Update module2/exo1/toy_notebook_en.ipynb

parent 3d3647a0
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Asking the maths library\n", "## Asking the maths library\n",
"\n",
"My computer tells me that $\\pi$ is _approximatively_" "My computer tells me that $\\pi$ is _approximatively_"
] ]
}, },
...@@ -39,7 +38,6 @@ ...@@ -39,7 +38,6 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Buffon’s needle\n", "## Buffon’s needle\n",
"\n",
"Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
] ]
}, },
...@@ -73,10 +71,7 @@ ...@@ -73,10 +71,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Using a surface fraction argument\n", "## Using a surface fraction argument\n",
"\n", "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X ∼ U(0, 1)$ and $Y ∼ U(0, 1)$, then $P[X^2 + Y^2 ≤ 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
"A method that is easier to understand and does not make use of the sin function is based on the\n",
"fact that if $X ∼ U(0, 1)$ and $Y ∼ U(0, 1)$, then $P[X^2 + Y^2 ≤ 1] = \\pi/4$ (see [\"Monte Carlo method\"\n",
"on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
] ]
}, },
{ {
...@@ -105,8 +100,10 @@ ...@@ -105,8 +100,10 @@
"N = 1000\n", "N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n", "x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n",
"\n",
"accept = (x*x+y*y) <= 1\n", "accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n", "reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n", "fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
...@@ -117,8 +114,7 @@ ...@@ -117,8 +114,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"It is then straightforward to obtain a (not really good) approximation to \\pi by counting how\n", "It is then straightforward to obtain a (not really good) approximation to \\pi by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:"
"many times, on average, $X^2 + Y^2$ is smaller than 1:"
] ]
}, },
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment