fichier_local

parent f1959d34
{
"cells": [],
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
......@@ -16,10 +24,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
......@@ -9,13 +9,14 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import os\n",
"import isoweek"
]
},
......@@ -28,42 +29,90 @@
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
"#data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
]
},
{
"cell_type": "markdown",
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/home/jovyan/work/module3/exo1\n"
]
}
],
"source": [
"Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
"\n",
"| Nom de colonne | Libellé de colonne |\n",
"|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
"| week | Semaine calendaire (ISO 8601) |\n",
"| indicator | Code de l'indicateur de surveillance |\n",
"| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
"| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
"| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
"| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
"| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
"| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
"| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
"| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
"\n",
"La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
"print(os.getcwd())"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"fichier_local = \"inc-25-PAY.csv\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" ATTENTION : Le fichierinc-25-PAY.csv est introuvable dans le répertoire du notebook.\n"
]
}
],
"source": [
"#Verification si le fichier local exixte avant d'essayer de le lire\n",
"\n",
"if os.path.exists(fichier_local) : \n",
" print(f\"Lecture des données à partir de la copie locale:{fichier_local}\")\n",
" df_local= pd.read_csv(fichier_local)\n",
" print(\"succès! Les premières lignes lues sont :\")\n",
" print(df_local.head())\n",
" print(\" L'analyse est maintenant réplicable, même sans connexion Internet.\")\n",
" \n",
"else :\n",
" print(f\" ATTENTION : Le fichier{fichier_local} est introuvable dans le répertoire du notebook.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'data_url' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-6-c6940997bed1>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mraw_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_url\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskiprows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mraw_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'data_url' is not defined"
]
}
],
"source": [
"raw_data = pd.read_csv(data_url, skiprows=1)\n",
"raw_data"
......@@ -153,9 +202,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"sorted_data = data.set_index('period').sort_index()"
......@@ -253,9 +300,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
......@@ -341,9 +386,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": []
}
......@@ -364,7 +407,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
"version": "3.6.4"
}
},
"nbformat": 4,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment