Correcciones luego de comparación

parent d71f925e
......@@ -7,10 +7,14 @@
"hidePrompt": false
},
"source": [
"## 1 On the computation of $\\pi$\n",
"\n",
"### 1.1 Asking the maths library\n",
"\n",
"## On the computation of $\\pi$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Asking the maths library\n",
"My computer tells me that $\\pi$ is *approximatively*"
]
},
......@@ -38,14 +42,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2 Buffon's needle\n",
"\n",
"### Buffon's needle\n",
"Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"metadata": {},
"outputs": [
{
......@@ -54,7 +57,7 @@
"3.128911138923655"
]
},
"execution_count": 2,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
......@@ -62,9 +65,9 @@
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N=10000\n",
"x=np.random.uniform(size=N, low=0, high=1)\n",
"theta=np.random.uniform(size=N, low=0, high=pi/2)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
......@@ -72,8 +75,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.3 Using a surface fraction argument\n",
"\n",
"### Using a surface fraction argument\n",
"A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0,1)$ and $Y \\sim U(0,1)$ then $P[X^2 + Y^2 \\le 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
]
},
......@@ -100,13 +102,14 @@
"import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42)\n",
"N=1000\n",
"x=np.random.uniform(size=N, low=0, high=1)\n",
"y=np.random.uniform(size=N, low=0, high=1)\n",
"accept=(x*x+y*y)<=1\n",
"reject=np.logical_not(accept)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"\n",
"fig, ax=plt.subplots(1)\n",
"accept = (x*x+y*y) <=1\n",
"reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')"
......@@ -116,7 +119,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"| It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:"
"It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:"
]
},
{
......@@ -138,13 +141,6 @@
"source": [
"4*np.mean(accept)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment