Mon ordinateur m’indique que π vaut *approximativement*
Mon ordinateur m’indique que π vaut *approximativement*
```
```
pi
pi
```
```
```
## [1] 3.141593
```
## En utilisant la méthode des aiguilles de Buffon
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
...
@@ -22,9 +18,6 @@ x = runif(N)
...
@@ -22,9 +18,6 @@ x = runif(N)
theta = pi/2*runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
2/(mean(x+sin(theta)>1))
```
```
```
## [1] 3.14327
```
## Avec un argument “fréquentiel” de surface
## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X∼U(0,1) et Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir [méthode de Monte Carlo sur Wikipedia)](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X∼U(0,1) et Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir [méthode de Monte Carlo sur Wikipedia)](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: