Début de l'exercice 1 du module 2 : 1.1 et 1.2

parent 04df5e3c
{
"cells": [],
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# À propos du calcul de $\\pi$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## En demandant à la lib maths"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mon ordinateur m'indique que $\\pi$ vaut *approximativement*"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import *\n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## En utilisant la méthode de Buffon"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais calculée avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.128911138923655"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
......@@ -16,10 +111,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment