Update toy_document_fr.Rmd

parent 11bf2331
...@@ -12,7 +12,7 @@ knitr::opts_chunk$set(echo = TRUE) ...@@ -12,7 +12,7 @@ knitr::opts_chunk$set(echo = TRUE)
## En demandant à la lib maths ## En demandant à la lib maths
Mon ordinateur m’indique que $\pi vaut approximativement Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r cars} ```{r cars}
...@@ -20,9 +20,9 @@ pi ...@@ -20,9 +20,9 @@ pi
``` ```
# En utilisant la méthode des aiguilles de Buffon # En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ [des aiguilles de Buffon] (https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__: Mais calculé avec la __méthode__ [des aiguilles de Buffon] (https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r pressure, echo=FALSE} ```{r}
set.seed(42) set.seed(42)
N = 100000 N = 100000
x = runif(N) x = runif(N)
...@@ -34,7 +34,7 @@ theta = pi/2*runif(N) ...@@ -34,7 +34,7 @@ theta = pi/2*runif(N)
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$
(voir [méthode de Monte Carlo sur wikipedia] (https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait. (voir [méthode de Monte Carlo sur wikipedia] (https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait :
```{r} ```{r}
set.seed(42) set.seed(42)
...@@ -45,7 +45,7 @@ library(ggplot2) ...@@ -45,7 +45,7 @@ library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
``` ```
Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1: Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r} ```{r}
4*mean(df$Accept) 4*mean(df$Accept)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment