Replace toy_notebook_en.ipynb

parent adc82d58
...@@ -4,16 +4,14 @@ ...@@ -4,16 +4,14 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## <center>toy_notebook_en\n", "# 1 On the computation of $\\pi$"
"<center>March 28, 2019"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### **1 On the computation of** $\\pi$\n", "## 1.1 Asking the maths library"
"**1.1 Asking the math library**"
] ]
}, },
{ {
...@@ -45,7 +43,7 @@ ...@@ -45,7 +43,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"**1.2 Buffon's needle**" "## 1.2 Buffon's needle"
] ]
}, },
{ {
...@@ -77,21 +75,21 @@ ...@@ -77,21 +75,21 @@
"N = 10000\n", "N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n", "x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)\n" "2/(sum((x+np.sin(theta))>1)/N)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"**1.3 Using a surface fraction argument**" "## 1.3 Using a surface fraction argument"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1]=\\pi /4$ (see [\"Monte Carlo method on Wikipedia\"](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2 + Y^2\\leq 1]=\\pi /4$ (see [\"Monte Carlo method on Wikipedia\"](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
] ]
}, },
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment