Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait comme *approximation* :
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait
comme *approximation* :
#+begin_src R :results output :session *R* :exports both
set.seed(42)
...
...
@@ -36,26 +38,20 @@ theta = pi/2*runif(N)
: [1] 3.14327
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim
Sinon, une méthode plus simple à comprendre et ne faisant pas
intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim
U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [[https://fr.wikipedia.org/wiki/M%25C3%25A9thode_de_Monte-Carlo#D%25C3%25A9termination_de_la_valeur_de_%25CF%2580][méthode de
Monte Carlo sur Wikipedia]]). Le code suivant illustre ce fait :
*+begin_src R :results output :exports both
%matplotlib inline
import matplotlib.pyplot as plt
np.random.seed(seed=42)
#+begin_src R :results output graphics :file figure_pi_mc1.png :exports both :width 600 :height 400 :session *R*