Commit 0a628524 authored by Lana Scravaglieri's avatar Lana Scravaglieri

Exo 1 issues with python on my machine

parent 198c7692
#+TITLE: Your title
#+AUTHOR: Your name
#+DATE: Today's date
#+TITLE: À propos du calcul de π
#+AUTHOR: Konrad Hinsen
#+DATE: 2019-03-28 Thu 11:06
#+LANGUAGE: en
# #+PROPERTY: header-args :eval never-export
#+PROPERTY: header-args :eval never-export
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
......@@ -11,84 +12,70 @@
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Some explanations
This is an org-mode document with code examples in R. Once opened in
Emacs, this document can easily be exported to HTML, PDF, and Office
formats. For more information on org-mode, see
https://orgmode.org/guide/.
When you type the shortcut =C-c C-e h o=, this document will be
exported as HTML. All the code in it will be re-executed, and the
results will be retrieved and included into the exported document. If
you do not want to re-execute all code each time, you can delete the #
and the space before ~#+PROPERTY:~ in the header of this document.
* En demandant à la lib maths
Like we showed in the video, Python code is included as follows (and
is exxecuted by typing ~C-c C-c~):
Mon ordinateur m'indique que π vaut approximativement:
#+begin_src python :results output :exports both
print("Hello world!")
#+begin_src python :results output :session :exports both
from math import *
pi
#+end_src
#+RESULTS:
: Hello world!
3.141592653589793
* En utilisant la méthode des aiguilles de Buffon
And now the same but in an Python session. With a session, Python's
state, i.e. the values of all the variables, remains persistent from
one code block to the next. The code is still executed using ~C-c
C-c~.
Mais calculé avec la méthode des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait comme approximation :
#+begin_src python :results output :session :exports both
import numpy
x=numpy.linspace(-15,15)
print(x)
import numpy as np
np.random.seed(seed=42)
N = 10000
x = np.random.uniform(size=N, low=0, high=1)
theta = np.random.uniform(size=N, low=0, high=pi/2)
2/(sum((x+np.sin(theta))>1)/N)
#+end_src
#+RESULTS:
#+begin_example
[-15. -14.3877551 -13.7755102 -13.16326531 -12.55102041
-11.93877551 -11.32653061 -10.71428571 -10.10204082 -9.48979592
-8.87755102 -8.26530612 -7.65306122 -7.04081633 -6.42857143
-5.81632653 -5.20408163 -4.59183673 -3.97959184 -3.36734694
-2.75510204 -2.14285714 -1.53061224 -0.91836735 -0.30612245
0.30612245 0.91836735 1.53061224 2.14285714 2.75510204
3.36734694 3.97959184 4.59183673 5.20408163 5.81632653
6.42857143 7.04081633 7.65306122 8.26530612 8.87755102
9.48979592 10.10204082 10.71428571 11.32653061 11.93877551
12.55102041 13.16326531 13.7755102 14.3877551 15. ]
#+end_example
Finally, an example for graphical output:
#+begin_src python :results output file :session :var matplot_lib_filename="./cosxsx.png" :exports results
3.12891113892
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si X∼U(0,1)
et Y∼U(0,1) alors P[X2+Y2≤1]=π/4
(voir [[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode de Monte Carlo sur Wikipedia]]). Le code suivant illustre ce fait :
#+begin_src python :results output file :session :var matplot_lib_filename=(org-babel-temp-file "figure" ".png") :exports both
import matplotlib.pyplot as plt
plt.figure(figsize=(10,5))
plt.plot(x,numpy.cos(x)/x)
plt.tight_layout()
np.random.seed(seed=42)
N = 1000
x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
accept = (x*x+y*y) <= 1
reject = np.logical_not(accept)
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
plt.savefig(matplot_lib_filename)
print(matplot_lib_filename)
#+end_src
#+RESULTS:
[[file:./cosxsx.png]]
Note the parameter ~:exports results~, which indicates that the code
will not appear in the exported document. We recommend that in the
context of this MOOC, you always leave this parameter setting as
~:exports both~, because we want your analyses to be perfectly
transparent and reproducible.
Watch out: the figure generated by the code block is /not/ stored in
the org document. It's a plain file, here named ~cosxsx.png~. You have
to commit it explicitly if you want your analysis to be legible and
understandable on GitLab.
Finally, don't forget that we provide in the resource section of this
MOOC a configuration with a few keyboard shortcuts that allow you to
quickly create code blocks in Python by typing ~<p~, ~<P~ or ~<PP~
followed by ~Tab~.
Now it's your turn! You can delete all this information and replace it
by your computational document.
[[file:/tmp/babel-FHKHuh/figurenB4Fst.png]]
Il est alors aisé d'obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, X2+Y2 est inférieur à 1 :
#+begin_src python :results output :session :exports both
4*np.mean(accept)
#+end_src
#+RESULTS:
3.1120000000000001
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment