20.4 15.8 22.4 16.2 20.3 23.4 12.1 15.5 15.4 18.4 15.7 10.2\n",
" 8.9 21. ]]\n",
"\n",
"\n",
"le min est: \n",
"2.8\n",
"\n",
"\n",
"le max est: \n",
"23.4\n"
]
}
],
"source": [
"import numpy as np\n",
"arr = np.array([[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]])\n",
"print(\"Notre tableau est le suivant : \")\n",
"print(arr)\n",
"print(\"\\n\")\n",
"print(\"le min est: \")\n",
"print(np.min(arr))\n",
"print(\"\\n\")\n",
"print(\"le max est: \")\n",
"print(np.max(arr))"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Notre tableau est le suivant :\n",
"[[14. 7.6 11.2 12.8 12.5 9.9 14.9 9.4 16.9 10.2 14.9 18.1 7.3 9.8\n",
" 10.9 12.2 9.9 2.9 2.8 15.4 15.7 9.7 13.1 13.2 12.3 11.7 16. 12.4\n",
" 17.9 12.2 16.2 18.7 8.9 11.9 12.1 14.6 12.1 4.7 3.9 16.9 16.8 11.3\n",
" 14.4 15.7 14. 13.6 18. 13.6 19.9 13.7 17. 20.5 9.9 12.5 13.2 16.1\n",
" 13.5 6.3 6.4 17.6 19.1 12.8 15.5 16.3 15.2 14.6 19.1 14.4 21.4 15.1\n",
" 19.6 21.7 11.3 15. 14.3 16.8 14. 6.8 8.2 19.9 20.4 14.6 16.4 18.7\n",
" 16.8 15.8 20.4 15.8 22.4 16.2 20.3 23.4 12.1 15.5 15.4 18.4 15.7 10.2\n",
" 8.9 21. ]]\n",
"\n",
"\n",
"Application de la fonction median():\n",
"14.5\n",
"\n",
"\n",
"Application de la fonction median() sur laxe 0:\n",
"[14. 7.6 11.2 12.8 12.5 9.9 14.9 9.4 16.9 10.2 14.9 18.1 7.3 9.8\n",
" 10.9 12.2 9.9 2.9 2.8 15.4 15.7 9.7 13.1 13.2 12.3 11.7 16. 12.4\n",
" 17.9 12.2 16.2 18.7 8.9 11.9 12.1 14.6 12.1 4.7 3.9 16.9 16.8 11.3\n",
" 14.4 15.7 14. 13.6 18. 13.6 19.9 13.7 17. 20.5 9.9 12.5 13.2 16.1\n",
" 13.5 6.3 6.4 17.6 19.1 12.8 15.5 16.3 15.2 14.6 19.1 14.4 21.4 15.1\n",
" 19.6 21.7 11.3 15. 14.3 16.8 14. 6.8 8.2 19.9 20.4 14.6 16.4 18.7\n",
" 16.8 15.8 20.4 15.8 22.4 16.2 20.3 23.4 12.1 15.5 15.4 18.4 15.7 10.2\n",
" 8.9 21. ]\n",
"\n",
"\n",
"Application de la fonction median() sur laxe 1:\n",
"[14.5]\n"
]
}
],
"source": [
"import numpy as np\n",
"a = np.array([[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]])\n",
"print('Notre tableau est le suivant :')\n",
"print(a)\n",
"print('\\n')\n",
"print('Application de la fonction median():')\n",
"print(np.median(a))\n",
"print('\\n')\n",
"print('Application de la fonction median() sur laxe 0:')\n",
"print (np.median(a, axis = 0))\n",
"print ('\\n')\n",
"print('Application de la fonction median() sur laxe 1:')\n",
"print( np.median(a, axis = 1))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Notre tableau est le suivant : \n",
"[[14. 7.6 11.2 12.8 12.5 9.9 14.9 9.4 16.9 10.2 14.9 18.1 7.3 9.8\n",
" 10.9 12.2 9.9 2.9 2.8 15.4 15.7 9.7 13.1 13.2 12.3 11.7 16. 12.4\n",
" 17.9 12.2 16.2 18.7 8.9 11.9 12.1 14.6 12.1 4.7 3.9 16.9 16.8 11.3\n",
" 14.4 15.7 14. 13.6 18. 13.6 19.9 13.7 17. 20.5 9.9 12.5 13.2 16.1\n",
" 13.5 6.3 6.4 17.6 19.1 12.8 15.5 16.3 15.2 14.6 19.1 14.4 21.4 15.1\n",
" 19.6 21.7 11.3 15. 14.3 16.8 14. 6.8 8.2 19.9 20.4 14.6 16.4 18.7\n",
" 16.8 15.8 20.4 15.8 22.4 16.2 20.3 23.4 12.1 15.5 15.4 18.4 15.7 10.2\n",
" 8.9 21. ]]\n",
"\n",
"\n",
"Application de la fonction mean():\n",
"14.113000000000001\n",
"\n",
"\n"
]
}
],
"source": [
"import numpy as np\n",
"a = np.array([[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]])\n",
"print('Notre tableau est le suivant : ')\n",
"print(M)\n",
"print( '\\n' )\n",
"print('Application de la fonction std() sur laxe 0:' )\n",
"a = np.std(M ,axis=0)\n",
"print(a)\n",
"print( '\\n' )\n",
"print('Application de la fonction std() sur laxe 1:' )\n",
"b = np.std(M ,axis=1)\n",
"print(b)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Notre tableau est le suivant : \n",
"[[14. 7.6 11.2 12.8 12.5 9.9 14.9 9.4 16.9 10.2 14.9 18.1 7.3 9.8\n",
" 10.9 12.2 9.9 2.9 2.8 15.4 15.7 9.7 13.1 13.2 12.3 11.7 16. 12.4\n",
" 17.9 12.2 16.2 18.7 8.9 11.9 12.1 14.6 12.1 4.7 3.9 16.9 16.8 11.3\n",
" 14.4 15.7 14. 13.6 18. 13.6 19.9 13.7 17. 20.5 9.9 12.5 13.2 16.1\n",
" 13.5 6.3 6.4 17.6 19.1 12.8 15.5 16.3 15.2 14.6 19.1 14.4 21.4 15.1\n",
" 19.6 21.7 11.3 15. 14.3 16.8 14. 6.8 8.2 19.9 20.4 14.6 16.4 18.7\n",
" 16.8 15.8 20.4 15.8 22.4 16.2 20.3 23.4 12.1 15.5 15.4 18.4 15.7 10.2\n",
" 8.9 21. ]]\n",
"\n",
"\n",
"Application de la fonction std() sur laxe 0:\n",
"[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0.]\n",
"\n",
"\n",
"Application de la fonction std() sur laxe 1:\n",
"[4.31236953]\n"
]
}
],
"source": [
"import numpy as np\n",
"M = np.array([[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]])\n",
"print('Notre tableau est le suivant : ')\n",
"print(M)\n",
"print( '\\n' )\n",
"print('Application de la fonction std() sur laxe 0:' )\n",
"a = np.std(M ,axis=0)\n",
"print(a)\n",
"print( '\\n' )\n",
"print('Application de la fonction std() sur laxe 1:' )\n",
"b = np.std(M ,axis=1)\n",
"ddof=1\n",
"print(b)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
...@@ -16,10 +213,9 @@ ...@@ -16,10 +213,9 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.3" "version": "3.6.4"
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment