18h59

parent d50d4188
......@@ -42,7 +42,7 @@
},
"source": [
"## En utilisant la méthode des aiguilles de Buffon \n",
"Mais calculé avec la **méthode** des <span style=\"color: #0002e1\">aiguilles de Buffon</span>, on obtiendrait comme **approximation** : "
"Mais calculé avec la **méthode** des [Aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : "
]
},
{
......@@ -67,9 +67,9 @@
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N=10000\n",
"x=np.random.uniform(size=N, low=0, high=1)\n",
"theta=np.random.uniform(size=N, low=0, high=pi/2)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
......@@ -110,12 +110,12 @@
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"np.random.seed(seed=42)\n",
"N=1000\n",
"x=np.random.uniform(size=N, low=0, high=1)\n",
"y=np.random.uniform(size=N, low=0, high=1)\n",
"accept=(x*x+y*y)<=1\n",
"reject=np.logical_not(accept)\n",
"fig, ax=plt.subplots(1)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"accept = (x*x+y*y)<=1\n",
"reject = np.logical_not(accept)\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')"
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment