Update toy_document_fr.Rmd

parent eaad74cf
...@@ -5,11 +5,17 @@ date: "25 juin 2018" ...@@ -5,11 +5,17 @@ date: "25 juin 2018"
output: html_document output: html_document
--- ---
En demandant à la lib maths, mon ordinateur m'indique que $\pi$ vaut *approximativement* : ```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut *approximativement* :
```{r cars} ```{r cars}
pi pi
``` ```
## En utilisant la méthode des aiguilles de Buffon ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ : Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
...@@ -31,9 +37,12 @@ df = data.frame(X = runif(N), Y = runif(N)) ...@@ -31,9 +37,12 @@ df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1) df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2) library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
``` ```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 : Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```R ```{r}
4*mean(df$Accept) 4*mean(df$Accept)
``` ```
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment